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Abstract. The purpose of this paper is to present some new, simpler exam-
ples of recursively based undecidable varieties of finite type having solvable word
problems.

1. Introduction

Given an algebraic language L and a set Σ of identities, different decision
problems concerning Σ may arise. Generally, one can ask if the sets of all first–
order, implicational or equational consequences of Σ are recursive. If so, we say
that the elementary, implicational, equational theory based on Σ are decidable.

For example, Abelian groups and Boolean algebras appear to have decidable
elementary theory. Obviously, decidability of elementary theory yields decidabil-
ity of implicational theory, and that decidability of equational theory. Decidable
equational theories include commutative semigroups, groups, lattices, etc. On the
other hand, modular lattices and relation algebras have undecidable equational
theories.

An another kind of decision problems in algebra are word problems. A pre-
sentation is a pair (G, R), where G is a set of new constant symbols, extending L
to LG = L∪G, and R is a set of equations over LG in which no variables appear.
The presentation is finite, if G and R are both finite. The word problem for
(G,R) over Σ is solvable iff the set of equational consequences of Σ ∪ R without
variables is recursive, i.e. iff there is an algorithm to decide whether any two
words in the language LG having no variables are equal.

An algebra A is presented by (G,R), iff A is isomorphic to the L-reduct of
the 0-rank free algebra of the variety, generated by Σ∪R, or equivalently iff it is
isomorphic to FV(G)/θR, where V is the variety generated by Σ, and

θR = {(p, q)|Σ ∪R ` p ≈ q},

is a congruence on FV(G). Denote such A by A = PV(G,R). Now, the word
problem for A is the word problem for (G,R).

By investigating word problems for varieties of algebras, one is concerned with
two questions:
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(1) is the word problem solvable for each finitely presented algebra A =
PV(G,R)?

(2) is there a universal algorithm which, given a finite presentation (G,R),
solves the word problem for A = PV(G,R)?

If the answer to (1) is positive, we say that V has solvable local word problem
(the word local is usually omited). If (2) has a positive answer, we say that V has
solvable global (or uniformly solvable) word problem.

One can prove that decidability of the implicational theory based on Σ and
the global word problem for V = mod(Σ) are equivalent.

In this paper, we are going to present varieties of the types (2,1,0), (2,1),
(2,0,0) and (2,0) with solvable word problems having undecidable equational the-
ories (which implies the unsolvability of the global word problems).

Examples of varieties with this property were presented earlier in the papers
of Wells [10],[11],[12], Mekler, Nelson and Shelah [8] and Crvenković and Delić
[3],[4]. This paper is a contribution to the topic.

2. Example of a variety of the type (2,1,0)

In the sequel, ϕ will be a primitive recursive function, X = {ϕ(k)|k ∈ N}
nonrecursive recursively enumerable set with 1 6∈ X, where N = {1, 2, . . .}.

Consider the algebraic language { · , f, 0} of the type (2,1,0) and the following
identities in this language:

(xy)z ≈ 0,(1)

x(xy) ≈ 0,(2)

x(y(zu)) ≈ x(z(yu)),(3)

f(x)y ≈ 0,(4)

f(f(x)) ≈ 0,(5)

f(x1(. . . (xnf(y)) . . .)) ≈ 0, n ∈ N,(6)

f(x1(x2(. . . (xϕ(n)x1) . . .))) ≈ fn(0), n ∈ N.(7)

The listed set of identities is obviously recursive. Denote the variety defined
by (1)–(7) by V . We immediately have f(0) ≈ 0, x · 0 ≈ 0 · x ≈ 0, as consequeces
of the identities given above. Therefore, the constant 0 will be the zero of the
algebras in V . In the following, our goal will be to prove:

Theorem 2.1. V has undecidable equational theory and solvable word problem.

3. Word problem for V
Let Fn

V be the free algebra in V over the set of generators {g1, . . . , gn}. We are
going to prove that this algebra is finite. Clearly, this follows from the finitness
of the algebra Fn

V1
, where V1 is the variety generated by the identities (1)–(6).
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Assuming finitness of Fn
V , one easily deduces the solvability of the word problem

for V . Now, it remains to list the words of Fn
V1

.

Lemma 3.1. Each word in Fn
V1

is one of the following:

(i) 0, gr,
(ii) gk1(gk2(. . . (gkmgr) . . .)),
(iii) f(w),
(iv) gk1(. . . (gkmf(w)) . . .),

where in (ii) and (iv) i 6= j implies ki 6= kj, and in (iii) and (iv) w denotes a
word of the type (ii).

Proof. By the induction on the complexity of the word (number of operation
symbols) in Fn

V1
, we have:

1. The complexity of t is 0. We have either t = 0 or t = gr.

2. The complexity of t is 1. Then t is one of the words

f(0), f(gr).

But then the first one is equivalent to 0, while the second is of the type (iii).

3. Let k be the complexity of the word t, while all words of complexity ≤ k − 1
have one of the form (i) – (iv). We have two cases:

(a) t = t1t2.

Clearly, if t1 = uv then t is equivalent to 0, by (1). The same situation we
have if t1 = f(u), because of (4). The only possibility remaining is t1 = gl. Now,
the claim is obvious if the word t2 has the form (i) or (iii). If t2 is of the form
(ii), we have:

t = gl(gk1(gk2(. . . (gkmgr) . . .))).

If l = ki for some i, 1 ≤ i ≤ m, we easily conclude, applying (3), that t is
equivalent to

gl(gl(gk1(. . . (gkmgr) . . .))),

i.e. to 0, by (2). In the opposite case, t is of the type (ii). Finally, if the word t2
has the form (iv), the proof is similar.

(b) t = f(t1).

If t1 belongs to (i), the case is trivial. If t1 is of the type (ii), we obtain a
word of the type (iii). Finally, if t1 belongs to one of the classes (iii) or (iv), we
have 0 as the result, according to the laws (5) and (6), respectively.

Define:

M =
n∑

k=0

(
n

k

)
k!.
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By elementary combinatorial calculation, we have:

|Fn
V1
| ≤ 1 + n + 2nM + nM2. 2

4. Undecidability of the equational theory of V
Let K1 be the variety of the type (2,0), generated by the identities (1)–(3)

and FK1 its free algebra over the countable set of generators G = {g0, g1, g2, . . .}.
Define an algebra A = (A, · , φ, 0) of the type (2,1,0) in the following way: let A =
FK1 , and let us identify 0 with the constant, appearing in FK1 . The multiplication
in A is the same as in FK1 . Finally, we put:

φ(w) =

{
g0w w = gk1(. . . (gkmgk1) . . .),m 6∈ X, m 6= 1
0 otherwise

Here we assumed i 6= j ⇒ ki 6= kj.

Lemma 4.1. A ∈ V.

Proof. Identities (1)–(3) are automatically true in A. One easily verifies (4),
since (g0w)y = 0. For (5) we have either φ(φ(w)) = 0 or φ(φ(w)) = g0(g0w) = 0;
moreover:

g0(w1(. . . (wn(g0w)) . . .)) = 0,

which is obvious from (2) and (3), so that we have (6). Finally, we see that
the only possibility for the expression, standing as the argument of the unary
operation simbol in (7), not to be 0 is for the valuation xi = gki

(ki’s are all
different). But then we have:

φ(gk1(. . . (gkmgk1) . . .)) = 0,

because of m ∈ X, and because gk1(. . . (gkmgk1) . . .) cannot be reduced to a shorter
word, since one easily proves that the polynomial

x1(x2(. . . (xkx1) . . .))

is esentially k-ary, for all k ≥ 2 (see, for example, lemma 2.10 in [5]). 2

Lemma 4.2.

V |= f(x1(x2(. . . (xm−1(xmx1)) . . .))) ≈ 0 iff m ∈ X

Proof. Implication (⇐=) is trivial. For the reverse, consider the valuation in
the previously described algebra A: xi = gi, 1 ≤ i ≤ m, and suppose m 6∈ X. We
have:

g0(g1(g2(. . . (gmg1) . . .))) = 0,

which is false in A, i.e. in FK1 . 2

The statement of the previous lemma obviously implies the undecidability of
Eq(V) and completes the proof of the theorem 2.1.
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5. Variety of the type (2,1)

Since the constant 0 is zero in the variety V , we can easily remove it from
the language. Let us replace every occurence of the symbol 0 with, for example,
x(xx) in each of the identities (1)–(7). By imitation of the proof, given above,
we have a variety of the type (2,1), having the desired properities, defined by the
following identities:

y(x(xx)) ≈ x(xx).

(xy)z ≈ u(uu),

x(xy) ≈ z(zz),

x(y(zu)) ≈ x(z(yu)),

f(x)y ≈ z(zz),

f(f(x)) ≈ y(yy),

f(x1(. . . (xnf(y)) . . .)) ≈ x(xx), n ∈ N,

f(x1(x2(. . . (xϕ(n)x1) . . .))) ≈ fn(x(xx)), n ∈ N.

6. Example of a variety of the type (2,0,0) and its word problem

Let us consider an algebraic language { · , 0, c} of the type (2,0,0) and the
following identities:

x(y1(. . . (yn(xyn+1)) . . .)) ≈ 0, n ∈ N,(8)

c2 ≈ 0,(9)

c(x1(x2(. . . (xϕ(n)x1) . . .))) ≈ c(c(. . . (c(cc)) . . .))︸ ︷︷ ︸
n

,(10)

where on the right-hand side of the last identity we have n occurences of the
symbol c. Now, let V denotes the variety of the type (2,0,0), generated by the
identities (1),(2),(8),(9),(10). Of course, this set of identities is also recursive.
Here we shall assume 2 6∈ X.

Theorem 6.1. V has undecidable equational theory and solvable word problem.

Lemma 6.1. V has solvable word problem.

Proof. Note that, estimating in lemma 3.1 the number of elements of Fn
V1

,
we used, in fact, the scheme (8), which is equational consequence of (2) and (3)
(the combination of laws (2) and (3) is stronger, since it allows us to put ki’s in
strictly increasing order; so the estimation, given in the inequality in the secion 3
– denote it by Ln – can be even improved). Therefore, if K2 denotes the variety
of the type (2,0), defined by (1),(2) and (8), and Fn

V ,F
n
K2

are the corresponding
free algebras over a set of n generators, we have:

|Fn
V | ≤ |Fn+1

K2
| ≤ Ln+1,
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so the word problem for any finitely presented algebra in V , which is a
homomorphic image of Fn

V for some n ∈ N, immediately turns out to be
solvable. 2

7. Undecidability of the equational theory of V
We are going to define an algebra A = (A, · , 0, c) of the type (2,0,0). Let

A = FK2 ∪ {c}, where FK2 denotes the free algebra in K2 over a countable set of
generators. The binary operation and the constant 0 is identical in FK2 and A.
The only thing left to define is multiplication by the constant c. We put:

tc = 0, for all t ∈ A,

ct =

{
g0t t = gk1(. . . (gkmgk1) . . .),m 6∈ X, m 6= 1
0 otherwise

Again, we have i 6= j ⇒ ki 6= kj.

Lemma 7.1. A ∈ V.

Proof. It is obvious that the identities (1),(2) and (8) should be verified only
for those valuations of the variables, for which some of them has the value c.
Also, (9) is immediately clear.

In (1), the straightforward cases are y = c and z = c (recall that in V x · 0 ≈
0 · x ≈ 0 holds). If x = c and cy = 0, the identity is verified; in the opposite,
cy = g0y, (g0y)z = 0

In (2), the case y = c is obvious. Put x = c. The identity holds if cy = 0; in
the opposite case we have either c(cy) = 0 or c(cy) = g0(g0y) = 0.

Now we check (8). The identity is clear for yn+1 = c. Therefore, we have two
cases:
1. x = c. We have two possibilities: cyn+1 = 0 and cyn+1 = g0yn+1. In the
second case we obtain either

c(y1(. . . (yn(g0yn+1)) . . .)) = 0

or
c(y1(. . . (yn(g0yn+1)) . . .)) = g0(y1(. . . (yn(g0yn+1)) . . .)) = 0.

2. yi = c, for some i ≤ n, with x 6= c and yn+1 6= c. Again, we have one of the
following two cases:

c(yi+1(. . . (yn(xyn+1)) . . .)) = 0,

c(yi+1(. . . (yn(xyn+1)) . . .)) = g0(yi+1(. . . (yn(xyn+1)) . . .)).

In the second case, the identity holds, because the letter x occurs two times in
the expression, corresponding to the left-hand side of the identity (8).

Finally, we have (10) to check. But here we have the same case as in lemma
4.1: the only nontrivial valuation is xi = gki

with all ki’s different, for which we
have:

c(gk1(. . . (gkmgk1) . . .)) = 0. 2
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Lemma 7.2.

V |= c(x1(x2(. . . (xmx1) . . .))) ≈ 0 iff m ∈ X.

Proof. The implication (⇐=) is trivial, since 1, 2 6∈ X by earlier assumptions.
To prove (=⇒), suppose that the identity, given above, holds for some m 6∈ X.
But then consider the valuation in A: xi = gi; it follows that

g0(g1(. . . (gmg1) . . .)) = 0.

Contradiction. 2

The proof of the theorem 6.1 is now complete.

8. Variety of the type (2,0)

Using the same technique, as in section 5, removing the zero-constant symbol,
we have a variety of the type (2,0) having solvable word problem and undecidable
equational theory, defined by the identities:

c2x ≈ c2,

xc2 ≈ c2,

(xy)z ≈ c2,

x(xy) ≈ c2,

x(y1(. . . (yn(xyn+1)) . . .)) ≈ c2, n ∈ N,

c(x1(x2(. . . (xϕ(n)x1) . . .))) ≈ c(c(. . . (c(cc)) . . .))︸ ︷︷ ︸
n

, n ∈ N.
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