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INTRODUCTION

A function f : A → A (that is, a unary operation on the setA) is called an
involution if f(f(x)) = x holds for allx ∈ A. Involutions appear in many differ-
ent areas of mathematics, and their role seems to be most transparent in geometry
(euclidian, projective, differential, etc.). They occur quite frequently in topology
and functional analysis, and especially in algebra. When one is concerned with
involutions on algebraic structures, it is usual to require that the considered involu-
tion is also an antiautomorphism of the underlying algebraic system (it is clear that
any involution is a permutation). In that way, involutions indicate a certain kind of
internal symmetry of such systems. Maybe the simplest example of an algebraic
involution is the transposition of matrices in the algebra of matrices over a ring.

Further, an involution can be considered as a fundamental operation, and there-
fore, a part of the algebra on which it acts. For example, aninvolution semigroup
is a triple(S, ·, ∗) such that(S, ·) is a semigroup, while∗ is an involution onS such
that

(xy)∗ = y∗x∗

holds for allx, y ∈ S. Similarly, if (S,+, ·) is a semiring (i.e. a structure in which
(S,+) is a commutative semigroup,(S, ·) is a semigroup, and· distributes over+),
then(S,+, ·,∗ ) is called aninvolution semiring, provided that∗ is an involution of
S satisfying the identities

(x+ y)∗ = x∗ + y∗,

(xy)∗ = y∗x∗.

Sometimes, semirings may be equipped with a zero 0, and/or an identity 1. In such
a case we require that the involution satisfies0∗ = 0 and1∗ = 1.

The present survey concentrates primarily to universal-algebraic and related
structural features of involution semigroups and involution semirings. To be more
precise, our aim is to present an overview of results which concern varieties (equa-
tional classes) formed by these structures. Of course, this overview is by no means
exhaustive: it represents a subjective selection of topics in this rich and extensive
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theory. For example, involution semigroups include groups, and more generally,
inverse semigroups; however, having a number of excellent survey texts on vari-
eties of groups and inverse semigroups in the literature, e.g. [62, 77, 86], the first
section of this survey focusses onother parts of the theory of involution semi-
group varieties. Some basic results on inverse semigroups will be occasionally
mentioned, but mostly in the wider context of regular∗-semigroups.

On the other hand, the second part is devoted to selected problems in the grow-
ing subject of involution semirings and their varieties. Involution semirings are
the natural companions of involution semigroups in the study of the interaction
between associative phenomena and involution. Yet, they appear to have a theory
of their own, with some interesting connections to theoretical computer science
(e.g. complete semirings of formal languages and algebras of binary relations). We
present here some of those connections. Finally, some universal-algebraic aspects
of the theory of involution rings are also included in this paper.

1. VARIETIES OF INVOLUTION SEMIGROUPS

1.1. Some General Properties.As it was defined above,involution semigroups
(or ∗-semigroups) are unary semigroups which satisfy(xy)∗ = y∗x∗ and(x∗)∗ =
x. The motivation for investigation of involution semigroups for their own, came
from the most important class of involution algebras,involution rings, by omitting
the additive structure. The paper of Nordahl and Scheiblich [78] is commonly
established as the pioneering paper on involution semigroups from the standpoint
of theory of varieties (though there are several earlier papers dealing with similar
subjects, e.g. [37, 39, 54, 102]).

Nordahl and Scheiblich defineregular ∗-semigroupsas involution semigroups
satisfying

xx∗x = x.

In other words,x∗ is always an inverse ofx, since the above identity implies

x∗xx∗ = (xx∗x)∗ = x∗.

Note that regular∗-semigroups are distinguished from (but closely related to) regu-
lar involution semigroups in the sense of Drazin [32] and Nambooripad and Pastijn
[76], see also [11, 12, 18, 93], as involution semigroups in which every element
has a Moore-Penrose inverse [83].

Throughout the section, we adopt the following notation. IfV is a semigroup
variety, byV∗ we denote the variety consisting of all involution semigroups whose
semigroup reducts belong toV (it is clear thatV∗ is axiomatized by the identities
of V and involution axioms). The subvariety ofV∗ consisting of all of its regular
∗-semigroup members is denoted byVreg. Finally, if S is an involution semigroup
anda ∈ S is such thata∗ = a2 = a, thena is called aprojection.

Now, inverse semigroups (considered as unary semigroups) are clearly included
in the class of regular∗-semigroups, and moreover, they can be equationally char-
acterized within that class. Hence, they form a variety, which follows from the
well-known result of Schein.
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Theorem 1.1.1. (Schein, [102])The class of all inverse semigroups is defined
within the variety of regular∗-semigroups by the identity

xx∗x∗x = x∗xxx∗.

Another approach to characterization of inverse semigroups by using involution
semigroups can be found in Easdown and Munn [33].

On the other hand, one can defineorthodox∗-semigroupsas regular∗-semi-
groups in which idempotents form a subsemigroup (it is obvious that idempotency
is preserved by∗). It is interesting that orthodox∗-semigroups form yet another
subvariety of the varietySreg of regular∗-semigroups.

Theorem 1.1.2. (Nordahl and Scheiblich, [78])The class of orthodox∗-semi-
groups is defined within the variety of regular∗-semigroups by the identity

(xx∗yy∗zz∗)2 = xx∗yy∗zz∗.

It is worth noting that the semigroup structure of regular∗-semigroups is well
preserved by the involution. For example, some of the results of Nordahl and
Scheiblich [78] can be summarized as follows.

Theorem 1.1.3. In any regular∗-semigroup, the involution induces a bijection
betweenR-classes andL-classes. Also, it preservesH-classes. Consequently,
eachR-class contains exactly one projection, andD-classes are square.

Further, every idempotent-separating congruence of (the semigroup reduct of)
a regular∗-semigroup is a∗-congruence, which means that it preserves∗ as well.
Moreover, we have the following characterization of∗-congruences due to Nordahl
and Scheiblich.

Theorem 1.1.4.Let S be a regular∗-semigroup and let% be a congruence of
its semigroup reduct. Then% is a ∗-congruence if and only if for any idempotents
e, f ∈ S such that(e, f) ∈ % we have(e∗, f∗) ∈ %.

Finally, let us mention that quite recently Polák [91] gave a simple and elegant
solution of the word problem for free regular∗-semigroups (i.e. of the problem of
algorithmic decision of the equational theory ofSreg), by using term rewriting. He
proved that the reduction on the set of involution semigroup words (cf. 1.3. below)
arising from the identityxx∗x = x is locally confluent, which implies that each
word has a unique normal form. Moreover, the corresponding algorithm works in
polynomial time.

1.2. Minimal Varieties of Involution Semigroups. A variety of algebras ismin-
imal if it has only trivial variety as a proper subvariety. It is not difficult to see that
for a variety this is just equivalent to beingequationally complete, which means
that its equational theory is maximal. Equationally complete (minimal) varieties
have been extensively studied since the fifties, when the topic was conceived by
Kalicki and Scott (see, e.g. [60]). We refer to [109] for a contemporary overview
of results on minimal varieties.

Since an involution semigroup variety satisfyingx∗ = x (we say that it is
equipped with atrivial involution) must be commutative, it follows from [60]
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that minimal varieties of this kind are exhausted bySLid, the variety of semi-
lattices,N id, the variety of null semigroups, and for each primep, the varietyAid

p

of Abelian groups of exponentp. Now letRB∗ denote the variety ofrectangular
bandswith involution, that is, involution semigroups satisfying

xyz = xz, x2 = x,

where the latter two identities can be replaced byxyx = x. Finally, letSL0 denote
the variety of involution semilattices defined by

xx∗y = xx∗.

In other words,xx∗ is always the zero in any member ofSL0.

Theorem 1.2.1. (Fajtlowicz, [37])An involution semigroup variety is minimal
if and only if it is one of the following:

(1) SLid, SL0,RB∗,N id,
(2) Aid

p ,Ap, for some primep,

whereAp denotes the variety of Abelian groups of exponentp with group inverse
as the involution.

We refer to varieties from (1) and (2) of the above theorem as thenongroupand
thegroup atoms, respectively.

Fajtlowicz’s plan of the proof was the following. First he proved, in a straight-
forward way, thatSL0 andRB∗ are equationally complete (the other varieties
involved in the above theorem were previously known to be minimal). Then he
proved that if an involution semigroupS belongs to a minimal variety and has at
least two involution fixed points (also calledHermitian elements), thenS must be
a rectangular band (with involution), and consequently, the considered variety is
RB∗. On the other hand, ifS has exactly one Hermitian element (and it must have
at least one, foraa∗ is such for anya ∈ S), then it is either the zero, or the identity
of S. From this he obtained thatS is either a group, or contains an involution sub-
semigroup which can be homomorphically mapped onto the following involution
semilattice:

0 1 1∗

0 0 0 0
1 0 1 0
1∗ 0 0 1∗

This involution semilattice we denote byΣ3. It is not too difficult to see thatΣ3

generatesSL0, whence the required result follows.
The paper of Fajtlowicz inspired further investigations of the lattice of varieties

of involution semigroups. For example, sublattices of this lattice generated by
nongroup and group atoms, respectively, were explored in [24]. These and other
related results will be reviewed in the following subsections. But first we need
to take a look at some previous ‘classical’ results concerning the fragments of the
lattice of involution semigroup varieties.
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1.3. Varieties of Regular ∗-Bands. Starting from the result of Theorem 1.1.2,
Adair [1] initiated a systematic study of varieties of orthodox∗-semigroups. In
particular, she managed in [2] to fully describe the lattice of all varieties of regular
∗-bands (idempotent∗-semigroups). Adair’s proof is considerably involved, and it
is based mainly on the methods and techniques which were used by Biryukov [7],
Fennemore [38] and Gerhard [40] in describing all varieties of bands. The strategy
is to find a complete list of all possible nonequivalent identities of regular∗-bands,
i.e. to classify all involution semigroup identities according to their equivalence in
the presence of the axioms of regular∗-bands.

Let us introduce some notation. First of all, note that due to the involution
axioms, any term in the signature{·, ∗} (of involution semigroups) over the set
of variablesX can be equivalently expressed so that the star acts to the variables
only. Terms of the latter form can be considered as words in the extended alphabet
X ∪X∗, whereX∗ = {x∗ : x ∈ X}. In the sequel, we shall assume this is always
the case, so that we deal withinvolution semigroup words.

Now, if w is such a word, we definec(w), thecontentof w, as the set of all vari-
ables fromX which occur inw. However, ifw is considered just as a word in the
extended alphabetX∪X∗ (the symbols fromX∗ being irreducible and independent
from those fromX), we definec∗(w), the∗-contentof w, as the set of all members
ofX∪X∗ having an occurrence inw (for example,c∗(x∗yzy∗x∗) = {x∗, y, y∗, z},
while c(x∗yzy∗x∗) = {x, y, z}). An identity u = v is calledhomotypicalif
c(u) = c(v), otherwise it is calledheterotypical.

We define two sequences of words, assuming thatX = {x1, x2, x3, . . . }. Let
U1 = x1, V1 = x∗1x1, U2 = x1x2 andV2 = x1x

∗
2x1x2. If n ≥ 3 andn is even, we

let

Un = UR
n−2xn+2

2
,

Vn = V R
n−2xn+2

2
UR

n−2xn+2
2
,

wherewR denotes thereverse(mirror-image) of the wordw. On the other hand, if
n ≥ 3 andn is odd, we put

Un = UR
n−2xn+1

2
,

Vn = V R
n−2xn+1

2
UR

n−2xn+1
2
.

The key result of Adair [2] now reads as follows.

Proposition 1.3.1. In the class of regular∗-bands, every homotypical involution
semigroup identity is either equivalent toUn = Vn for somen ≥ 1, or it follows
from the axioms of regular∗-bands.

It is a folklore (see e.g. [87]) that any regular∗-band which satisfies a heterotyp-
ical identity must be a rectangular band. Bearing in mind the fact thatRB∗ is
minimal, this means that withinBreg, the variety of regular∗-bands, every het-
erotypical identity defines eitherRB∗, or the trivial variety. This, along with the
above proposition, and some further work on establishing the implications between
the identitiesUn = Vn, yields the main achievement of [2].
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Theorem 1.3.2. (Adair, [2]) The lattice of all subvarieties ofBreg has the fol-
lowing structure.
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RB∗ SLreg = SLid

NBreg

Breg

Figure 1.The lattice of all varieties of regular∗-bands

Later on, Yamada gave a construction of finitely generated free regular∗-bands
and determined the free spectrum ofBreg (recall that the free spectrum of a variety
is the sequence of the cardinalities of finitely generated free algebras of that vari-
ety). Of course, as in the case of bands,fn(Breg), the size of then-generated free
regular∗-band, is finite.

Theorem 1.3.3.(Yamada, [116])

fn(Breg) =
n∑

k=1

(
n

k

)
42k−1

k−1∏
i=0

(k − i)2
i+1
.

The structure of free regular∗-bands was further studied by Gerhard and Petrich
in [44]. Related results can be found also in [43].

Finally, we mention a couple of categorical features of regular∗-band varieties.
If C is a class of algebras, we say thatI ∈ C is injectivein C if for anyA,B ∈ C,
injective homomorphismf : A → B and homomorphismg : A → I, there is a
homomorphismh : B → I such that the following diagram commutes:

I

↓
A → B
↙

f

h
g

Dually, an algebraP ∈ C is projectivein C if for any surjective homomorphism
f : B → A and any homomorphismg : P → A there is a homomorphism
h : P → B such that

P

↑
B → A
↗

f

gh

commutes.
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The description of injective and projective semilattices is known from [55], and
so it applies toSLreg. Scheiblich [101] has shown that every rectangular band
with involution is injective and projective inRB∗. Moreover, ifN is a regular
∗-normal band, then it is injective inNBreg if and only if the semigroup reduct
of N is injective inNB, and so the characterizations of Gerhard [42] and Schein
[107] apply. For the varieties situated aboveNBreg in our Figure 1, the situation is
analogous to the case of bands. Namely, we have the following

Theorem 1.3.4. (Scheiblich, [101])LetV be a variety of regular∗-bands such
thatV 6⊆ NBreg. ThenI is injective inV if and only ifI is an injective semilattice.

The information on projective regular∗-bands is less complete than the above
results on injectives. However, Scheiblich provided a characterization of projective
regular∗-normal bands.

Theorem 1.3.5.A regular∗-normal bandN is projective inNBreg if and only
if

(1) N/D is a projective semilattice,
(2) eachD-class is finite,
(3) for each projectionx ∈ N , the setUx of identities ofx has an identityex,

which is also a projection,
(4) for eacha, b ∈ N , if Dab (theD-class ofab) contains a projectionx, then

eitherDa ∩ Ux, orDb ∩ Ux contains a projection.

To the best of our knowledge, a reasonable characterization of projectives in va-
rieties of regular∗-bands is still an open problem. Due to Scheiblich, it is known
that if a regular∗-bandP is projective in a subvariety ofBreg, then the semigroup
reduct ofP is projective in the corresponding band variety. It is not known, how-
ever, whether the converse of this result is true.

1.4. Varieties of Completely Regular∗-Semigroups. In his fundamental study
[87], Petrich considered those regular∗-semigroups whose underlying semigroups
are completely regular (we shall refer to them ascompletely regular∗-semigroups).
Of course, completely regular semigroups can be also considered as unary semi-
groups, withx−1 being the inverse ofx in the maximal subgroup to whichx be-
longs. By accepting such an approach, completely regular semigroups form a va-
riety of unary semigroups, which are totally different from regular∗-semigroups,
since−1 is not a semigroup antiautomorphism.

Nevertheless, Petrich discovered that for any varietyV of completely regular
semigroups, the class of all completely regular∗-semigroups whose semigroup
reducts (together with the induced inversion operation) belong toV is a subvariety
of Sreg. This follows from

Lemma 1.4.1. For any completely regular∗-semigroupS andx ∈ S we have

x−1 = xx∗x∗x∗x.

In other words, the inversion is in completely regular∗-semigroups always ex-
pressible by∗. Therefore, it is possible to consider varieties of completely regular
∗-semigroups.
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Theorem 1.4.2. (Petrich, [87])The variety of completely regular∗-semigroups
is determined withinSreg by the identity

xx∗ = xxx∗x∗,

while the variety of completely simple regular∗-semigroups is defined by any of
the identities

xyy∗x∗ = xx∗,

xyxx∗y∗x∗ = xx∗.

Further, Petrich gives equational descriptions for a number of varieties of com-
pletely regular∗-semigroups, with various restrictions on the involved groups, or
structural relationships of subgroups. Note that an involution on a group does not
necessarily coincide with the group inverse; in general, one can prove that any
group involution∗ can be expressed asx∗ = ϕ(x−1), whereϕ is some automor-
phism of the considered group. Still, if we work with regular involutions only, the
inverse is easily seen to be the only such involution on a group.

By the following theorem we summarize some of results from [87].

Theorem 1.4.3.The list below gives equational axiomatizations for several sub-
varieties of the variety of completely regular∗-semigroups:

• groups:xx∗ = yy∗,
• Abelian groups:x = yxy∗,
• Boolean groups:x = xy2,
• rectangular groups:xx∗ = xyy∗y∗yx∗,
• rectangular Abelian groups:x = xyx∗y∗x,
• rectangular Boolean groups:x = xy2x2,
• completely simple∗-semigroups having only Abelian subgroups:xx∗ =
x2yxx∗x∗y∗x∗,

• completely simple∗-semigroups having only Boolean subgroups:x =
xyxyx,

• semilattices of groups:xx∗ = x∗x,
• semilattices of Abelian groups:xy = yx,
• semilattices of Boolean groups:x = x∗,
• normal bands:xyx = xyy∗x,
• normal bands of groups:xyy∗x∗ = xy∗yx∗,
• normal bands of Abelian groups:x2x∗x∗xyxzx = xzxyx,
• normal bands of Boolean groups:x3yxzx = xzxyx,
• orthodox normal bands of groups:xyy∗x∗ = x2x∗y∗yx∗,
• orthodox normal bands of Abelian groups:xyzx = xzyx,
• orthodox normal bands of Boolean groups:xyx = xy∗x.

All these varieties form the ‘skeleton’ of the lower layers of the lattice of com-
pletely regular∗-semigroup varieties. Of course, by Theorem 1.2.1, the atoms in
this lattice areSLid,RB∗, and group varietiesAp (for all prime numbersp).
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1.5. Varieties Generated by 0-Direct Unions.Can every semigroup be turned
into an involution semigroup? Fortunately, the answer is no. Namely, there are
semigroups which do not have antiautomorphisms at all, and the example of left
(right) zero bands is probably the first that comes to mind. However, it is true that
every semigroup can be embedded into (the semigroup reduct of) an involution
semigroup.

The most convenient device to show this is the following. Start with a given
semigroupS, and letS̃ denote an anti-isomorphic copy ofS, thedual of S, S̃ =
{ã : a ∈ S}. Let 0 be a new symbol, and define an associative product onS ∪
S̃∪{0} which works withinS andS̃ just as in the original semigroup, all the other
products being equal to 0. The involution∗ is defined such that we have0∗ = 0
and for alla ∈ S, a∗ = ã and ã∗ = a. It is a routine matter to prove that∗ is
an antiautomorphism. The involution semigroup just obtained we denote byI∗0 (S)
and it is clear thatS embeds into the semigroup reduct ofI∗0 (S). In fact,I∗0 (S) is
a special case of the construction known in semigroup theory as the0-direct union
(or orthogonal sum) of semigroups. Here we are concerned with a 0-direct union
of a semigroup with its dual, enriched by an involution. The involution semilattice
Σ3, encountered earlier, is justI∗0 (T ), whereT denotes the trivial semigroup.

S S̃

•
0

@
@

@
@@�

�
�

��

��XX XX��
∗

Figure 2.The construction ofI∗0 (S)

If Θ denotes a set of semigroup identities, byΘhom we denote the set of all
homotypical members ofΘ (in case thatΘ is the equational theory of a semigroup
S, theΘhom is the equational theory ofS×Σ2, whereΣ2 denotes the two-element
semilattice). Now we are able to give an explicit axiomatization of the equational
theory of an involution semigroup of the formI∗0 (S), provided that the equational
theory ofS is known.

Theorem 1.5.1.(Crvenkovíc, Dolinka and Viňcić, [15])LetΘ be the equational
theory ofS. Then the equational theory ofI∗0 (S) is defined byΘhom ∩ ΘR

hom and
the following two identities:

xx∗y = xx∗,

xyx∗ = xx∗.

In other words, if we assume that the semigroup reduct ofI∗0 (S) generates the
varietyV, and if we denote byV0 the variety generated byI∗0 (S), thenV0 is defined
within V∗ by the above two identities.
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From the above theorem and some general results on finite bases of identities
for varieties of involution algebras, obtained by Crvenković, Dolinka andÉsik in
[13], one can derive the second main result of [15].

Theorem 1.5.2.LetS be a semigroup whose identities are closed for reversal
and letS0 denote the semigroup obtained by adjoining a zero toS (even ifS
already has one). ThenS0 is finitely based if and only ifI∗0 (S) is such. If, in
addition,S satisfies only homotypical identities, thenS is finitely based if and only
if I∗0 (S) is finitely based.

Recall that the5-element Brandt semigroupB2 is the one generated bya, b,
subject to the following relations:

a2 = b2 = 0, aba = a, bab = b.

By an adjunction of an identity element, we obtain the six-element monoidB1
2 . It

is easy to check thatB1
2 is isomorphic to the semigroup of matrices(

0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)
,

with the usual matrix multiplication. By a result of Perkins [84],B1
2 is not finitely

based. Moreover, it isinherentlynonfinitely based (Sapir [98]), which means that
there is no finitely based locally finite variety containingB1

2 . However, it is inter-
esting to note thatB2 is finitely based (see Tiščenko [111] and Trahtman [112]).

Since the equational theory ofB1
2 is homotypical (becauseB1

2 contains a zero)
and closed for reversal (sinceB1

2 has an antiautomorphism, e.g. the matrix trans-
position), the above considerations give rise to an example of a nonfinitely based
involution semigroup.

Corollary 1.5.3. The 13-element involution semigroupI∗0 (B1
2) is not finitely

based.

We recall that Sapir [99] proved that no inverse semigroup (considered as an
involution semigroup) is inherently nonfinitely based. It would be interesting to
see if the above nonfinitely based involution semigroupI∗0 (B1

2) (which is clearly
not inverse) is actually inherently nonfinitely based.

1.6. Lower Floors of the Lattice of Involution Semigroup Varieties. If one is
concerned with the investigation of the lattice of involution semigroup varieties, it
is reasonable to start with lattices generated by (some of the) atoms, as they are
important landmarks of the bottom of the considered ‘big’ lattice. As we have
seen, the minimal varieties of involution semigroups, the full list of which was
obtained by Fajtlowicz, naturally split into two families: one of them contains
four nongroup atomsSLid, SL0, RB∗ andN id, while the other consists of two
countable sequences of involution group varietiesAid

p andAp (in the latter, the
involution is just the group inverse), wherep is a prime number. Therefore, one can
consider lattices of varieties generated by these two families of atoms, respectively.
These lattices were determined by the second author of this survey in [24].
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The way to handle the first family is more or less straightforward: it suffices
to start with the atoms, and successively calculate joins and meets until no new
variety is obtained. The result of such calculations is as follows.

Theorem 1.6.1.(Dolinka, [24])The lattice of varieties of involution semigroups
generated by the four nongroup atoms is the one given in the following figure.
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Figure 3.The lattice of involution semigroup varieties generated by nongroup atoms

Here, the numbers1–18on the above diagram represent the following varieties:
Label Variety (given by the list of defining identities)

1 x = y
2 x2 = x, xy = yx, x∗ = x
3 x2 = x, xy = yx, xx∗y = xx∗

4 x2 = x, xy = yx, xx∗y = xx∗y∗

5 x2 = x, xyz = xz
6 x2 = x, xyzt = xzyt, xyz = xy∗z
7 x2 = x, xyzt = xzyt, xyy∗ut = xzz∗vt
8 x2 = x, xyzt = xzyt, xyy∗zt = xyzz∗t
9 xy = zt, x∗ = x
10 xy = zt
11 x2y = xy = yx, x∗ = x
12 x2y = xy = yx, xx∗y = xx∗

13 x2y = xy = yx, xy = xy∗

14 x2y = xy = yx, xx∗y = xx∗y∗

15 xyz = xz
16 x2y = xy2 = xy, xyzt = xzyt, xyz = xy∗z
17 x2y = xy2 = xy, xyzt = xzyt, xyy∗ut = xzz∗vt
18 x2y = xy2 = xy, xyzt = xzyt, xyy∗zt = xyzz∗t

The determination of the lattice of varieties generated by involution group atoms
is, however, much more involved, and it requires quite a portion of elementary
number theory (in particular, Chinese Remainder Theorem, a number of ‘nested’
Euclidean algorithms and a lot of g.c.d.-l.c.c. calculus). The first step is to define
A∗n to be the variety of all Abelian groups of exponentn with anarbitrary involu-
tion, as well asAr,s

n , the subvariety ofA∗n determined by(x∗)r = xs. In view of
this new notation we haveAid

n = A1,1
n andAn = A1,n−1

n .
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The next step is fairly simple: it consists of the calculation of the meets of the
formAm ∧ Aid

n .

Proposition 1.6.2.

Am ∧ Aid
n =

 A2, if m,n are even,

T ∗, otherwise.

Here, of course,T ∗ denotes the trivial involution semigroup variety.

For the joins, the situation is summarized by

Proposition 1.6.3. Let m,n be positive integers,d = (m,n), m1 = m
d and

n1 = n
d . Then we have:

(a) if at least one ofm,n is odd, thenAm ∨ Aid
n = Ad,2mα−d

[m,n] ,

(b) if m,n are both even, thenAm ∨ Aid
n = A

d
2
,mα− d

2

[m,n] ,

where in both casesα is a positive integer such thatm1α ≡ 1(modn1). In partic-
ular, for all k ≥ 1 we haveA2k−1 ∨ Aid

2k−1 = A∗2k−1 andA2k ∨ Aid
2k = Ak,k

2k .

Now, it turns out that the set of varieties of the formAm ∨ Aid
n (whereAid

1 =
A1 = T ∗) is closed for the lattice operations (i.e. for meets). This immediately
yields the required lattice generated by involution group atoms, but on the other
hand, this is the part which is the most difficult to prove.

Proposition 1.6.4. (Ak ∨ Aid
` ) ∧ (Am ∨ Aid

n ) = A(k,m) ∨ Aid
(`,n).

All these results yield the following

Theorem 1.6.5.The sublattice of the lattice of involution semigroup varieties
generated by its involution group atomsAp andAid

p for all primesp consists pre-
cisely of the following varieties:T ∗,Am,Aid

n andAm ∨Aid
n , wherem,n ≥ 2 are

arbitrary square-free numbers. Moreover, it is isomorphic to the lattice of finite
subsets of a countably infinite set.
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Figure 4.The lattice of involution semigroup varieties generated byA3,Aid
3 ,A5 andAid
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1.7. Some Varieties of Involution Bands.After the results described in the pre-
vious subsection were obtained, the focus of the attention turned to some special
parts of the lattice of involution semigroup varieties. There are several motives
for this, and we emphasize two of them. First, the determination of the lattice of
all varieties of regular∗-bands, achieved by Adair, gives boost to investigations of
involution band varieties in general. Secondly, it remains, for the moment, an open
question whether Figure 3 represents the lattice of all subvarieties ofJ4, the join of
four nongroup atoms, or there are other subvarietiesJ4 not present in that figure.
This question will be answered in the present subsection.

We say that a semigroup varietyU is central if its equational theory is closed
for reversal, that is, if for each identityu = v holding inU the identityuR = vR

is also true inU . The typeof an involution semigroup varietyV we define to be
the semigroup varietyU determined by the semigroup (∗-free) identities ofV. The
following result strongly highlights the importance of the varieties of the formV0

andVreg.

Lemma 1.7.1. (Dolinka, [19])LetV be a central homotypical variety of bands.
ThenV0 is contained in every involution band variety of typeV exceptVreg.

This lemma yields the description of all subvarieties ofB0, whereB denotes the
variety of all bands.

Corollary 1.7.2. All subvarieties ofB0 are exhausted by the varieties of the
formV0, whereV is a homotypical central variety of bands.

In the course of studying involution band varieties, the first step is certainly to
determine all varieties of involution semilattices. Aside from the trivial variety,
we already met two such varieties: these areSLid = SLreg andSL0. Now we
defineSL′ = SLid ∨ SL0 (it is not too difficult to see thatSL′ is characterized
by the identityxx∗y = xx∗y∗), while SL∗ denotes the variety of all involution
semilattices.

Theorem 1.7.3.(Dolinka, [19])Every variety of involution semilattices is equal
to one of the following:T ∗,SLid,SL0,SL′,SL∗. Thus, the lattice of subvarieties
of SL∗ is the one given in Figure 5.
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Figure 5.All varieties of involution semilattices

SinceRB∗ is a minimal variety, it follows that it is the only involution band
variety of typeRB. A little later we shall give a full account on all varieties of
normal bands with involution.
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A nice feature of bands with involution is that they exhibit similar structural
properties as ordinary bands. Namely, it is well-known that every band is a semi-
lattice of rectangular bands. Analogously, every involution band can be repre-
sented as an involution semilattice of rectangular bands, which follows from the
fact that the greatest semilattice congruence of an involution bandB is actually
its ∗-congruence. Therefore, in a semilattice decomposition ofB, the involution∗

maps the classes in a bijective manner, thus inducing an involution on the structure
semilatticeΣ of B. Hence, one may wish to characterize involution bands whose
structure involution semilattices belong to a specific variety from the above theo-
rem. In the sequel, we list these characterizations (both equational and structural
ones). All of them are from [19].

Proposition 1.7.4. The following conditions are equivalent for an arbitrary in-
volution bandB:

(1) the structure involution semilattice ofB belongs toSLid,
(2) B is ∗-regular (i.e. it satisfies the identityx = xx∗x),
(3) B generated by its projections.

Proposition 1.7.5. The following conditions are equivalent for an arbitrary in-
volution bandB:

(1) the structure involution semilattice ofB belongs toSL0,
(2) B satisfies the identityxx∗ = xx∗yy∗xx∗,
(3) the involution subsemigroup ofB generated by projections is a rectangular

band, which is a∗-ideal ofB.

Proposition 1.7.6. The following conditions are equivalent for an arbitrary in-
volution bandB:

(1) the structure involution semilattice ofB belongs toSL′,
(2) B satisfies the identityyxx∗y = yxx∗y∗xx∗y,
(3) B satisfies the identityxx∗y = xx∗yxx∗y∗xx∗y,
(4) the involution subsemigroup ofB generated by the projections is a∗-ideal

ofB.

Our next goal here is to determine the lattice of subvarieties of the joinBreg∨B0,
the importance of Adair’s varietyBreg and ofB0 already being underlined. By that,
we describe the lowest layer in the lattice of involution band varieties and give
some hints just how complex this lattice might be. The determination of varieties
of involution bands of any particular type is therefore ‘based’ on the lattice below.
But first we give an important result of a structural nature.

Theorem 1.7.7.(Dolinka, [19])LetU andV be central varieties of bands such
thatSL ⊆ V andU ⊆ V. The following conditions are equivalent for an arbitrary
involution bandB:

(1) B ∈ U reg ∨ V0,
(2) B is a retractive ideal extension of a member ofU reg by a member ofV0,
(3) B is a subdirect product of a member ofU reg and a member ofV0.

This theorem admits us to go straight to our aim.
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Theorem 1.7.8.(Dolinka, [19])The varietyBreg ∨ B0 is determined withinB∗
by the identitiesxx∗xyy∗y = xy(xy)∗xy = xyy∗y = xx∗xy, and the lattice of its
subvarieties is given in Figure 6.
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Figure 6.All subvarieties ofBreg ∨ B0

From the above theorem it is obvious that the lattice of all subvarieties ofB∗
is considerably more complicated than the lattice of all band varieties (determined
independently by Biryukov [7], Fennemore [38] and Gerhard [40]). For example,
the lattice of all subvarieties ofB∗ has no finite width, unlike the lattice of all
subvarieties ofB. Also, the former lattice is not even modular (which follows from
the above theorem), while the latter is known to be distributive.

In [20], the second author of the present survey described the lattice of all sub-
varieties ofNB∗, the variety of normal involution bands. This was done by classi-
fying all possible involution semigroup identities within the classNB∗.

Theorem 1.7.9. (Dolinka, [20])For each involution semigroup identityp = q,
one of the following conditions is true in normal bands with involution:

(1) p = q is trivial (in the sense that it follows from the defining identities of
normal bands with involution),
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(2) p = q ⇒ xy = yx,
(3) p = q ⇒ xyy∗ = xx∗yy∗,
(4) p = q ⇔ xyy∗ = yy∗x,
(5) p = q ⇔ xx∗yy∗ = yy∗xx∗.
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Figure 7.All subvarieties ofNB∗

So, no identity of type (1) defines a proper subvariety ofNB∗, and hence, such
identities are of no importance. If a variety satisfies an identity of type (2), it
must be a subvariety ofSL∗, when Theorem 1.7.3 applies. On the other hand,
from the results of [24] it follows that the identityxyy∗ = xx∗yy∗ defines the
varietyNB∗ ∨ NB0 within NB∗; thus, if the equational theory of the considered
variety contains an identity of type (3), it is a subvariety ofNB∗ ∨ NB0, which
is a case taken care of by Theorem 1.7.8. Hence, outsideSL∗ andNB∗ ∨ NB0,
there are at most two proper subvarieties ofNB∗: those defined byxyy∗ = yy∗x
andxx∗yy∗ = yy∗xx∗, respectively. It is effectively shown in [20] that these two
varieties are different, and so we obtain

Theorem 1.7.10.The lattice of all varieties of normal bands with involution has
the inclusion diagram given in Figure 7.

Finally, we are going to determine all subvarieties ofJ4, thereby answering
a question from the beginning of this subsection. To do that, we must employ
some more notation and define further notions. The material presented below is
published for the first time.

An (involution) semigroupS with zero 0 is said to benull (or constant) if for
all a, b ∈ S we haveab = 0. The varietyN id of all null semigroups with trivial
involution is a minimal one, i.e. it is on the Fajtlowicz’s list. It is easy to prove
that it is generated byN2, the two element null involution semigroup with a trivial
involution. Further, letN ∗ denote the variety of all null involution semigroups,
while N3 is the three-element null involution semigroup in which the involution
fixes one of its elements and permutes the other two.
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The notion of aninflation is familiar in semigroup theory for a long time. Name-
ly, a semigroupV is an inflation of its subsemigroupS if there is a homomorphism
ϕ : V → S such thatϕ|S is the identity mapping onS and for allv1, v2 ∈ V we
have

v1v2 = ϕ(v1)ϕ(v2).
In particular, this means that every product of elements fromV lies inS. An infla-
tion of a semigroupS is just a retractive ideal extension ofS by the null semigroup
Q ∼= V/S (see Petrich [85]).

The functionϕ if often referred to as theinflation function.
Now we say that aninvolution semigroupV is a ∗-inflation of its involution

subsemigroupS if the semigroup reduct ofV is an inflation of the semigroup reduct
of S, and the corresponding inflation functionϕ agrees with the star:ϕ(a∗) =
ϕ(a)∗ for all a ∈ S. Just as in the implication (iii)⇒(iv) of Theorem 1 from Pastijn
[79], it is not difficult to prove

Lemma 1.7.11. Any ∗-inflation of an involution semigroupS is a subdirect
product ofS and a null involution semigroupN .

Now we describe the structure of involution semigroups belonging to the join
V ∨ N ∗, whereV is an arbitrary involution semigroup variety.

Lemma 1.7.12.LetV be an involution semigroup variety. ThenV∨N ∗ consists
precisely of all∗-inflations of members ofV.

Proof. Clearly, bothV andN ∗ are contained in the class of all∗-inflations of mem-
bers ofV. On the other hand, by the previous lemma, all involution semigroups
from the latter class are contained inV ∨ N ∗. Therefore, the proposition will be
proved as soon as we show that∗-inflations of members ofV constitute a variety.

First of all, for eachi ∈ I (whereI is an index set) letVi be a∗-inflation of
Si, with ϕi being the corresponding∗-inflation function. Then the∗-free reduct of∏

i∈I Vi is an inflation of
∏

i∈I Si, the inflation functionϕ being the target tupling
of ϕi’s, that is,ϕ(〈vi : i ∈ I〉) = 〈ϕi(vi) : i ∈ I〉. But

ϕ(〈vi : i ∈ I〉∗) = ϕ(〈v∗i : i ∈ I〉) = 〈ϕi(v∗i ) : i ∈ I〉 =
= 〈ϕi(vi)∗ : i ∈ I〉 = 〈ϕi(vi) : i ∈ I〉∗,

thus∗-inflations are closed for direct products.
Further, letV be a∗-inflation of S (with ϕ as the∗-inflation function), and let

T be an involution subsemigroup ofV . ThenT ∩ S is an involution subsemigroup
of S (it is easy to see that it cannot be empty), and, moreover, the∗-free reduct of
T is an inflation of the∗-free reduct ofT ∩ S respect toϕ|T . Yet,ϕ agrees with∗,
and so doesϕ|T . So,T is a∗-inflation ofT ∩ S ∈ V.

Finally, with the same setting as above, letP be a homomorphic image ofV
under homomorphismα. Then the∗-free reduct ofP = α(V ) is an inflation
of the ∗-free reduct ofT = α(S), and the corresponding inflation function isϕ′

defined byϕ′(p) = t if and only if there ares ∈ S, v ∈ V , such thatα(s) =
t, α(v) = p andϕ(v) = s (one easily shows that such a definition is logically
correct). However,α is a∗-homomorphism, sot∗ = α(s∗) andp∗ = α(v∗). Since
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ϕ(v∗) = ϕ(v)∗ = s∗, we haveϕ′(p∗) = t∗ = ϕ′(p)∗, whence we conclude thatϕ′

agrees with∗. �

Since it is easy to calculate thatN2 andN3 are the only subdirectly irreducibles
inN ∗ (thusN3, or any other null involution semigroup with a nonidentical involu-
tion, generatesN ∗), it follows that the list of subdirectly irreducibles of a variety
of the formV ∨ N ∗ exhausts with the subdirectly irreducibles ofV, N2 andN3.
Therefore, any subvariety ofV ∨N ∗ is either of the formW ∨N id, or of the form
W∨N ∗, whereW ⊆ V. So, to determine the structure of the lattice of subvarieties
of V ∨ N ∗, it remains to establish which of the above joins are mutually different.
To this end the following auxiliary result will be helpful.

Lemma 1.7.13. If W is an involution semigroup variety which does not satisfy
x = x∗, thenW ∨N id = W ∨N ∗.

Proof. Let S ∈ W be an involution semigroup in whichx = x∗ fails. Denote
the elements ofN2 by 0 and 1, and consider the direct productT = S × N2. Let
P = S×{0} and consider the equivalenceθ = ∆T\P ∪ (P ×P ) of T (it collapses
all pairs whose second coordinate is 0). Obviously,θ is a∗-congruence ofT , and
N = T/θ is null. AsS has elements which are not fixed by∗, so hasN (because if
a 6= a∗ for somea ∈ S, then(a, 1)∗ = (a∗, 1) 6= (a, 1)). Thus,N generatesN ∗,
implying thatN ∗ ⊆ W ∨N id. The lemma now easily follows. �

Our general result (which is related to the main results of Graczyńska [46] and
Mel’nik [75]) is now as follows.

Theorem 1.7.14.LetV be an involution semigroup variety which does not con-
tain nontrivial null involution semigroups. LetU be the greatest subvariety ofV
satisfyingx = x∗. Then the lattice of subvarieties ofV ∨ N ∗ has the structure as
depicted in Figure 8, where the interval[N id,U ∨N id] is isomorphic to the lattice
of subvarieties ofU , while the interval[N ∗,V ∨N ∗] is isomorphic to the lattice of
subvarieties ofV.
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Figure 8.The lattice of subvarieties ofV ∨ N ∗

Proof. If W ⊆ U , thenW ∨ N id satisfiesx = x∗, and thus it differs from any
variety of the formV ′ ∨N ∗, whereV ′ ⊆ V. Moreover, from the previous remarks
it follows thatW1 ∨N id = W2 ∨N id impliesW1 = W2 for allW1,W2 ⊆ U . On
the other hand, ifW 6⊆ U , then by Lemma 1.7.13 we haveW ∨N id = W ∨N ∗.

Now if W ⊆ V is arbitrary, then by listing the subdirectly irreducible members
of W ∨N ∗, we obtain that the correspondenceW 7→ W ∨N ∗ (as well asW ′ 7→



VARIETIES OF INVOLUTION SEMIGROUPS AND INVOLUTION SEMIRINGS 25

W ′ ∪ N id for W ′ ⊆ U) is a bijective one. Thus, to prove the theorem, we need to
show that these two correspondences are lattice homomorphisms.

It is immediate to see that these mappings agree with∨, the varietal join opera-
tion. For the intersection, i.e. for the equalities

(W1 ∨N id) ∩ (W2 ∨N id) = (W1 ∩W2) ∨N id,

and

(Z1 ∨N ∗) ∩ (Z2 ∨N ∗) = (Z1 ∩ Z2) ∨N ∗,

whereW1,W2 ⊆ U andZ1,Z2 ⊆ V, it suffices to inspect once more the list of
subdirectly irreducibles in corresponding varieties, just as above. The theorem is
proved. �

The variety to which we intend to apply the above theorem is

J4 = RB∗ ∨ SLid ∨ SL0 ∨N id =
= NBreg ∨ SL0 ∨N id =
= (NBreg ∨NB0) ∨N id =
= (NBreg ∨NB0) ∨N ∗,

asNBreg∨NB0 does not satisfyx = x∗. On the other hand,SLid is theonlynon-
trivial subvariety ofNBreg∨NB0 equipped with an identical involution, and since
NBreg ∨ NB0 has 10 subvarieties (as proved by Theorem 1.7.8), it follows from
the above theorem thatJ4 has exactly 22 subvarieties. The subvarieties missing
from Figure 3 areNB0, SLid ∨NB0 and the joins of these two withN ∗.

1.8. Subdirectly Irreducible Involution Bands. Subdirectly irreducible algebras
are very important building blocks of a variety, determining a great deal its struc-
ture and relationships to other varieties (just as it was experienced in the previous
considerations). As long as semigroups are concerned, probably the first paper
dealing with subdirect decompositions was the one of Thierrin [110]. The main
contribution to the topic in the sixties was given by Schein [104], while Gerhard
[41] described subdirectly irreducible bands. The characterizations presented in the
sequel are just in the style of those given in [41], and they are all due to Dolinka
[25].

The first task is certainly to describe subdirectly irreducible involution semilat-
tices. We already met two distinguished semilattices with involution: these are
Σ2 (the two-element semilattice with the identical involution) andΣ3 (the 0-direct
union of a trivial semigroup with its copy). ByΣ4 we denote the involution semi-
lattice obtained fromΣ3 by adjoining an identity element (which is, of course,
fixed by the involution).Σ4 is depicted in the following figure.
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Figure 9.The involution semilatticeΣ4

Theorem 1.8.1.There are exactly three (nontrivial) subdirectly irreducible in-
volution semilattices:Σ2, Σ3 andΣ4.

As in the case of bands, it is necessary to distinguish between those involution
bands which do or do not contain a zero element. Also similarly to bands, it is much
easier to obtain the characterization for involution bands without zero. Recall that if
B is an involution band anda, b ∈ B, thenθ(a, b) is a customary notation designed
for theprincipal congruence generated by(a, b), that is, for the least congruence
containing the indicated pair.

Theorem 1.8.2. An involution bandB without zero is subdirectly irreducible
if and only ifB is an ideal extension of a rectangular involution bandK such
that there exist distincta, b ∈ K for whichθ(a, b) ⊆ θ(c, d) holds for all distinct
c, d ∈ K, and for allp, q ∈ B, the conditionpk = qk andkp = kq for all k ∈ K
impliesp = q.

Of course, as one might expect, every subdirectly irreducible involution band
has a core — the least non-null∗-ideal. So, the above theorem guarantees that in
a subdirectly irreducible involution band without zero, its coreK is a rectangular
band with involution. However,unlike ordinary bands, the case when a zero is
present splits into two essentially different cases. Namely, it turns out that the core
of a subdirectly irreducible can be either a rectangular involution band with zero
adjoined (i.e. with structure involution semilatticeΣ2), or of the formI∗0 (A) for
some rectangular bandA (i.e. with structure involution semilatticeΣ3). The first
of these two possibilities is handled easily, while the other is much more involved.

Theorem 1.8.3.LetB be an involution band with zero. Then it is subdirectly
irreducible and has a rectangular involution band with adjoined zero as the core if
and only ifB = (B1)0 for some subdirectly irreducible involution bandB1 without
zero.

Theorem 1.8.4.An involution bandB with zero which is not an involution semi-
lattice, whose core has the structure based onΣ3, is subdirectly irreducible if and
only if B is an ideal extension of an involution band of the formI∗0 (L) for some
left zero bandL, such that there exist distincta, b ∈ L for whichθ(a, b) ⊆ θ(c, d)
holds for all distinctc, d ∈ L, and for all p, q ∈ B, the conditionp` = q` and
`∗p = `∗q for all ` ∈ L impliesp = q.

An interesting special case of the above theorem describes the subdirectly irre-
ducibles inB0.
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Theorem 1.8.5. An involution bandB ∈ B0 is subdirectly irreducible if and
only if it is of the formI∗0 (T ), whereT is either a subdirectly irreducible band
without zero, or the trivial semigroup.

In light of Theorem 1.7.8, it follows that all the subdirectly irreducibles ofBreg∨
B0 belong either toBreg, or toB0.

For regular∗-normal bands (i.e. for the varietyNBreg) we can explicitly point
out the subdirectly irreducibles. Namely, by Theorem 2.2 of Scheiblich [101], ev-
ery normal∗-regular involution bandB can be represented as a spined product of a
left normal bandL and its anti-isomorphic copy (that is, its dual)R, which is a right
normal band, while the involution simply reverses pairs. (Recently, this assertion
was generalized to arbitrary involution bands in [26]: if%[ denotes the congruence
opening of an equivalence%, then every involution bandB can be represented as
a spined product of the bandB/R[ and its dual overB/D′, whereD′ = L[ ◦ R[,
so that the involution is again the reversal of pairs.) It is not difficult to prove that
such a bandB is subdirectly irreducible as an involution band if and only ifL is
subdirectly irreducible as a band. But II.2 of [41] lists all left normal subdirectly
irreducible bands: these are the trivial semigroup, the two element semilattice, the
two element left zero band, and the latter band with adjoined zero. Thus the non-
trivial subdirectly irreducible members ofNBreg are: Σ2, the2 × 2 rectangular
involution bandRB2 (which is the only nontrivial subdirectly irreducible rectan-
gular involution band) andRB0

2 . On the other hand, the above theorem implies that
the only (nontrivial) subdirectly irreducibles inNB0 areΣ3 andI∗0 (L2), whereL2

denotes the two-element left zero band. In [25], it was proved that the list of all
subdirectly irreducible normal bands with involution is completed byΣ4 and two
more normal involution bands, one containing six, and another containing nine
elements. This in passing shows that the varietyNB∗ is residually< 10.

Theorem 1.8.6.Aside from those contained inNBreg∨NB0 andSL∗, there are
exactly two more subdirectly irreducible members ofNB∗, both with coreI∗0 (L2):
one extended byΣ2 (this one having 6 elements), and one extended byRB0

2 (thus,
having 9 elements), denoted byN6 andN9, respectively.
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Figure 10.Normal involution bandsN6 andN9
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SinceN9 has noncommuting projections, it must generate the wholeNB∗, bear-
ing in mind Theorem 1.7.10. On the other hand,N6 belongs to the subvariety of
NB∗ determined byxx∗yy∗ = yy∗xx∗ (since0α = α0 = 0), but does not belong
to the subvariety given byxx∗y = yxx∗, as`1α = `1 6= `2 = `2`1 = α`1, where
L2 = {`1, `2}. Hence,N6 generates the former subvariety, whence all members
of the latter one turn out to be subdirect products of involution semilattices and
normal involution bands fromNB0.

1.9. Varieties of Regular ∗-Semigroups with the Amalgamation Property. Let
{Aα : α ∈ I} be a family of universal algebras, sharing a common subalgebra
U such that for eachα, β ∈ I, α 6= β, we haveAα ∩ Aβ = U . Such a family
(which is in fact a partial algebra) is called anamalgam. It is said to beweakly em-
bedableinto an algebraB if there exist injective homomorphismsϕα : Aα → B,
α ∈ I, agreeing onU (ϕα|U = ϕβ |U for all α, β ∈ U ). If, in addition, we
haveϕα(Aα) ∩ ϕβ(Aβ) = ϕα(U) for all different α, β ∈ I, then the consid-
ered amalgam isstrongly embeddedintoB. A variety of algebrasV has theweak
(strong) amalgamation propertyif any amalgam of algebras fromV can be weakly
(strongly) embedded into an algebra fromV.

As known, semigroup amalgams and amalgamation properties in semigroup va-
rieties constitute a well developed and established part of semigroup theory. Yet,
there is a major obstacle in completing a number of characterization results which
concern amalgams, namely the group varieties. It is still an open question whether
there exists a proper nonabelian variety of groups with the weak (strong) amalga-
mation property (for the strong variant, this is just Problem 6 from [77]). Therefore,
it is quite expectable that in considering amalgamation problems for various invo-
lution semigroup varieties, groups, and in fact completely simple∗-semigroups will
remain out of range, so that we obtain descriptions modulo these classes.

For inverse semigroups (recall that they can be considered as regular∗-semi-
groups with the identityxx∗x∗x = x∗xxx∗), the following theorem is a result of
combined efforts of Hall [47] and B́ıró, Kiss and Ṕalfy [6] (see also [48, 57]).

Theorem 1.9.1.Aside from the hypothetical proper nonabelian weakly (strong-
ly) amalgamable group varieties, precisely the following inverse semigroup vari-
eties have the weak (strong) amalgamation property:

(1) the variety of all inverse semigroups,
(2) the variety of all groups,
(3) all varieties of commutative inverse semigroups (these are the varieties of

semilattices of Abelian groups).

Later, the focus moved ontogeneralized inversesemigroups — orthodox∗-
semigroups in which idempotents form a regular∗-normal band (of course, inverse
semigroups are characterized by the condition that idempotents form a semilattice
from SLid). The investigation along this line was initiated by Imaoka in [58], and
the contribution of Hall and Imaoka [50] should be also singled out.
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The second author of this survey noted that the results from the last section of
[50], when put together with some techniques applied earlier to existence vari-
eties of regular semigroups [49], give a sufficient basis for describing regular∗-
semigroup varieties with the weak (strong) amalgamation property. In that sense,
the paper [28] (where the following result appears) is a continuation of [50]. Note
that all varieties listed below are either generalized inverse, or completely simple.

Theorem 1.9.2.A regular ∗-semigroup varietyV has the weak (strong) amal-
gamation property if and only if one of the following conditions is satisfied:

(1) V is an inverse semigroup variety with the weak (strong) amalgamation
property,

(2) V = U ∨ RB∗, whereU is an inverse semigroup variety with the weak
(strong) amalgamation property,

(3) V is a completely simple∗-semigroup variety with the weak (strong) amal-
gamation property.

It is worth mentioning one more ingredient used in obtaining the above result.
First of all, note that the Brandt semigroupB2 can be considered as an inverse
semigroup (then it is generated as a regular∗-semigroup by a single generatora,
subject to the relationa2 = 0). It was proved by Schein [105] (and reproved in
[47]) that an inverse semigroup variety consists entirely of semilattices of groups
if and only if it omitsB2. This was extended to regular∗-semigroup varieties in
[28], so that for such a varietyV, B2 6∈ V is equivalent to the fact thatV consists
entirely of completely regular∗-semigroups, and further, to the fact thatV satisfies
an identity of the formx = ux2, whereu = u(x) is an involution semigroup word.

However, quite recently it turned out that even the above indicator characteriza-
tion is just a part of a more general setting. We finish by quoting the main result of
[29].

Theorem 1.9.3.LetV be an involution semigroup variety. Then the following
conditions are equivalent:

(1) any member ofV can be decomposed into an involution semilattice of
Archimedean semigroups,

(2) V does not containB2 andI∗0 (B2).

Analogous descriptions for varieties consisting of semilattices of Archimedean
semigroups (without involution) were obtained earlier by Sapir and Sukhanov [100]
for periodic case, and for the general case byĆirić and Bogdanović [9].

2. VARIETIES OF INVOLUTION SEMIRINGS

2.1. The Role of Involution Semirings in Theoretical Computer Science.First
of all, we recall that by our definition, a semiring is an algebra with two binary
operations,(S,+, ·), the first of which is commutative. On the other hand, there
are several authors which, while referring to semirings, do not assume the com-
mutativity of +, see e.g. [80, 81, 82]. Also, one may often encounter definitions
in which (S,+) is required to be a monoid, and its neutral element0 is then con-
sidered as a fundamental constant. However, the latter difference will not cause
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any major problems: we shall use the semirings with a zero in the present subsec-
tion (conforming to the practice in theoretical computer science), and then pass in
the subsequent two subsections to the (more general) approach in which the zero
is dropped, but the results are always easily transformed from the one variant to
another.

Also, in this subsection we shall use another symbol for semiring involutions,
namely∨ instead of the star. There are fairly good reasons for the change of no-
tation. Namely, ifΣ is an alphabet, then it is a quite wide-spread notational con-
vention to denote the free monoid onΣ by Σ ∗, which consist of all words (finite
sequences) overΣ , and free monoids will be important for us in the sequel. Indeed,
we may define a semiring with unit

LΣ = (P(Σ ∗),+, ·, ∅, {λ}),

where+ (for traditional reasons) denotes the set-theoretical union,λ is the empty
word, and forA,B ⊆ Σ ∗ we have

A ·B = {uv : u ∈ A, v ∈ B}.

The subsets ofΣ ∗ are usually calledlanguages(over Σ ), andAB is called the
concatenationof languagesA andB. Therefore, we obtain thelanguage semiring
overΣ . Actually, it is not difficult to see that we can obtain a semiring (with unit)
form an arbitrary semigroup (monoid)S, by defining analogous operations of the
power set ofS,

PS = (P(S),+, ·, ∅)
(in caseS is a monoid, the unit{1} is added to the above system). According to
the above notation,LΣ is in fact the same thing asPΣ∗ .

Now, one can define a unary operationA 7→ A∗ in PS (providedS is a monoid)
by

A∗ =
∑
n≥0

An

(the sum operator denoting the union), whereAn+1 = A · An and by conven-
tion, A0 = {1}. If we consider the language semiringLΣ , the above definition
introduces theKleene staroperation, which is well-known in theoretical computer
science, especially in automata theory. By equippingLΣ with ∗, we obtain the
language algebraL∗Σ . Note that∗ is here by no means an involution; actually, it
satisfies the fixed-point identityx∗∗ = x∗.

On the other hand, there is an obvious way to define an involution onLΣ .
Namely, ifwR denotes the reverse of the wordw, just as in the previous section,
for L ⊆ Σ ∗ we may define

L∨ = {wR : w ∈ L}.

It is pretty easy to see that∨ givesLΣ the structure of a involution semiring with
unit, which we denote byL∨Σ . If both ∨ and∗ are considered, we obtain theinvo-
lution language algebraL∗∨Σ .
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Another important examples of involution semirings come from binary relations.
If A is an arbitrary set, we define the algebra

Rel(A) = (P(A×A),∪, ◦, ∅,∆A),

where◦ is the relational composition and∆A is the diagonal (identity) relation.
Rel(A) also turns out to be a semiring with unit, and it can be made into an invo-
lution semiringRel∨(A) by considering the operation of theconverseof relations:

%∨ = {(b, a) : (a, b) ∈ %}.

Similarly as above, we can iterate the relational composition, thus obtaining a
unary operation

%∗ =
⋃
n≥0

%n,

where%n+1 = % ◦ %n and%0 = ∆A. The relation%∗ is actually the reflexive-
transitive closure of%. By adding∗ to (involution) semirings of relationsRel(A)
andRel∨(A), we obtainKleene relation algebras (with involution)Rel∗(A) and
Rel∗∨(A), respectively, cf. [59, 70, 22, 23].

Language and relation semirings are just special cases ofcomplete semirings,
which are of at most importance in the mathematical foundations of computer sci-
ence, cf. [4, 8, 34, 63, 65, 67]. These are semirings in which an infinite summation
operator

∑
i∈I is defined, such that if{ai : i ∈ I} is any family of elements of the

considered semiring, we have:∑
1≤i≤n

ai = a1 + · · ·+ an,

∑
(i,j)∈I×J

aibj =

(∑
i∈I

ai

)∑
j∈J

bj

 ,

∑
i∈I

ai =
∑
j∈J

∑
i∈Ij

ai,

whereI is the disjoint union of the setsIj , j ∈ J . Of course, the summation is
commutative, associative and completely distributive. Further, a complete semir-
ing is completely additively idempotentif

∑
i∈I a = a holds for any index setI

(clearly, each completely additively idempotent semiring is additively idempotent).
Note that all the above examples are such. Finally, in any complete semiring one
can define theiteration operation∗ by

a∗ =
∞∑

n=0

an.

Now we have the following observation.

Lemma 2.1.1.Every language algebra can be embedded into a Kleene relation
algebra. Consequently, every language semiring is isomorphic to a semiring of
binary relations.



32 SINIŠA CRVENKOVIĆ AND IGOR DOLINKA

Proof. (sketch)Consider the mappingξ : P(Σ ∗) → P(Σ ∗×Σ ∗) defined for every
A ⊆ Σ ∗ by

ξ(A) = {(w,wx) : w ∈ Σ ∗, x ∈ A}.
It is a routine matter to show thatξ is, in fact, an embedding of the algebraL∗Σ into
Rel∗(Σ ∗). �

Hence, if we denote byL the variety generated by all language algebras, while
KA denotes the variety ofKleene algebras, generated by all Kleene relation al-
gebras, we haveL ⊆ KA, and in particular, all language algebras are Kleene
algebras. However, the above inclusion is in fact an equality,L = KA, because by
the Kozen-Ńemeti Theorem (cf. [64, 70]), the free Kleene algebra onΣ is just the
subalgebra ofL∗Σ formed by the regular subsets of the free monoidΣ ∗. Using this,
and knowing the explicit equational axiomatization of Kleene algebras (which is
necessarily infinite, cf. [10, 66, 13]), one can easily derive the following result.

Theorem 2.1.2.Both language semirings and relation semirings generate the
variety of idempotent semirings with unit.

But what is the situation if the involution is present? The above Lemma 2.1.1
is no longer true for the involution case: in fact no involution semiring of the form
L∨Σ can be embedded in an involution semiring of relations. In other words, ifL∨
denotes the variety generated by involution language algebras, whileKA∨ is the
variety ofKleene algebras with involutiongenerated by all algebrasRel∗∨(A), one
can prove thatKA∨ ⊆ L∨, but this inclusion isproper. It is just the involution that
distinguishes between them, even if we drop the iteration operations and work with
involution semirings only. Consider the following identity:

x+ xx∨x = xx∨x.

It is a routine to see that the above identity is true in binary relations. However, it
suffices to consider the one-element alphabetΣ = {a} and substitute the language
{a} for x to see that the above identity fails in all involution semirings of languages.
In fact, we have a more accurate information concerning this matter.

Theorem 2.1.3.(Bloom,Ésik and Stefanescu, [8])The varietyL∨ is defined by
the identities of Kleene algebras, axioms of semiring involution (including0∨ = 0)
and

(x∗)∨ = (x∨)∗.

Theorem 2.1.4. (Ésik and Berńatsky, [35])The varietyKA∨ is defined as a
subvariety ofL∨ by the identity

x+ xx∨x = xx∨x.

From these results it is not difficult to obtain

Corollary 2.1.5. The involution semirings of languages generate the variety of
idempotent involution semirings with unit, while the relational involution semirings
generate its subvariety determined byx+ xx∨x = xx∨x.
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Let us also mention some related results obtained by the authors of this survey
and Z.́Esik.

Theorem 2.1.6. (Crvenkovíc, Dolinka andÉsik, [13, 14])VarietiesL∨ and
KA∨ are both not finitely based. Also, if we drop the union (addition) operation
from Kleene relation algebras with involution (resp. involution language algebras),
the equational theories of the so obtained varieties consist precisely of those iden-
tities ofKA∨ (resp.L∨) which do not contain occurrences of+, and these theories
are too nonfinitely based.

The simplest explanation for the second part of the above result is that the inter-
action between the concatenation and∗ is from the equational point of view ‘too
complicated’, and exactly this interaction is the origin of all nonfinite axiomatiz-
ability results of the above type which concern algebras of formal languages.

It is interesting to remark that there is a ‘technical’ connection between the first
part of the above theorem and Theorem 1.5.2. Namely, there are two ways to
prove thatL∨ andKA∨ are not finitely based, knowing that the same holds for
L andKA, respectively, and knowing, of course, Theorems 2.1.3 and 2.1.4. One
of these proofs — more syntactical in nature — relies on the same proposition on
involutorial identities (proved in [13]), which allowed us to obtain in [15] the result
of Theorem 1.5.2. Probably there are some further links between the identities
of general algebraic systems with involution and of their involution-free reducts
respectively, which are yet to be discovered and explored.

2.2. Minimal Varieties of Involution Semirings. Minimal varieties of involution
semirings were described by the second author of this survey in [21]. Towards that
goal, an important help was the already known list of minimal varieties of ordinary
semirings, determined by Polin [92], cf. also [109]. To recall Polin’s result and to
formulate the main result of [21], we define some binary and unary operations on
finite sets2 = {0, 1}, 3 = {0, 1, 2} and4 = {0, 1, 2, 3}.

∨ 0 1
0 0 1
1 1 1

∧ 0 1
0 0 0
1 0 1

◦ 0 1
0 0 0
1 0 0

∗` 0 1
0 0 0
1 1 1

∗r 0 1
0 0 1
1 0 1

∧3 0 1 2
0 0 0 0
1 0 1 0
2 0 0 2

◦3 0 1 2
0 0 0 0
1 0 0 0
2 0 0 0

♦ 0 1 2 3
0 0 1 2 3
1 1 1 3 3
2 2 3 2 3
3 3 3 3 3

� 0 1 2 3
0 0 1 0 1
1 0 1 0 1
2 2 3 2 3
3 2 3 2 3

a 0 1 2
ā 0 2 1

a 0 1 2 3
ã 0 2 1 3

Theorem 2.2.1. (Polin, [92])A variety of semirings is minimal if and only if it
is generated by one of the following semirings:

(1) (2, ◦,∧), (2, ◦, ◦), (2,∨,∨), (2,∨,∧), (2,∨, ◦), (2,∧, ◦),
(2) (2,∨, ∗`), (2,∨, ∗r),
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(3) Zp = ({0, 1, . . . , p − 1},+p, ·p), wherep is a prime number, and+p and
·p are respectively the addition and the multiplication modulop (i.e.Zp is
the finite field withp elements),

(4) Np = ({0, 1, . . . , p− 1},+p, ◦p), wherep is a prime number, and◦p is the
zero multiplication of the set{0, 1, . . . , p− 1}.

Note that all varieties of involution semirings having a trivial involution (x∗ =
x) are exhausted by varieties of commutative semirings augmented with the iden-
tity mapping, and this conclusion applies to minimal varieties as well. Clearly, (1),
(3) and (4) of the above theorem provide all such varieties.

Theorem 2.2.2.(Dolinka, [21])A variety of semirings with nontrivial involution
is minimal if and only if it is generated by one of:

(1) (3,∧3,∧3, )̄, (3,∧3, ◦3, )̄, (3, ◦3,∧3, )̄,
(2) (4,♦,�, )̃.
(3) ({0, 1, . . . , p − 1},+p, ◦p,−p), where−p is the operation of additive in-

verse modulo a prime numberp ≥ 3.

It is more or less in the universal algebraic folklore that all of the algebras above
generate minimal (equationally complete) varieties. The proof of the other im-
plication, on the other hand, resembles somewhat to the way in which Fajtlowicz
obtained the minimal varieties of involution semigroups, because it consists of con-
sidering cases according to the properties of Hermitian elements (involution fixed
points).

Firstly, one can prove that if an involution semiring which generates a minimal
varietyV contains a Hermitian elementa which is either not additively idempotent
(a+ a 6= a), or not multiplicatively idempotent (a2 6= a), thenV consists of com-
mutative involution semirings with a trivial involution, and in that case Theorem
2.2.1 settles the problem. Otherwise, it can be assumed that all Hermitian elements
a under consideration satisfya+ a = a2 = a. Now, in any involution semiringS
which is not additively idempotent and which belongs to a minimal variety, there
is a unique Hermitian element which is:

(1) the multiplicative zero ofS,
(2) either the additive zero, or the additive unit ofS.

In the latter of the two cases given in (2) above,S must be a ring,a∨ = −a,
and, moreover, there is a monogenic subringS′ of S and a primep such thatNp,
augmented by the additive inverse modulop, is a homomorphic image ofS′. On
the other hand, in the former of the two described cases,S generates the same
variety as(3, ◦3,∧3, )̄ does.

So, it remains to consider minimal varieties generated by additively idempo-
tent involution semirings. If such a variety contains a nontrivial involution semir-
ing with a unique Hermitian element, then it has to contain one of(3,∧3,∧3, )̄,
(3,∧3, ◦3, )̄. Finally, if an involution semiring contains at least two Herimitian el-
ements and generates a minimal variety (even without the condition of the additive
idempotency), then it contains an involution subsemiring isomorphic to(4,♦,�, )̃,
whence our theorem is established.
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2.3. Idempotent Distributive Involution Semirings. A semiring isdistributive
if it satisfies the dual distributive identity

x+ yz = (x+ y)(x+ z)

(of course, the above identity and commutativity of+ together implyxy + z =
(x + z)(y + z)). A semiring isidempotentif both of its operations are such (we
already referred to additive and multiplicative idempotency in semirings). Note
that if a semiringS is (additively) idempotent, then(S,+) is a semilattice. If
both of the binary reducts(S,+) and(S, ·) of S are idempotent and commutative,
thenS is called abisemilattice. A bisemilattice in which the two operations coin-
cide (i.e. which satisfyx + y = xy) is called amono-bisemilattice. Of course, it
causes no confusion if we identify (in the notational sense) semilattices and mono-
bisemilattices.

Idempotent and distributive semirings are calledID-semiringsfor short. The
study of ID-semirings started in the late sixties and continued in the seventies, see
e.g. [61, 73, 88], with investigations on distributive bisemilattices. However, the
topic gained attention in the early eighties, mainly with contributions of Pastijn
and Romanowska [80, 82, 95, 96]. In particular, the lattice of all varieties of ID-
semirings (with+ commutative) is given in [96]: it is the four-dimensional cube.
Recently, Kǔril and Poĺak [68] found a way to determine all varieties of idempotent
semirings (without the requirement of distributivity of+ over ·). On the other
hand, Pastijn and Guo [81] described the lattice of all ID-semirings without+
being commutative. It is a countably infinite distributive lattice.

Motivated by the result of Romanowska [96], the second author of this survey
obtained the lattice of all varieties of ID-semirings with involution. The corre-
sponding result is as follows.

Theorem 2.3.1. (Dolinka, [27])There are exactly 64 varieties of ID-semirings
with involution, and their lattice coincides with the one depicted in Figure 11.

As semilattices and mono-bisemilattices can be identified, so can involution
semilattices and mono-bisemilattices with involution. Therefore,Σ2, Σ3 andΣ4

will also denote involution semirings in which both operations define the corre-
sponding semilattice with involution. It is easy to see that all of the above algebras
are in fact ID-semirings.

It was proved in Theorem 2.1 of [82] that the multiplicative reduct of an ID-
semiring must be a normal band. Further, by Theorem 1.6 of the same paper,
each ID-semiring is a Płonka sum of a semilattice ordered system of ID-semirings
satisfying

x+ xyx = x.

The latter semirings are, in turn, obtained by a special kind of a composition of
a distributive lattice ordered system of ID-semirings in which the multiplicative
reduct is a rectangular band.
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Figure 11.The lattice of all varieties of ID-semirings with involution

All these results can be extended for ID-semirings with involution as well. First
of all, one must replace the well-known general algebraic construction of a Płonka
sum by theinvolutorial Płonka sum of algebras, introduced in [31]. Here we give
the basic definition, restricted to the case of semirings.

LetY be an involution semilattice. A family of semirings{Si : i ∈ Y }, together
with a system of homomorphisms{φi,j : i, j ∈ Y, i ≥ j} and a bijection∗ on⋃

i∈Y Si, is called anY -ordered system of semiringsif the following conditions are
satisfied:

(1) for eachi ∈ Y , φi,i is the identity mapping onSi,
(2) for eachi, j, k ∈ Y such thati ≥ j ≥ k we have

φi,j ◦ φj,k = φi,k,

(3) for eachi ∈ Y , ∗ : Si → Si∗ is a semiring anti-isomorphism,
(4) φi∗,j∗(x) = (φi,j(x∗))∗, for all i, j ∈ Y such thati ≥ j and allx ∈ Si∗ .
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The involutorial Płonka sumof such a system is a semiring with involutionS,
whereS =

⋃
i∈Y Si, with the operations given by

a+ b = φi,ij(a) + φj,ij(b),
ab = φi,ij(a)φj,ij(b),

wherea ∈ Si andb ∈ Sj .

Theorem 2.3.2. (Dolinka and Viňcić, [31]) Each ID-semiring with involution
can be represented as an involutorial Płonka sum of an involution semilattice-
ordered system of ID-semirings satisfying the identityx + xyx = x. Conversely,
the involutorial Płonka sum of every such system is an ID-semiring with involution.

As we mentioned above, in [95] Romanowska proved that each ID-semiring
satisfyingx + xyx = x is the sum of a distributive lattice-orderedm-system of
rectangular ID-semirings (i.e. with rectangular multiplicative reduct). This means
that we have given a system of disjoint semiringsSi indexed by a distributive lattice
(D,∨,∧) (so thati ∈ D), and for eachi, j ∈ D such thati ≥ j an embedding
ψi,j : Si → Sj such that

(i) ψi,i is the identity map onSi for all i ∈ D,
(ii) ψi,j ◦ ψj,k = ψi,k for all i, j, k ∈ D such thati ≥ j ≥ k,

(iii) ψi,i∧j(Si) + ψj,i∧j(Sj) ⊆ ψi∨j,i∧j(Si∨j) for all i, j ∈ D.

The sum of this system is defined in such a way that the operations in the resulting
semiring(S,+, ·) (whereS =

⋃
i∈D Si) are given by

aibj = ψi,i∧j(ai)ψj,i∧j(bj),

ai + bj = ψ−1
i∨j,i∧j(ψi,i∧j(ai) + ψj,i∧j(bj)),

whereai ∈ Si andbj ∈ Sj .
Now, we are going to call anm∗-system of semiringsa family of semiringsSi

indexed by a distributive lattice with involution(D,∨,∧,∗ ), endowed with semir-
ing embeddingsψi,j for each pairi ≥ j and a bijection∗ on

⋃
i∈D Si such that the

conditions(i)-(iii) above are satisfied, as well as the following conditions:

(iv) ∗ : Si → Si∗ is a semiring anti-isomorphism for alli ∈ D,
(v) ψi∗,j∗(x) = (ψi,j(x∗))∗, for all i, j ∈ D such thati ≥ j and allx ∈ Si∗ ,

which express the compatibility of∗ with them-system structure and, respectively,
the ‘symmetry’ of them-system with respect to the involution.

Theorem 2.3.3. (Dolinka, [27]) An algebra(S,+, ·,∗ ) is an ID-semiring with
involution satisfyingx + xyx = x if and only if it is the sum of anm∗-system of
rectangular ID-semirings.

Finally, it remains to provide some information about rectangular ID-semirings
with involution. We recall here a construction which is well-known in universal
algebra, called thematrix power. Namely, for a universal algebra(A,F) (whereF
is a family of finitary operations onA) andn ∈ N, then-th matrix power is defined
on the setAn = A×· · ·×A such that all fundamental operations from the original
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algebra are inherited by applying them coordinatewise inAn, while two operations
are added: then-arydiagonal operationd given by

d(x1, . . . ,xn) = 〈x11, x22, . . . , xnn〉,
wherexi = 〈xi1, . . . , xin〉 for all 1 ≤ i ≤ n, and a unary operationp determined
by

p(〈x1, x2, . . . , xn〉) = 〈x2, . . . , xn, x1〉.
It is known that for a variety of algebrasV and a given positive integern, all isomor-
phic copies of alln-th matrix powers of members ofV also form a variety, denoted
byV [n]. Also, it is known that this construction preserves equational completeness,
see [71]. For more information about matrix powers and their application in uni-
versal algebra, we refer to [53] and [71]. Now we obtain the following theorem,
which does not have its non-involutorial analogue.

Theorem 2.3.4.(Dolinka, [27])Every rectangular ID-semiring with involution
is the matrix square of some semilattice and conversely, every matrix square of a
semilattice is a rectangular ID-semiring with involution. In other words, the variety
of rectangular ID-semirings is justSL[2] and thus it has no proper subvarieties (cf.
[21]).

Another nice and in this setting important feature of the paper [31] is that it ad-
mits a direct calculation of those involutorial Płonka sums which are subdirectly
irreducible, provided that the subdirectly irreducibles are known in the class of
(involution) algebras from which the components of the sum are taken. So, the re-
sults in [31] generalize the corresponding results on subdirectly irreducible Płonka
sums, given in [69]. With a little amount of technical work, one can find the ex-
plicit list of subdirectly irreducible ID-semirings, and thereby show that the variety
of ID-semirings is — similarly to the variety of normal bands with involution —
residually< 10 (in fact, the results presented in the last subsection of the section
on involution semigroups can be also derived from the general theorems of [31]).
In particular, if an involutorial Płonka sum is subdirectly irreducible, then its struc-
ture involution semilattice must be trivial, or it is subdirectly irreducible itself, that
is, one ofΣ2, Σ3 andΣ4 (by our Theorem 1.8.1).

But first, letL2 denote the (unique) two-element ID-semirings whose multiplica-
tive reduct is a left zero band. Dually, we have the semiringR2. These semirings,
as well as their direct productL2×R2, are examples of a rectangular ID-semirings.
By defining the exchange involution (the reversing of pairs) on the latter one, one
obtain a four-element involution semiring, which is isomorphic to the matrix square
of the two-element semilattice. This one we denote byRS∗2 .

The two-element and the four-element distributive lattice we denote byD2 and
D4, respectively. Of course, we can equip the first one by the identity mapping as
the involution, thus obtaining the involution latticeD∗

2. In turn,D4 can be enriched
to the involution latticeD∗

4 by defining an involution which fixes the top and the
bottom element, and exchanges the other two.

Similarly to semigroups, one can adjoin an absorbing element to a semiring
(with involution). This is the same as to compose into an involutorial Płonka sum
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a Σ2-ordered system consisting of a trivial involution semiring and an arbitrary
involution semiringS, and such a construction yields an algebra denoted byS0.
Also, one can perform 0-direct unions by taking a semiringS (without involution),
its anti-isomorphic copỹS, and a trivial involution semiring (which, considered to-
gether, form aΣ3-ordered system of semirings) and constructing their involutorial
Płonka sum. Such a sum is denoted byI∗0 (S).

Finally, assume we are concerned with aΣ4-ordered system of semirings, where
the (involution) semiring assigned to the index 0 is trivial. Further, we have the
anti-isomorphic semiringsS = Sa and S̃ = Sa∗ , and the involution semiring
S1, with the structure semiring homomorphismφ = φ1,a satisfying the required
conditions. The resulting sum we denote by♦∗0(S, S1, φ). We omitφ if it is (up
to an isomorphism of the resulting sum) uniquely determined by the components.
Moreover, ifS1 is trivial, then it will be omitted too. The desired key result on
subdirectly irreducible ID-semirings is now the following.

Theorem 2.3.5.(Dolinka, [27])A nontrivial ID-semiring with involution is sub-
directly irreducible if and only if it is isomorphic to one of the following 17 semir-
ings with involution:

(1) RS∗2 ,D∗
2,D∗

4,
(2) Σ2, (RS∗2)0, (D∗

2)
0, (D∗

4)
0,

(3) Σ3, I∗0 (L2), I∗0 (D2),
(4) Σ4, ♦∗0(L2), ♦∗0(D2, φ0), ♦∗0(D2, φ1), ♦∗0(L2, RS

∗
2), ♦∗0(D2, D

∗
2), and

♦∗0(D2, D
∗
4),

whereφ0 maps the only element of the trivial semiring into the lower element of
D2, whileφ1 maps into the upper element ofD2.

The above theorem, together with the other structural results presented in this
section, are the main ingredients in a lengthy and involved argument, with a number
of subtle details, which leads to the result of Theorem 2.3.1. In Figure 11, there
are three clearly distinguished intervals of the lattice. The lattice is, of course,
intentionally drawn in such a way, because the corresponding proof splits into three
separate parts, each producing one of those intervals, starting from the bottom and
proceeding to the top.

2.4. Some Varieties of Involution Rings. Let (R,+, ·,−, 0) be a ring and assume
that∗ is its semiring involution. Then it is very easy to deduce from the ring axioms
that for allr ∈ Rwe have(−r)∗ = −r∗ and0∗ = 0, so that∗ agrees with the whole
ring structure ofR. In the way just described, we obtain aring with involution(or
a ∗-ring).

Involution rings are probably the most important and best studied algebraic
structures with involution in mathematics in general. It would take too much space
to attempt to give even a shortest account on the results concerning involution rings
and their applications. This topic originates back to von Neumann, who considered
the adjoint (as an involution) in the algebra of bounded linear operators on a Hilbert
space (such an involution algebra is widely used in theoretical physics, especially
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in quantum mechanics). Classical books on involution rings are e.g. Berberian [3]
and Herstein [52].

However, the point of view of considering an involutorial antiautomorphism
of a ring as a fundamental operation (and thus, of considering related universal
algebraic questions) is somewhat more recent and much easier to review. Such an
approach has been taken, for example, in Rowen [97] and in the survey article of
Wiegandt [115].

One of the (historically) most important classes of involution rings is the one of
regular ∗-rings. Originally, it wereregular ringswhich were considered by von
Neumann in his fundamental treatise [114] (see also [108]), and which turned out
to be the starting point (and the main motivation) for the whole theory of regu-
lar semigroups. Regular rings and regular∗-rings are in a quite fascinating way
strongly related to (orthocomplementded) modular lattices, and thus, in particular,
to projective geometries. This link is described by the well-known von Neumann’s
Full Coordinatization Theorem (which generalizes the classical coordintaization
theorems of projective spaces).

Theorem 2.4.1.(von Neumann, [114], Roddy, [94])LetM be a (orthocomple-
mented) modular lattice. Then there is a regular ring (with involution)R whose
principal right ideals form a lattice, which is isomorphic toM . Moreover,R can
be obtained as a ring of matrices (of a certain finite dimension) over a ringD
such thatD ⊆ M and the ring operations ofD are expressed as polynomials of
the latticeM . In the case of ortholattices, the orthocomplementation is uniquely
determined by the involution onR.

It is easy to prove that the condition of a regularity of a∗-ring is equivalent
to the condition that every principal right ideal is generated by aprojection, an
idempotent fixed by the involution. Therefore, in the orthocomplemented version
of the above theorem, one can replace the lattice of principal right ideals ofR by
the lattice of projections ofR with respect to the partial order defined bye ≤ f
is and only ifef = e. Hence, every modular ortholattice can be represented by
projections of some regular∗-ring.

Further, one can show that the regularity of a∗-ringR is equivalent to the impli-
cation

rr∗ = 0 ⇒ r = 0,

for all r ∈ R. This form of regularity provides an obvious way to equationally
define a special ring involution which guarantees the regularity of the underlying
ring. Following Yamada [117], we call aspecial regular∗-ring an involution ring
which satisfies the identity

xx∗x = x.

Using some results from Nambooripad and Pasijn [76], Yamada first proved that
the multiplicative reduct of any special regular∗-ring is a semilattice of groups,
and moreover, we have2x = (2x)(2x)∗(2x) = 8xx∗x = 8x, so6x = 0. In light
of this, the following result is not so surprising.
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Theorem 2.4.2. (Yamada, [117])Any special regular∗-ring R can be decom-
posed into a direct sumR = R2

⊕
R3, such thatR2 andR3 are the∗-ideals

(ideals closed for∗) of R consisting of all the elements ofR of order 2 and 3,
respectively. Moreover,R2 satisfiesx4 = x, whileR3 satisfiesx3 = x, so that
R satisfiesx7 = x. Consequently (by Jacobson’s Theorem), every special regular
∗-ring is commutative.

Going in more detail, Yamada in [117] described the subdirectly irreducible
special regular∗-rings.

Theorem 2.4.3.(Yamada, [117])The only subdirectly irreducible special regu-
lar ∗-rings are the finite fields with2, 3 and4 elements, with the inverse operation
as the involution (x∗ = x−1 for all x 6= 0 and0∗ = 0).

Of course, it is well-known that a ring which satisfies the identityxn+1 = x for
somen ∈ N is subdirectly irreducible if and only if it is a field (satisfying the same
identity). This fact, and the above theorems of Yamada serve as good inspiration to
investigate in general the subdirect decomposition of involution rings obeying an
identity of the formxn+1 = x.

Given a ringR, denote byRopp its opposite ring, i.e. its anti-isomorphic copy.
Clearly, the direct sumR

⊕
Ropp is isomorphic to their direct product, and one

can define the exchange involution on this sum. The resulting involution ring we
denote byEx(R). Of course, to each idealI of R it corresponds a∗-ideal of
Ex(R) obtained as the direct sum ofI andI∗. Also, if R is a ring with involution
andI is an ideal of the ring reduct ofR such thatR = I

⊕
I∗, then it follows that

R ∼= Ex(I).
It is not difficult to analyze all the possible involutions on a finite fieldGF (pk).

The required involution defines an involutorial automorphism of that field, and it is
well-known that every automorphism of the specified finite field is of the form

x 7→ xpm

for some integer0 ≤ m ≤ k − 1. Thus, we have

x = (x∗)∗ = (xpm
)∗ = xp2m

.

As the multiplicative group of our field must be cyclic of orderpk−1, we obtain that
(pk − 1) | (p2m − 1), that is,k | 2m. Since2m < 2k, this yields two possibilities:
m = 0, whence the involution is just the identity mapping, andm = k

2 , provided
k is even (otherwise, this case is impossible). The resulting field with involution
we denote byGF (pk) in the former case (abusing slightly the notation), and by
GF ∗(pk) in the latter case. Now we have prepared the way for stating our next
result.

Theorem 2.4.4. (Crvenkovíc, Dolinka and Viňcić, [16]) A ring with involution
R is subdirectly irreducible and obeys the identityxn+1 = x if and only if there
is a prime numberp and an integerk ≥ 1 satisfying(pk − 1) | n, such thatR is
isomorphic to one of the following:

(1) GF (pk),
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(2) if k is even,GF ∗(pk),
(3) Ex(GF (pk)).

The key lemma in the course of proving the above theorem is that ifR is a
ring with involution satisfying the given conditions, thenR has an identity element
(which is, clearly, fixed by the involution) andR is actually∗-simple (meaning that
R has no nontrivial∗-ideals). The other main ingredient for the proof comes from
the paper of Birkenmeier, Groenewald and Heatherly [5] in which the relationships
between the ideal and the∗-ideal structure of an involution ring were studied. In
particular, the result we need is that ifR is ∗-simple, then it is either simple as a
ring, orR ∼= Ex(K), whereK andK∗ are the only nontrivial proper ideals ofR
andR2 6= 0. From these facts it is possible to derive the previous theorem.

One of the principal applications of the above result is that it helps a lot in
determining the latticeL(n) of all subvarieties of the (involution) ring varietyV(n)

defined byxn+1 = x for a given value ofn. Towards this aim, the following
observation is very useful. LetV(n)

p denote the subvariety ofV(n) determined by

px = 0 (formed by all members of the latter variety of characteristicp), and letL(n)
p

be its lattice of subvarieties. Clearly,V(n)
p is nontrivial if and only if(p − 1) | n.

Now if {p1, . . . , pk} is the set of all prime numbers with this property, then it can

be easily shown that the varietiesV(n)
pi , 1 ≤ i ≤ k, areindependent, which means

that there is a termt(x1, . . . , xk) such that the identityt(x1, . . . , xk) = xi holds in

V(n)
pi . If a variety is equal to the join of some of its independent subvarieties, it is

usual in universal algebra to say that the variety under consideration decomposes
into avarietal productof these subvarieties (cf. [74]). In our case, we writeV(n) =
V(n)

p1 ⊗ · · · ⊗ V(n)
pk . It is well-known that varietal product decompositions induce

direct decompositions of the lattice of subvarieties, thus we have

L(n) ∼= L(n)
p1
× · · · × L(n)

pk
.

Hence, the task of finding the lattice of varieties of rings (with involution) satis-
fying xn+1 = x reduces to the same task in a fixed prime characteristicp, where
(p − 1) | n. This is just where Theorem 2.4.4 can be used, for it supplies the
corresponding subdirectly irreducibles. It remains then to study their mutual rela-
tionships in order to obtain the exact list of varieties they generate.

This is just what have been done in the recent note [30]. Namely, letFp denote
the set of all finite fields of characteristicp, whileF∗p denotes the set of all (subdi-
rectly irreducible) involution rings from the above theorem which are of character-
istic p. Furthermore, writeR ↪→ S if R embeds intoS. This relation turnsFp and
F∗p into partially ordered sets. Clearly,(Fp, ↪→) is isomorphic to the divisibility
order of natural numbers (asGF (pk) embeds intoGF (p`) if and only if k | `), but
it was shown in [30] that(F∗p , ↪→) can be effectively described as well.

Now let Fp(n) (F∗p (n)) denote the set of thoseGF (pk) (andGF ∗(pk) and
Ex(GF (pk)) in the involutorial case) for which(pk − 1) | n. The main result of
[30] is as follows.
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Theorem 2.4.5.Letn ≥ 1 be an integer andp a prime such that(p − 1) | n.

ThenL(n)
p is isomorphic to the lattice of all ideals of the ordered set(Fp(n), ↪→)

(resp.(F∗p (n), ↪→)).

By the previous remarks, the finite partial orders from the above theorem turn
out to be computable, which establishes an effective algorithm for constructing
L

(n)
p , as required.
Bearing in mind Theorem 2.4.2, let us finish this survey by discussing the case

n = 6 as an example, so that(p − 1) | n (wherep is a prime) if and only if
p ∈ {2, 3, 7}.

When we consider ordinary rings, the situation is clear: forp = 2 we have two
subdirectly irreducibles,GF (2) andGF (4), whereGF (2) embeds intoGF (4);
for p = 3 we haveGF (3), and forp = 7 we haveGF (7). Thus, it is easy (using
the above theorem) to conclude that there are 12 ring varieties satisfyingx7 = x,
and that the lattice formed by them is the product of a three-element chain and the
square of a two-element chain.

In the case of involution ring varieties, for each ofp = 3, 7 we have two sub-
directly irreducibles, so thatGF (3) ↪→ Ex(GF (3)) andGF (7) ↪→ Ex(GF (7)),
and bothL(6)

3 andL(6)
7 are three-element chains. Forp = 2, a routine calculation

shows thatL(6)
2 is isomorphic to the lattice given in the following figure.
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Figure 12.The lattice of all involution ring varieties satisfyingx7 = x and2x = 0

Hence, we obtain exactly 90 varieties of involution rings satisfyingx7 = x.
Only six of them have a special involution, cf. Theorem 2.4.3.
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[27] Dolinka, I., Idempotent distributive semirings with involution,Int. J. Algebra Comput.13

(2003), 597–625.
[28] Dolinka, I., Regular *-semigroup varieties with the amalgamation property,Semigroup Forum

67 (2003), 419–428.
[29] Dolinka, I., Varieties of involution semilattices of Archimedean semigroups,submitted for

publication.
[30] Dolinka, I. and Mudrinski, N., On subdirect decomposition and varieties of some rings with

involution. II, submitted for publication.
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[46] Graczýnska, E., On normal and regular identities,Algebra Universalis27 (1990), 387–397.
[47] Hall, T.E., Inverse semigroup varieties with the amalgamation property,Semigroup Forum16

(1978), 37–51.
[48] Hall, T.E., Amalgamation for inverse and generalized inverse semigroups,Trans. Amer. Math.

Soc.310(1988), 313–323.
[49] Hall, T.E., Regular semigroups: amalgamation and the lattice of existence varieties,Algebra

Universalis28 (1991), 79–102.
[50] Hall, T.E. and Imaoka, T., Representations and amalgamation of generalized inverse∗-

semigroups,Semigroup Forum58 (1999), 126–141.
[51] Heatherly, H.E., Lee, E.K.S. and Wiegandt, R., Involutions on universal algebras, inNear-

rings, Nearfields andK-Loops(Hamburg, 1995), pp. 269–282, Kluwer, Dordrecht, 1997.
[52] Herstein, I.N.,Rings with Involution, Chicago Lectures in Math., University of Chicago Press,

Chicago, London, 1976.
[53] Hobby, D. and McKenzie, R.,The Structure of Finite Algebras, Contemporary Mathematics

Series, Vol. 76, AMS, Providence, 1988.
[54] Hoehnke, H.J.,̈Uber antiautomorphe und involutorische primitive Halbgruppen,Czechoslovak

J. Math.15 (90)(1965), 50–63.
[55] Horn, A. and Kimura, N., The category of semilattices,Algebra Universalis1 (1971), 26–38.
[56] Howie, J.M., Fundamentals of Semigroup Theory, Oxford University Press & Clarendon

Press, Oxford, 1995.
[57] Imaoka, T., Free products with amalgamation of commutative inverse semigroups,J. Austral

Math. Soc. (Ser. A)12 (1976), 246–251.
[58] Imaoka, T., Free products and amalgamation of generalized inverse∗-semigroups,Mem. Fac.

Sci. Shimane Univ.21 (1987), 55–64.
[59] Jónsson, B., The theory of binary relations, inAlgebraic Logic(Budapest, 1988), Colloq.

Math. Soc. J́anos Bolyai, Vol. 54, pp. 245–292, North-Holland, Amsterdam, 1991.
[60] Kalicki, J. and Scott, D., Equational completeness of abstract algebras,Indag. Math.17

(1955), 650–659.
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