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This is the Chicago O’Hare International Airport
(IATA code: ORD)

It is the second busiest airport on the planet (after Atlanta).
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Two mathematicians engage in a most lovely conversation
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Some words have (dire) consequences
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Escape

Fortunately, Elwood and Jake show up with their Bluesmobile
just in time to save Stu and John from an awkward situation...
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She caught the Katy (and left me a mule to ride)

The O’Hare inverse monoid is defined by the presentation

Inv〈 a, b, c , d | abcdacdadabbcdacd = 1 〉.

Or, as we shall prefer it few minutes later,

Inv〈 a, b, c, d | abcd · acd · ad · abbcd · acd = 1 〉

It was specifically designed by Margolis and Meakin (while waiting for a

connecting flight at ORD) as an example of a special inverse one-relator

monoid which eluded thus far the solution of the WP, exhibited

interesting/strange geometric properties, and even threatened at some

point a positive solution of the E-unitary conjecture...

But: what’s the such big fuss about special inverse monoids in the
first place?
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The old landmark

Theorem (W. Magnus, 1932)

Every one-relator group has a solvable word problem.

Theorem (Adjan, 1966)

The word problem for Mon〈A | u = v 〉 is decidable if either:

I one of u, v is empty, or

I both u, v are non-empty, and have different initial letters and
different terminal letters.

Lallement (1977) and L. Zhang (1992) provided alternative proofs
for the first case (of special monoids Mon〈A | u = 1 〉). The proof
of Zhang is particularly compact and elegant.
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(You better) Think

Adjan and Oganessian (1987): The word problem for one-relator
monoids can be reduced to the special case of

Mon〈A | asb = atc 〉

where a, b, c ∈ A, b 6= c and s, t ∈ A∗

(and their duals). It is
known that all such monoids are right (resp. left) cancellative.

Theorem (Ivanov, Margolis & Meakin, 2001)

If the word problem is decidable for all special inverse monoids
Inv〈A |w = 1 〉 – where w is a reduced word over A ∪ A−1 – then
the word problem is decidable for every one-relator monoid.

This holds basically because M = Mon〈A | asb = atc 〉 embeds into
I = Inv〈A | asbc−1t−1a−1 = 1 〉.
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Changing the perspective

Note that the word asbc−1t−1a−1 is always reduced, but not
cyclically reduced.

Hence, studying the word problem for Inv〈A |w = 1 〉 where w is
cyclically reduced might be more manageable.

Even though this case seems to have zero intersection with the
one-relator monoid problem, it is still important to study in order
to gain some understanding how the WP works for special
one-relator inverse monoids.
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The prefix monoid

For M = Inv〈A |w = 1 〉 consider its greatest group image
G = Gp〈A |w = 1 〉.

Let Pw denote the submonoid of G generated by its elements
represented by all the prefixes of w . This is the prefix monoid of G
relative to w .

Theorem (Ivanov, Margolis & Meakin, 2001)

Let w be cyclically reduced. Then Inv〈A |w = 1 〉 has a soluble
word problem provided that the membership problem for Pw in G
is decidable.

This allows to solve the word problem of M for an array of various
types of words w ∈ (A ∪ A−1)+.
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A key ingredient: The E -unitary property

An inverse semigroup S is E -unitary if any of the equivalent
conditions hold:

I For any e ∈ E (S) and x ∈ S ,
e ≤ x (in the natural inverse semigroup order) ⇒ x ∈ E (S).

I The minimum group congruence σ on S is idempotent-pure,
which means that E (S) constitutes a single σ-class.

I σ =∼, where ∼ is the compatibility relation (defined by
a ∼ b ⇔ a−1b, ab−1 ∈ E (S)).

I ...
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A key ingredient: The E -unitary property

Theorem (Ivanov, Margolis & Meakin, 2001)

If w is cyclically reduced, then M = Inv〈A |w = 1 〉 is E -unitary.

This confirmed a conjecture by M, M & Stephen published way
back in 1987.

In particular, this implies that UM , the group of units of M,
embeds into G = Gp〈A |w = 1 〉. In fact, its image is already
contained in Pw (as the group of its units).

E -unitary non-examples:

I Inv〈 a, b, c , d | abc = 1, adc = 1 〉.
I Inv〈A | uvu−1 = 1 〉 provided u, v ∈ A+ have different terminal

letters (so that uvu−1 is reduced as written).
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Searching for simpler generators of Pw

A factorisation
w ≡ β1 · · ·βk

is called unital if all βi represent elements of UM , where
M = Inv〈A |w = 1 〉.

Then it is not difficult to show

Lemma
Pw is generated by

⋃k
i=1 pref(βi ), i.e. by the elements of

G = Gp〈A |w = 1 〉 represented by prefixes of individual ‘invertible
factors’ βi .

In fact, for any factorisation w ≡ β1 · · ·βk we can consider the
submonoid of G

M(β1, . . . , βk) =

〈
k⋃

i=1

pref(βi )

〉
⊇ Pw .

If = holds, we say that the considered factorisation is conservative.
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Gimme some lovin’

Back to the O’Hare inverse monoid.

Recall, this is given by

Inv〈 a, b, c , d | abcdacdadabbcdacd = 1 〉.

I’d like to convince you that

w = abcd︸ ︷︷ ︸
α

· acd︸︷︷︸
β

· ad︸︷︷︸
γ

· abbcd︸ ︷︷ ︸
δ

· acd︸︷︷︸
β

is the finest conservative/unital factorisation of the O’Hare word w .

First I am going to show that it is a) unital, and then that it is
b) finest. For each of these statements I am going to show you two
proofs: one ‘geometric’, and one ‘combinatorial’.
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Stephen’s procedure

J. B. Stephen (‘Presentations of inverse monoids’, JPAA, 1990)
gives an effective procedure which results (at ∞) in the
Schützenberger graph of an inverse monoid presentation

= the
Cayley graph of the monoid restricted to right invertible elements
(aka the R-class of 1).

Roughly, in the case of Inv〈A |w = 1 〉 it consists of two
operations:

I add (‘sew’) cycle labelled by w at any vertex constructed so far;

I ‘fold’ – identify outgoing/incoming edges from/to a vertex labelled
by the same letter.

Any graph obtained after a finite number of sewings+foldings is
called a finite approximation of the Schützenberger graph in
question, and it represents a particular piece of that graph.
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Check, please!

I The original relation:
abcd · acd · ad · abbcd · acd = 1

I The red cycle from the blue initial vertex:
ad · abbcd · acd · abcd · acd = 1

I The blue cycle from the violet initial vertex:
abbcd · acd · abcd · acd · ad = 1

I The violet cycle from the green initial vertex:
acd · ad · abbcd · acd · abcd = 1

I The green cycle from the red initial vertex:
acd · abcd · acd · ad · abbcd = 1

So, each of abcd , acd , ad , abbcd is both right and left invertible.
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Invertible pieces of w reloaded

Lemma
Let u ∈ (A ∪ A−1)∗ be any word representing a right invertible
element of M = Inv〈A |w = 1 〉, and let u be the
(free-group-)reduced form of u. Then u = u holds in M.

So, since
β = αδ−1α = (αβ)(δβ)−1α

holds in FG (A) ⇒ it also holds in M ⇒ β is (right) invertible.
Similarly, (αβγδ)−1 = β(αβγδβ)−1 holding in FG (A)
⇒ αβγδ is (left) invertible.

In a similar fashion we obtain that αβγ, αβ and α are invertible,
and so are γ and δ.
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Finest unital factorisation – Take 1

An easy (inductive) analysis of the Stephen procedure for the
O’Hare monoid shows that the initial vertex (corresponding to
1 ∈ M) is incident with precisely two edges: an outgoing edge
labelled a and an incoming edge labelled d .

Hence, any word representing a right invertible element of M must
begin with either a or d−1. Analogously, any word representing a
left invertible element of M must end with either a−1 or d .

It follows immediately that there can be no unital factorisation of
the O’Hare word finer than

abcd · acd · ad · abbcd · acd .
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Finest unital factorisation – Take 2

Deductions of the type:

ab invertible ⇒ bcd invertible (because of abbcd)
⇒ a invertible (because of abcd) ⇒ d invertible (because of ad)
⇒ c invertible (becuase of acd) ⇒ b invertible (because of abcd)

All possible cases lead to the same conclusion: if there would be a
finer unital factorisation ⇒ all of a, b, c , d would be invertible and
M would be a group.

However, this is not the case (thank you, Nik!) as M admits a
homomorphism onto the bicyclic monoid B = Inv〈 x , y | xy = 1 〉
via a 7→ x , b, c 7→ 1, d 7→ y (taking the O’Hare word to xyxyxyxy ,
a relator in B).

Corollary
UM = 〈abcd , acd , ad , abbcd〉 = 〈aba−1, aca−1, ad〉
(even as a monoid).
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(Dancin’ to the) Jailhouse rock

G = Gp〈 a, b, c, d | abcdacdadabbcdacd = 1 〉

= Gp〈 a, b, c, d , x , y , z | x = aba−1, y = aca−1, z = ad , xyzyzzxxyzyz = 1 〉

= Gp〈 a, b, c, d , x , y , z | b = a−1xa, c = a−1za, d = a−1z , xyzyzzxxyzyz = 1 〉
= Gp〈 a, x , y , z | xyzyzzxxyzyz = 1 〉

Pw = Mon〈a, ab, abc, abcd , ac, acd , ad , abb, abbc, abbcd〉
= Mon〈a, aba−1, aca−1, ad〉 = Mon〈a, x , y , z〉

So, the prefix monoid Pw of G w.r.t. the O’Hare presentation is in
fact the positive part/submonoid of G w.r.t. the new presentation
〈 a, x , y , z | xyzyzzxxyzyz = 1 〉 !!!
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The band! The band!! I can see the light!!!

Theorem (Blues Brothers, 2017)

Let u be a strictly positive word over A. Then the positive part of
Gp〈A | u = 1 〉 has a decidable membership problem.

Proof sketch.
Let C ⊆ A be the set of all letters that actually appear in u, and let
B = A \ C . Then G = FG (B) ∗ Gp〈C | u = 1 〉. As the inverse of any
letter from C can be expressed in G by a positive word over C ,
Gp〈C | u = 1 〉 coincides with its postive part. Thus the positive part of
G is B∗ ∗ Gp〈C | u = 1 〉 (here ∗ refers to the monoid free product).

So, a word v over A ∪ A−1 represents an element from the positive part

of G if and only if v fails to contain any letter from B−1.

This implies that the prefix monoid Pw of the O’Hare group has a
decidable membership problem. By the Ivanov-Margolis-Meakin
Theorem, the WP of the O’Hare inverse monoid is soluble.
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Everybody needs somebody (or some problem) to love

I Can we at least prove (via the prefix monoid method) that
Inv〈A |w = 1 〉 has a solvable WP if w is a positive word
(i.e. ∈ A+)? Do clever changes of generators + Tietze
transformations suffice? Some weaker generalisations?

I We have seen that for E -unitary M = Inv〈A |w = 1 〉 we have

UM = UPw ≤ Pw ≤ G = Gp〈A |w = 1 〉.

It would be worthwhile to study the situation H ≤ S ≤ G where
G ,H are groups, G is one-relator, and S is a monoid (then S is a
union of some cosets of H). Can we ‘decompose’ the membership
problem of S in G to the membership problem of H in G and an
additional condition on the cosets involved?

I This points to the old & famous problem: the generalised WP for
one-relator groups. In particular, what about the subgroups
generated by α1, . . . , αk for an arbitrary factorisation α1 · · ·αk of
the (positive) relator w?
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THANK YOU!

Questions and comments to:

dockie@dmi.uns.ac.rs

Further information may be found at:

http://people.dmi.uns.ac.rs/∼dockie
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