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The word problem

Assume G is a group (finitely) generated by X .

Let X = X ∪ X−1 be a ‘doubled’ alphabet, and let π : X
∗ → G be

the cannonical homomorphism (sending each word w to the
element of G represented by w).

The word problem for G is the following algorithmic question.

INPUT: A word w ∈ X
∗
.

QUESTION: Does wπ = 1 hold in G?

Similarly, one defines the word problem for finitely generated
monoids / inverse monoids; in that case the input requires two
words u, v and the problem asks if uπ = vπ holds in the
corresponding monoid.
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The beginning of the story: back to the Great Depression
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Gimme the good ol’ classics

Theorem (W. Magnus, 1932)

Every one-relator group has decidable word problem.

Theorem (Magnus, 1930, “Der Freiheitssatz”)

If w ∈ X
∗

is cyclically reduced and A ⊂ X is such that at least one
letter from X \ A appears in w, then the subgroup of
Gp〈X |w = 1〉 generated by A is free.

=⇒ The Magnus method: each one-relator group embeds into an
HNN extension of a one-relator group with a shorter relator.

“Da sind Sie also blind gegangen!”

Max Dehn (Magnus’ PhD advisor)

Theorem (Shirshov, 1962)

Every one-relator Lie algebra has decidable word problem.
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The one-relator monoid Riddle (aka Voldemort)

Open Problem (still! – as of 2019)

Is the word problem decidable for all one-relator monoids
Mon〈X | u = v〉?

Theorem (Adjan, 1966)

The word problem for Mon〈X | u = v〉 is decidable if either:

I one of u, v is empty (e.g. u = 1 – special monoids), or

I both u, v are non-empty, and have different initial letters and
different terminal letters.

Lallement (1977) and L. Zhang (1992) provided alternative proofs
for the result about special monoids. The proof of Zhang is
particularly compact and elegant.
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The (French) connection

Adyan and Oganessyan (1987): The word problem for one-relator
monoids can be reduced to the special case of

Mon〈X | asb = atc〉

where a, b, c ∈ X , b 6= c and s, t ∈ X ∗ (and their duals).

So, where do (one-relator) inverse monoids come into the
picture???

Theorem (Ivanov, Margolis & Meakin, 2001)

If the word problem is decidable for all special inverse monoids
Inv〈X |w = 1〉 – where w is a reduced word over X – then the
word problem is decidable for every one-relator monoid.

This holds basically because M = Mon〈X | asb = atc〉 embeds into
I = Inv〈X | asbc−1t−1a−1 = 1〉.
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The plot thickens

Gp〈X |w = 1〉 Mon〈X |w = 1〉 Inv〈X |w = 1〉

decidable WP 3 3 ?
(Magnus, 1932) (Adjan, 1966)

Conjecture (Margolis, Meakin, Stephen, 1987)

Every inverse monoid of the form Inv〈X |w = 1〉 has decidable
word problem.

Theorem (RD Gray, 2019)

There exists a one-relator inverse monoid Inv〈X |w = 1〉 with
undecidable word problem.
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Inverse monoid basics

Inverse monoid = a monoid M such that for every a ∈ M there is a
unique a−1 ∈ M such that aa−1a = a and a−1aa−1 = a−1.

Inverse monoids form a variety of unary monoids defined by

xx−1x = x , (x−1)−1 = x ,

(xy)−1 = y−1x−1, xx−1yy−1 = yy−1xx−1.

Free inverse monoid FIM(X ): Munn, Scheiblich (1973/4)

Elements of FIM(X ) are represented as Munn
trees = birooted finite subtrees of the Cayley
graph of FG (X ). The Munn tree on the left
illustrates

aa−1bb−1ba−1abb−1 = bbb−1a−1ab−1aa−1b.
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A key ingredient: The E -unitary property

An inverse semigroup S is E -unitary if any of the equivalent
conditions hold:

I For any e ∈ E (S) and x ∈ S ,
e ≤ x (in the natural inverse semigroup order) ⇒ x ∈ E (S).

I The minimum group congruence σ on S is idempotent-pure,
which means that E (S) constitutes a single σ-class. (In
particular, if θ : M = Inv〈X |w = 1〉 → Gp〈X |w = 1〉 is the
natural homomorhpism then we require 1θ−1 = E (M).)

I σ =∼, where ∼ is the compatibility relation (defined by
a ∼ b ⇔ a−1b, ab−1 ∈ E (S)).

I ...

Theorem (Ivanov, Margolis & Meakin, 2001)

If w is cyclically reduced, then M = Inv〈X |w = 1〉 is E -unitary.
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The role of the prefix monoid

For M = Inv〈X |w = 1〉 consider its maximum group image
G = Gp〈X |w = 1〉.

Let Pw denote the submonoid of G generated by its elements
represented by all the prefixes of w . This is the prefix monoid of G
(relative to w , as Pw depends on the presentation for G ). The
prefix membership problem for G (defined by a certain one-relator
presentation) is the membership problem for Pw within G .

Theorem (Ivanov, Margolis & Meakin, 2001)

Assume that the prefix membership problem is decidable for
G = Gp〈X |w = 1〉. If, in addition, M = Inv〈X |w = 1〉 is
E -unitary then the word problem for M is decidable.

This allows to solve the word problem of M for an array of various
types of words w ∈ X

+
.
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Gray (2019), Inventiones Mathematicae (to appear)

Theorem A
There is a one-relator inverse monoid Inv〈X |w = 1〉 with
undecidable word problem.

Theorem B
There exist one-relator groups with undecidable submonoid
membership problem.
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The spice of life: right-angled Artin groups (RAAGs)

(Finite) graph Γ −→ right-angled Artin group A(Γ):

Gp〈V (Γ) | uv = vu for all {u, v} ∈ E (Γ)〉

Properties:

I If ∆ is an induced subgraph of Γ then A(∆) ↪→ A(Γ);

I An isomorphism ψ : ∆1 → ∆2 of induced subgraphs of Γ gives
rise to an isomorphism of subgroups A(∆1)→ A(∆2) of A(Γ);

I This, in turn, defines an HNN extension A(Γ, ψ) which
naturally embeds A(Γ).
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The importance of choosing the right path

Consider the path graph P4:

The isomorphism ψ of subpaths a 7→ b, b 7→ c , c 7→ d defines an
HNN extension A(P4, ψ) of A(P4) over A(P3).

After several rounds of Tietze transformations, it turns out that
A(P4, ψ) is a one-relator group (!), namely

Gp〈a, t | atat−1a−1ta−1t−1 = 1〉.

So, the RAAG A(P4) embeds into this one-relator group.

Theorem (Lohrey & Steinberg, 2008)

There exists a (fixed) finitely generated submonoid T of A(P4)
with undecidable membership problem.

... =⇒ Theorem B.
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A general construction

Let r ,w1, . . . ,wk ∈ X
∗

be arbitrary, where X = {a1, . . . , an}.

Set e to be the word

a1a
−1
1 . . . ana

−1
n (tw1t

−1)(tw−1
1 t−1) . . . (twkt

−1)(tw−1
k t−1)a−1

n an . . . a
−1
1 a1.

This is a Dyck word (reduces in the free group to 1) ⇔ represents
an idempotent of FIM(X ).

Let
M = Inv〈X , t | er = 1〉 = Inv〈X , t | e = 1, r = 1〉

Proposition (!!!)

Let T = Mon〈w1, . . . ,wk〉 ≤ G = Gp〈X | r = 1〉. Then for all
u ∈ X

∗
we have

u ∈ T ≤ G ⇐⇒ (tut−1)(tu−1t−1) = 1 in M.
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Touche!

Theorem
If M = Inv〈X | er = 1〉 has decidable word problem then the
membership problem for T in G = Gp〈X | r = 1〉 is decidable.

Proof of Theorem A:

I Take G = Gp〈a, z | azaz−1a−1za−1z−1 = 1〉;
I Take the Lohrey-Steinberg finitely generated, non-recursive

submonoid T of A(P4);

I Assume that its image T ′ in G is generated by
w1, . . . ,wk ∈ {a, z , a−1, z−1}∗;

I Let
e = aa−1zz−1(tw1t

−1)(tw−1
1 t−1) . . . (twkt

−1)(tw−1
k t−1)z−1za−1a;

I Then by the above theorem

M = Inv〈a, z , t | eazaz−1a−1za−1z−1 = 1〉
has undecidable WP. Q.E.D.
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Now, let’s keep it positive!

Remember: in the E -unitary case, solving the WP for Inv〈X |w = 1〉 is

the same as solving the prefix membership problem for Gp〈X |w = 1〉.
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A sampler of positive results

Inv〈X |w = 1〉 is proved to have decidable WP when...

I w is a Dyck word = an idempotent of FIM(X ) (Birget,
Margolis, Meakin, 1993);

I w -strictly positive case (Ivanov, Margolis, Meakin, 2001);

I some Adjan and Baumslag-Solitar types (Margolis, Meakin,
Šuniḱ, 2005);

I w is a sparse word (Hermiller, Lindblad, Meakin, 2010);

I some small cancellation conditions (A. Juhász, 2012, 2014).

And now...

I IgD & RD Gray, 2019+
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A glimpse into the toolbox (1)

Theorem (Benois, 1969)

Every finitely generated free group has decidable rational subset
membership problem.

Furthermore, rational subsets of (finitely
generated) free groups are closed for intersection and complement.

Let M = Inv〈X |w = 1〉. A factorisation

w ≡ w1 . . .wm

is unital (w.r.t. M) if each piece wi represents an invertible
element (a unit) of M.

Lemma
Pw ≤ G = Gp〈X |w = 1〉 is generated by

⋃m
i=1 pref(wi ).
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A glimpse into the toolbox (2)

In fact, for any factorisation w ≡ w1 · · ·wm we can consider the
submonoid of G

M(w1, . . . ,wm) =

〈
m⋃
i=1

pref(wi )

〉

⊇ Pw .

If = holds, we say that the considered factorisation is conservative.

Theorem

(i) Any unital factorisation is conservative.

(ii) If Inv〈X |w = 1〉 is E -unitary then every conservative
factorisation if unital.
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Theorem A

Let G = B ∗A C , where A,B,C are finitely generated groups

such
that both B,C have decidable word problems, and the membership
problem for A in both B and C is decidable. Let M be a
submonoid of G such that the following conditions hold:

(i) A ⊆ M;

(ii) both M ∩ B and M ∩ C are finitely generated and

M = Mon〈(M ∩ B) ∪ (M ∩ C )〉;
(iii) the membership problem for M ∩ B in B is decidable;

(iv) the membership problem for M ∩ C in C is decidable.

Then the membership problem for M in G is decidable.
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Theorem B

H ≤ G closed for rational intersections: R ∈ Rat(G ) =⇒ R ∩H ∈ Rat(G )

Effectively closed for rational intersections: algorithmic aspects

NB. Herbst (1991): R ⊆ H, R ∈ Rat(G )⇐⇒ R ∈ Rat(H)

IgD + RDG: an effective version of this result

Theorem
Let G = B ∗A C, where A,B,C are finitely generated groups. Let
M be a submonoid of G such that both M ∩ B and M ∩ C are
finitely generated and M = Mon〈(M ∩ B) ∪ (M ∩ C )〉. Assume
further that the following conditions hold:

(i) B and C have decidable rational subset membership problems;

(ii) A ≤ B is effectively closed for rational intersections;

(iii) A ≤ C is effectively closed for rational intersections.

Then the membership problem for M in G is decidable.
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Applications (1): Unique marker letter theorem

Theorem
Let G = Gp〈X |w = 1〉 and assume that w ≡ u(w1, . . . ,wk)
determines a conservative factorisation of w.

Furthermore, suppose
that for all 1 ≤ i ≤ k there is a letter xi ∈ X which appears exactly
once in wi and does not appear in any wj , j 6= i . Then G has
decidable prefix membership problem.

So, if w satisfies these conditions and M = Inv〈X |w = 1〉 is
E -unitary then M has decidable word problem.

Example

The group

G = Gp〈a, b, x , y | 〉
has decidable prefix membership problem =⇒ the inverse monoid

M = Inv〈a, b, x , y | axbaybaybaxbaybaxb = 1〉
has decidable WP.
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Applications (2): The (in)famous O’Hare monoid

Constructed by M&M while waiting for a connecting flight at the
O’Hare Int. Airport, Chicago, sometime in the 1980s:

Inv〈a, b, c , d | (abcd)(acd)(ad)(abbcd)(acd) = 1〉

It was set up as a particularly hard test-example for the E -unitary
result, and it was unknown until now whether its WP is decidable.

Proposition

Let M = Inv〈Y , a, d | (aui1d) . . . (auimd) = 1〉, with a, d not
appearing in uij ’s. Assume further that:

I some of the uij ’s is the empty word;

I for each x ∈ Y we have x ≡ red(uiru
−1
is

) for some r , s;

I each auijd represents a unit of M.

Then G = Gp〈Y , a, d | (aui1d) . . . (auimd) = 1〉 has decidable prefix
membership problem, and so M as decidable WP.
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Applications (3): Disjoint alphabets theorem

Theorem
Let G = Gp〈X |w = 1〉 where w is cyclically reduced.

Again,
assume that w ≡ u(w1, . . . ,wk) determines a conservative
factorisation of w. If i 6= j ⇒ (wi and wj have no letters in
common) then G has decidable prefix membership problem and
thus M = Inv〈X |w = 1〉 has decidable WP.

Example

The group

G = Gp〈a, b, c , d | (abab)(cdcd)(abab)(cdcd)(cdcd)(abab) = 1〉
has decidable prefix membership problem =⇒ the inverse monoid

M = Inv〈a, b, x , y | ababcdcdababcdcdcdcdabab = 1〉
has decidable WP.
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Applications (4): Cyclically pinched presentations

Theorem
The prefix membership problem is decidable for one-relator groups
defined by cyclically pinched presentations:

G = Gp〈X ∪ Y | uv−1 = 1〉

where u, v are reduced words over disjoint X ,Y , respectively.

Example

This implies decidability of the prefix membership problem for
surface groups:

I orientable (known)

Gp〈a1, . . . , an, b1, . . . , bn | [a1, b1] . . . [an, bn] = 1〉,
I non-orientable (new)

Gp〈a1, . . . , an | a21 . . . a2n = 1〉.
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Theorem C

Let G ∗ = G∗t,φ:A→B be an HNN extension of a finitely generated
group G such that A,B are also finitely generated.

Assume that G
has decidable word problem and that the membership problems of
A and B in G are decidable. Let M be a submonoid of G ∗ such
that the following conditions hold:

(i) A ∪ B ⊆ M;

(ii) M ∩ G is finitely generated, and

M = Mon〈(M ∩ G ) ∪ {t, t−1}〉;
(iii) the membership problem for M ∩ G in G is decidable.

Then the membership problem for M in G ∗ is decidable.
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Theorem D

Let G ∗ = G∗t,φ:A→B be an HNN extension of a finitely generated
group G such that A,B are also finitely generated.

Assume that
the following conditions hold:

(i) the rational subset membership problem is decidable in G ;

(ii) A ≤ G is effectively closed for rational intersections.

Then for any finite W0,W1, . . . ,Wd ,W
′
1, . . . ,W

′
d ⊆ G , d ≥ 0, the

membership problem for

M = Mon〈W0 ∪W1t ∪W2t
2 ∪ · · · ∪Wd t

d ∪ tW ′
1 ∪ · · · ∪ tdW ′

d〉

in G ∗ is decidable.
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Applications (5): Exponent sum zero theorem

Let G = Gp〈X |w = 1〉 and assume some t ∈ X has exponent sum
zero in w .

I By general theory (Lyndon, McCool, Moldavanskĭı,...)
⇒ G is an HNN extension of a one-relator group H:
I take w , replace each letter x by x−i where i is the exponent

sum of t in the corresponding prefix, get ρt(w);
I let Ξw be the alphabet of this new word;
I let A be the subgroup of H = Gp〈Ξw | ρt(w) = 1〉 generated

by the subset of Ξw obtained by removing each letter’s
“maximum index version”;

I Assume further that:
I ρt(w) is cyclically reduced;
I the rational subset membership problem is decidable in H;
I A ≤ H is effectively closed for rational intersections.

Then G has decidable prefix membership problem.
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I A ≤ H is effectively closed for rational intersections.

Then G has decidable prefix membership problem.
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Applications (5): Exponent sum zero theorem

Examples

I Gp〈a, b, c , t | t−1atcbt−2at2cbt−3at3c = 1〉,. . . ;

I large classes of Adjan-type presentations not covered by
previous results;

I conjugacy pinched presentations Gp〈X , t | t−1utv−1 = 1〉
where u, v are reduced words over X ;
I in particular, Baumslag-Solitar groups

B(m, n) = Gp〈a, b | b−1amba−n = 1〉;
I . . .
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The grand finale and an open problem

By modifying slightly the ideas from [Gray, 2019], we obtain

Theorem
There exists a reduced word w over a 3-letter alphabet X such that
G = Gp〈X |w = 1〉 has undecidable prefix membership problem.

Open Problem

Characterise the words w ∈ X
∗

such that the prefix membership
problem for Gp〈X |w = 1〉 is decidable. In particular, what about
cyclically reduced words?
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KÖSZÖNÖM A FIGYELMET!

Questions and comments to:

dockie@dmi.uns.ac.rs

Further information may be found at:

http://people.dmi.uns.ac.rs/∼dockie
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