The word problem for one-relator inverse monoids: new developments

Igor Dolinka
dockie@dmi.uns.ac.rs
Department of Mathematics and Informatics, University of Novi Sad

$$
\begin{gathered}
\text { Algebra szeminárium } \\
\text { Szeged, 2019. december } 4 .
\end{gathered}
$$

Starring

Robert D. Gray (UEA, Norwich)

Lt. Col. Frank Slade (US Army)

The word problem

Assume G is a group (finitely) generated by X.

The word problem

Assume G is a group (finitely) generated by X.
Let $\bar{X}=X \cup X^{-1}$ be a 'doubled' alphabet, and let $\pi: \bar{X}^{*} \rightarrow G$ be the cannonical homomorphism (sending each word w to the element of G represented by w).

The word problem

Assume G is a group (finitely) generated by X.
Let $\bar{X}=X \cup X^{-1}$ be a 'doubled' alphabet, and let $\pi: \bar{X}^{*} \rightarrow G$ be the cannonical homomorphism (sending each word w to the element of G represented by w).

The word problem for G is the following algorithmic question.
INPUT: A word $w \in \bar{X}^{*}$.
QUESTION: Does $w \pi=1$ hold in G ?

The word problem

Assume G is a group (finitely) generated by X.
Let $\bar{X}=X \cup X^{-1}$ be a 'doubled' alphabet, and let $\pi: \bar{X}^{*} \rightarrow G$ be the cannonical homomorphism (sending each word w to the element of G represented by w).

The word problem for G is the following algorithmic question.
INPUT: A word $w \in \bar{X}^{*}$.
QUESTION: Does $w \pi=1$ hold in G ?
Similarly, one defines the word problem for finitely generated monoids / inverse monoids; in that case the input requires two words u, v and the problem asks if $u \pi=v \pi$ holds in the corresponding monoid.

The beginning of the story: back to the Great Depression

Das Identitataproblem für Gruppen mit einer definierenden Relation.
W. Magnus in Gititigen.

Einleitung.

En ni cise Gruppe gugeben durch gewise (endlich oder abzahilbar milich viele) erreugende Elemente $a_{1}, a_{3}, a_{2}, \ldots$ und gewien awischen hes tetebiende definierenie Eelationen*

$$
R_{2}\left(a_{1}, a_{2}, a_{2}, \ldots\right)-1
$$

$$
(k=1,2, n)
$$

Jedar ans den Krzeagondea $a_{1}, a_{3}, a_{3}, \ldots$ und ihmen Reaproken $\mathrm{s}^{4}, a_{4}^{-1}, s_{1}^{-2}, \ldots$ gehildete rndliche Aundruck (jedes „Wort*, wie wir sagen sils) mptientient dann ein Element det firuppes aber nieht in eine Stiper Friee vielmehr liatt sich jedes Element anf umandlich viele Weien Lowh Wirce neprimetiotin Dus Identitite oder. Wortproblam it nem die lodh Worfe mpriwentierth. Das Identitite- oder Wortproblem ist mun die K, p meth Verfahisen an finden, um von awei beliebigen Worten W_{1} und I, in melich velen Sclaritten 24 entracheiden, ob sie daselho GruppenFont reqrisantieren, oder, was daselbe ist, um von einem beliebigen In a miteleriden, ob es gleich eine ist odet nicht.
Dai Identitatsproblem ist entens unmittelbar filr die Topologit von Hoketag') aber aweitens ist es woll (iberhaupt fier die Untenuchung

Gimme the good ol' classics

Theorem (W. Magnus, 1932)
Every one-relator group has decidable word problem.

Gimme the good ol' classics

Theorem (W. Magnus, 1932)
Every one-relator group has decidable word problem.
Theorem (Magnus, 1930, "Der Freiheitssatz")
If $w \in \bar{X}^{*}$ is cyclically reduced and $A \subset X$ is such that at least one letter from $X \backslash A$ appears in w, then the subgroup of $\mathrm{Gp}\langle X \mid w=1\rangle$ generated by A is free.

Gimme the good ol' classics

Theorem (W. Magnus, 1932)
Every one-relator group has decidable word problem.
Theorem (Magnus, 1930, "Der Freiheitssatz")
If $w \in \bar{X}^{*}$ is cyclically reduced and $A \subset X$ is such that at least one letter from $X \backslash A$ appears in w, then the subgroup of $\mathrm{Gp}\langle X \mid w=1\rangle$ generated by A is free.
\Longrightarrow The Magnus method:

Gimme the good ol' classics

Theorem (W. Magnus, 1932)
Every one-relator group has decidable word problem.
Theorem (Magnus, 1930, "Der Freiheitssatz")
If $w \in \bar{X}^{*}$ is cyclically reduced and $A \subset X$ is such that at least one letter from $X \backslash A$ appears in w, then the subgroup of $\mathrm{Gp}\langle X \mid w=1\rangle$ generated by A is free.
\Longrightarrow The Magnus method: each one-relator group embeds into an HNN extension of a one-relator group with a shorter relator.

Gimme the good ol' classics

Theorem (W. Magnus, 1932)
Every one-relator group has decidable word problem.
Theorem (Magnus, 1930, "Der Freiheitssatz")
If $w \in \bar{X}^{*}$ is cyclically reduced and $A \subset X$ is such that at least one letter from $X \backslash A$ appears in w, then the subgroup of $\mathrm{Gp}\langle X \mid w=1\rangle$ generated by A is free.
\Longrightarrow The Magnus method: each one-relator group embeds into an HNN extension of a one-relator group with a shorter relator.
"Da sind Sie also blind gegangen!"

> Max Dehn (Magnus' PhD advisor)

Gimme the good ol' classics

Theorem (W. Magnus, 1932)
Every one-relator group has decidable word problem.
Theorem (Magnus, 1930, "Der Freiheitssatz")
If $w \in \bar{X}^{*}$ is cyclically reduced and $A \subset X$ is such that at least one letter from $X \backslash A$ appears in w, then the subgroup of $\mathrm{Gp}\langle X \mid w=1\rangle$ generated by A is free.
\Longrightarrow The Magnus method: each one-relator group embeds into an HNN extension of a one-relator group with a shorter relator.
"Da sind Sie also blind gegangen!"

> Max Dehn (Magnus' PhD advisor)

Theorem (Shirshov, 1962)
Every one-relator Lie algebra has decidable word problem.

The one-relator monoid Riddle (aka Voldemort)

Open Problem (still! - as of 2019)
Is the word problem decidable for all one-relator monoids $\operatorname{Mon}\langle X \mid u=v\rangle$?

The one-relator monoid Riddle (aka Voldemort)

Open Problem (still! - as of 2019)

Is the word problem decidable for all one-relator monoids $\operatorname{Mon}\langle X \mid u=v\rangle$?

Theorem (Adjan, 1966)
The word problem for $\operatorname{Mon}\langle X \mid u=v\rangle$ is decidable if either:

- one of u, v is empty (e.g. $u=1$ - special monoids), or

The one-relator monoid Riddle (aka Voldemort)

Open Problem (still! - as of 2019)
Is the word problem decidable for all one-relator monoids $\operatorname{Mon}\langle X \mid u=v\rangle$?

Theorem (Adjan, 1966)
The word problem for $\operatorname{Mon}\langle X \mid u=v\rangle$ is decidable if either:

- one of u, v is empty (e.g. $u=1$ - special monoids), or
- both u, v are non-empty, and have different initial letters and different terminal letters.

The one-relator monoid Riddle (aka Voldemort)

Open Problem (still! - as of 2019)
Is the word problem decidable for all one-relator monoids $\operatorname{Mon}\langle X \mid u=v\rangle$?

Theorem (Adjan, 1966)
The word problem for $\operatorname{Mon}\langle X \mid u=v\rangle$ is decidable if either:

- one of u, v is empty (e.g. $u=1$ - special monoids), or
- both u, v are non-empty, and have different initial letters and different terminal letters.

Lallement (1977) and L. Zhang (1992) provided alternative proofs for the result about special monoids.

The one-relator monoid Riddle (aka Voldemort)

Open Problem (still! - as of 2019)
Is the word problem decidable for all one-relator monoids $\operatorname{Mon}\langle X \mid u=v\rangle$?

Theorem (Adjan, 1966)
The word problem for $\operatorname{Mon}\langle X \mid u=v\rangle$ is decidable if either:

- one of u, v is empty (e.g. $u=1$ - special monoids), or
- both u, v are non-empty, and have different initial letters and different terminal letters.

Lallement (1977) and L. Zhang (1992) provided alternative proofs for the result about special monoids. The proof of Zhang is particularly compact and elegant.

The (French) connection

Adyan and Oganessyan (1987): The word problem for one-relator monoids can be reduced to the special case of

$$
\operatorname{Mon}\langle X \mid a s b=a t c\rangle
$$

where $a, b, c \in X, b \neq c$ and $s, t \in X^{*}$ (and their duals).

The (French) connection

Adyan and Oganessyan (1987): The word problem for one-relator monoids can be reduced to the special case of

$$
\operatorname{Mon}\langle X \mid a s b=a t c\rangle
$$

where $a, b, c \in X, b \neq c$ and $s, t \in X^{*}$ (and their duals).
So, where do (one-relator) inverse monoids come into the picture???

The (French) connection

Adyan and Oganessyan (1987): The word problem for one-relator monoids can be reduced to the special case of

$$
\operatorname{Mon}\langle X \mid a s b=a t c\rangle
$$

where $a, b, c \in X, b \neq c$ and $s, t \in X^{*}$ (and their duals).
So, where do (one-relator) inverse monoids come into the picture???

Theorem (Ivanov, Margolis \& Meakin, 2001)
If the word problem is decidable for all special inverse monoids $\operatorname{lnv}\langle X \mid w=1\rangle$ - where w is a reduced word over \bar{X} - then the word problem is decidable for every one-relator monoid.

The (French) connection

Adyan and Oganessyan (1987): The word problem for one-relator monoids can be reduced to the special case of

$$
\operatorname{Mon}\langle X \mid a s b=a t c\rangle
$$

where $a, b, c \in X, b \neq c$ and $s, t \in X^{*}$ (and their duals).
So, where do (one-relator) inverse monoids come into the picture???

Theorem (Ivanov, Margolis \& Meakin, 2001)
If the word problem is decidable for all special inverse monoids $\operatorname{Inv}\langle X \mid w=1\rangle$ - where w is a reduced word over \bar{X} - then the word problem is decidable for every one-relator monoid.

This holds basically because $M=\operatorname{Mon}\langle X \mid a s b=a t c\rangle$ embeds into $I=\operatorname{lnv}\left\langle X \mid a s b c^{-1} t^{-1} a^{-1}=1\right\rangle$.

The plot thickens

	$\operatorname{Gp}\langle X \mid w=1\rangle$	$\operatorname{Mon}\langle X \mid w=1\rangle$	$\operatorname{lnv}\langle X \mid w=1\rangle$
decidable WP	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	$?$

The plot thickens

	$\operatorname{Gp}\langle X \mid w=1\rangle$	$\operatorname{Mon}\langle X \mid w=1\rangle$	$\operatorname{lnv}\langle X \mid w=1\rangle$
decidable WP	$\boldsymbol{\checkmark}$	$\boldsymbol{\checkmark}$	$?$
	(Magnus, 1932)	(Adjan, 1966)	

Conjecture (Margolis, Meakin, Stephen, 1987)
Every inverse monoid of the form $\operatorname{Inv}\langle X \mid w=1\rangle$ has decidable word problem.

The plot thickens

	$\operatorname{Gp}\langle X \mid w=1\rangle$	$\operatorname{Mon}\langle X \mid w=1\rangle$	$\operatorname{lnv}\langle X \mid w=1\rangle$
decidable WP	\boldsymbol{J}	$\boldsymbol{\checkmark}$	\boldsymbol{X}
	(Magnus, 1932)	(Adjan, 1966)	(Gray, 2019)

Conjecture (Margolis, Meakin, Stephen, 1987)
Every inverse monoid of the form $\operatorname{Inv}\langle X \mid w=1\rangle$ has decidable word problem.

Theorem (RD Gray, 2019)
There exists a one-relator inverse monoid $\operatorname{lnv}\langle X \mid w=1\rangle$ with undecidable word problem.

Inverse monoid basics

Inverse monoid $=$ a monoid M such that for every $a \in M$ there is a unique $a^{-1} \in M$ such that $a a^{-1} a=a$ and $a^{-1} a a^{-1}=a^{-1}$.

Inverse monoid basics

Inverse monoid $=$ a monoid M such that for every $a \in M$ there is a unique $a^{-1} \in M$ such that $a a^{-1} a=a$ and $a^{-1} a a^{-1}=a^{-1}$.

Inverse monoids form a variety of unary monoids defined by

$$
\begin{gathered}
x x^{-1} x=x, \quad\left(x^{-1}\right)^{-1}=x \\
(x y)^{-1}=y^{-1} x^{-1}, \quad x x^{-1} y y^{-1}=y y^{-1} x x^{-1}
\end{gathered}
$$

Inverse monoid basics

Inverse monoid $=$ a monoid M such that for every $a \in M$ there is a unique $a^{-1} \in M$ such that $a a^{-1} a=a$ and $a^{-1} a a^{-1}=a^{-1}$.

Inverse monoids form a variety of unary monoids defined by

$$
\begin{gathered}
x x^{-1} x=x, \quad\left(x^{-1}\right)^{-1}=x \\
(x y)^{-1}=y^{-1} x^{-1}, \quad x x^{-1} y y^{-1}=y y^{-1} x x^{-1}
\end{gathered}
$$

Free inverse monoid FIM(X): Munn, Scheiblich (1973/4)

Elements of $\operatorname{FIM}(X)$ are represented as Munn trees $=$ birooted finite subtrees of the Cayley graph of $F G(X)$.

Inverse monoid basics

Inverse monoid $=$ a monoid M such that for every $a \in M$ there is a unique $a^{-1} \in M$ such that $a a^{-1} a=a$ and $a^{-1} a a^{-1}=a^{-1}$.

Inverse monoids form a variety of unary monoids defined by

$$
\begin{gathered}
x x^{-1} x=x, \quad\left(x^{-1}\right)^{-1}=x \\
(x y)^{-1}=y^{-1} x^{-1}, \quad x x^{-1} y y^{-1}=y y^{-1} x x^{-1}
\end{gathered}
$$

Free inverse monoid FIM(X): Munn, Scheiblich (1973/4)

Elements of $\operatorname{FIM}(X)$ are represented as Munn trees $=$ birooted finite subtrees of the Cayley graph of $F G(X)$. The Munn tree on the left illustrates

$$
a a^{-1} b b^{-1} b a^{-1} a b b^{-1}=b b b^{-1} a^{-1} a b^{-1} a a^{-1} b .
$$

A key ingredient: The E-unitary property

An inverse semigroup S is E-unitary if any of the equivalent conditions hold:

A key ingredient: The E-unitary property

An inverse semigroup S is E-unitary if any of the equivalent conditions hold:

- For any $e \in E(S)$ and $x \in S$, $e \leq x$ (in the natural inverse semigroup order) $\Rightarrow x \in E(S)$.

A key ingredient: The E-unitary property

An inverse semigroup S is E-unitary if any of the equivalent conditions hold:

- For any $e \in E(S)$ and $x \in S$, $e \leq x$ (in the natural inverse semigroup order) $\Rightarrow x \in E(S)$.
- The minimum group congruence σ on S is idempotent-pure, which means that $E(S)$ constitutes a single σ-class.

A key ingredient: The E-unitary property

An inverse semigroup S is E-unitary if any of the equivalent conditions hold:

- For any $e \in E(S)$ and $x \in S$, $e \leq x$ (in the natural inverse semigroup order) $\Rightarrow x \in E(S)$.
- The minimum group congruence σ on S is idempotent-pure, which means that $E(S)$ constitutes a single σ-class. (In particular, if $\theta: M=\operatorname{lnv}\langle X \mid w=1\rangle \rightarrow \operatorname{Gp}\langle X \mid w=1\rangle$ is the natural homomorhpism then we require $1 \theta^{-1}=E(M)$.)

A key ingredient: The E-unitary property

An inverse semigroup S is E-unitary if any of the equivalent conditions hold:

- For any $e \in E(S)$ and $x \in S$, $e \leq x$ (in the natural inverse semigroup order) $\Rightarrow x \in E(S)$.
- The minimum group congruence σ on S is idempotent-pure, which means that $E(S)$ constitutes a single σ-class. (In particular, if $\theta: M=\operatorname{lnv}\langle X \mid w=1\rangle \rightarrow \operatorname{Gp}\langle X \mid w=1\rangle$ is the natural homomorhpism then we require $1 \theta^{-1}=E(M)$.)
- $\sigma=\sim$, where \sim is the compatibility relation (defined by $\left.a \sim b \Leftrightarrow a^{-1} b, a b^{-1} \in E(S)\right)$.

A key ingredient: The E-unitary property

An inverse semigroup S is E-unitary if any of the equivalent conditions hold:

- For any $e \in E(S)$ and $x \in S$, $e \leq x$ (in the natural inverse semigroup order) $\Rightarrow x \in E(S)$.
- The minimum group congruence σ on S is idempotent-pure, which means that $E(S)$ constitutes a single σ-class. (In particular, if $\theta: M=\operatorname{lnv}\langle X \mid w=1\rangle \rightarrow \operatorname{Gp}\langle X \mid w=1\rangle$ is the natural homomorhpism then we require $1 \theta^{-1}=E(M)$.)
- $\sigma=\sim$, where \sim is the compatibility relation (defined by $\left.a \sim b \Leftrightarrow a^{-1} b, a b^{-1} \in E(S)\right)$.

A key ingredient: The E-unitary property

An inverse semigroup S is E-unitary if any of the equivalent conditions hold:

- For any $e \in E(S)$ and $x \in S$, $e \leq x$ (in the natural inverse semigroup order) $\Rightarrow x \in E(S)$.
- The minimum group congruence σ on S is idempotent-pure, which means that $E(S)$ constitutes a single σ-class. (In particular, if $\theta: M=\operatorname{lnv}\langle X \mid w=1\rangle \rightarrow \operatorname{Gp}\langle X \mid w=1\rangle$ is the natural homomorhpism then we require $1 \theta^{-1}=E(M)$.)
- $\sigma=\sim$, where \sim is the compatibility relation (defined by $\left.a \sim b \Leftrightarrow a^{-1} b, a b^{-1} \in E(S)\right)$.

Theorem (Ivanov, Margolis \& Meakin, 2001)
If w is cyclically reduced, then $M=\operatorname{lnv}\langle X \mid w=1\rangle$ is E-unitary.

The role of the prefix monoid

For $M=\operatorname{lnv}\langle X \mid w=1\rangle$ consider its maximum group image $G=G p\langle X \mid w=1\rangle$.

The role of the prefix monoid

For $M=\operatorname{lnv}\langle X \mid w=1\rangle$ consider its maximum group image $G=G p\langle X \mid w=1\rangle$.

Let P_{w} denote the submonoid of G generated by its elements represented by all the prefixes of w.

The role of the prefix monoid

For $M=\operatorname{lnv}\langle X \mid w=1\rangle$ consider its maximum group image $G=G p\langle X \mid w=1\rangle$.

Let P_{w} denote the submonoid of G generated by its elements represented by all the prefixes of w. This is the prefix monoid of G

The role of the prefix monoid

For $M=\operatorname{lnv}\langle X \mid w=1\rangle$ consider its maximum group image $G=G p\langle X \mid w=1\rangle$.

Let P_{w} denote the submonoid of G generated by its elements represented by all the prefixes of w. This is the prefix monoid of G (relative to w, as P_{w} depends on the presentation for G).

The role of the prefix monoid

For $M=\operatorname{Inv}\langle X \mid w=1\rangle$ consider its maximum group image $G=G p\langle X \mid w=1\rangle$.

Let P_{w} denote the submonoid of G generated by its elements represented by all the prefixes of w. This is the prefix monoid of G (relative to w, as P_{w} depends on the presentation for G). The prefix membership problem for G (defined by a certain one-relator presentation) is the membership problem for P_{w} within G.

The role of the prefix monoid

For $M=\operatorname{Inv}\langle X \mid w=1\rangle$ consider its maximum group image $G=G p\langle X \mid w=1\rangle$.

Let P_{w} denote the submonoid of G generated by its elements represented by all the prefixes of w. This is the prefix monoid of G (relative to w, as P_{w} depends on the presentation for G). The prefix membership problem for G (defined by a certain one-relator presentation) is the membership problem for P_{w} within G.
Theorem (Ivanov, Margolis \& Meakin, 2001)
Assume that the prefix membership problem is decidable for $G=\operatorname{Gp}\langle X \mid w=1\rangle$. If, in addition, $M=\operatorname{lnv}\langle X \mid w=1\rangle$ is E-unitary then the word problem for M is decidable.

The role of the prefix monoid

For $M=\operatorname{Inv}\langle X \mid w=1\rangle$ consider its maximum group image $G=G p\langle X \mid w=1\rangle$.

Let P_{w} denote the submonoid of G generated by its elements represented by all the prefixes of w. This is the prefix monoid of G (relative to w, as P_{w} depends on the presentation for G). The prefix membership problem for G (defined by a certain one-relator presentation) is the membership problem for P_{w} within G.

Theorem (Ivanov, Margolis \& Meakin, 2001)

Assume that the prefix membership problem is decidable for $G=\operatorname{Gp}\langle X \mid w=1\rangle$. If, in addition, $M=\operatorname{lnv}\langle X \mid w=1\rangle$ is E-unitary then the word problem for M is decidable.

This allows to solve the word problem of M for an array of various types of words $w \in \bar{X}^{+}$.

Gray (2019), Inventiones Mathematicae (to appear)

Theorem A
There is a one-relator inverse monoid $\operatorname{Inv}\langle X \mid w=1\rangle$ with undecidable word problem.

Gray (2019), Inventiones Mathematicae (to appear)

Theorem A
There is a one-relator inverse monoid $\operatorname{Inv}\langle X \mid w=1\rangle$ with undecidable word problem.

Theorem B
There exist one-relator groups with undecidable submonoid membership problem.

The spice of life: right-angled Artin groups (RAAGs)

(Finite) graph $\Gamma \longrightarrow$ right-angled Artin group $A(\Gamma)$:

The spice of life: right-angled Artin groups (RAAGs)

(Finite) graph $\Gamma \longrightarrow$ right-angled Artin group $A(\Gamma)$:

$$
\operatorname{Gp}\langle V(\Gamma)| u v=v u \text { for all }\{u, v\} \in E(\Gamma)\rangle
$$

The spice of life: right-angled Artin groups (RAAGs)

(Finite) graph $\Gamma \longrightarrow$ right-angled Artin group $A(\Gamma)$:

$$
\operatorname{Gp}\langle V(\Gamma)| u v=v u \text { for all }\{u, v\} \in E(\Gamma)\rangle
$$

Properties:

- If Δ is an induced subgraph of Γ then $A(\Delta) \hookrightarrow A(\Gamma)$;

The spice of life: right-angled Artin groups (RAAGs)

(Finite) graph $\Gamma \longrightarrow$ right-angled Artin group $A(\Gamma)$:

$$
\operatorname{Gp}\langle V(\Gamma)| u v=v u \text { for all }\{u, v\} \in E(\Gamma)\rangle
$$

Properties:

- If Δ is an induced subgraph of Γ then $A(\Delta) \hookrightarrow A(\Gamma)$;
- An isomorphism $\psi: \Delta_{1} \rightarrow \Delta_{2}$ of induced subgraphs of Γ gives rise to an isomorphism of subgroups $A\left(\Delta_{1}\right) \rightarrow A\left(\Delta_{2}\right)$ of $A(\Gamma)$;

The spice of life: right-angled Artin groups (RAAGs)

(Finite) graph $\Gamma \longrightarrow$ right-angled Artin group $A(\Gamma)$:

$$
\operatorname{Gp}\langle V(\Gamma)| u v=v u \text { for all }\{u, v\} \in E(\Gamma)\rangle
$$

Properties:

- If Δ is an induced subgraph of Γ then $A(\Delta) \hookrightarrow A(\Gamma)$;
- An isomorphism $\psi: \Delta_{1} \rightarrow \Delta_{2}$ of induced subgraphs of Γ gives rise to an isomorphism of subgroups $A\left(\Delta_{1}\right) \rightarrow A\left(\Delta_{2}\right)$ of $A(\Gamma)$;
- This, in turn, defines an HNN extension $A(\Gamma, \psi)$ which naturally embeds $A(\Gamma)$.

The importance of choosing the right path

Consider the path graph P_{4} :

The importance of choosing the right path

Consider the path graph P_{4} :

The isomorphism ψ of subpaths $a \mapsto b, b \mapsto c, c \mapsto d$ defines an HNN extension $A\left(P_{4}, \psi\right)$ of $A\left(P_{4}\right)$ over $A\left(P_{3}\right)$.

The importance of choosing the right path

Consider the path graph P_{4} :

The isomorphism ψ of subpaths $a \mapsto b, b \mapsto c, c \mapsto d$ defines an HNN extension $A\left(P_{4}, \psi\right)$ of $A\left(P_{4}\right)$ over $A\left(P_{3}\right)$.

After several rounds of Tietze transformations, it turns out that $A\left(P_{4}, \psi\right)$ is a one-relator group (!),

The importance of choosing the right path

Consider the path graph P_{4} :

The isomorphism ψ of subpaths $a \mapsto b, b \mapsto c, c \mapsto d$ defines an HNN extension $A\left(P_{4}, \psi\right)$ of $A\left(P_{4}\right)$ over $A\left(P_{3}\right)$.

After several rounds of Tietze transformations, it turns out that $A\left(P_{4}, \psi\right)$ is a one-relator group (!), namely

$$
\mathrm{Gp}\left\langle a, t \mid a t a t^{-1} a^{-1} t a^{-1} t^{-1}=1\right\rangle .
$$

The importance of choosing the right path

Consider the path graph P_{4} :

The isomorphism ψ of subpaths $a \mapsto b, b \mapsto c, c \mapsto d$ defines an HNN extension $A\left(P_{4}, \psi\right)$ of $A\left(P_{4}\right)$ over $A\left(P_{3}\right)$.

After several rounds of Tietze transformations, it turns out that $A\left(P_{4}, \psi\right)$ is a one-relator group (!), namely

$$
\mathrm{Gp}\left\langle a, t \mid a \operatorname{tat}^{-1} a^{-1} t a^{-1} t^{-1}=1\right\rangle .
$$

So, the RAAG $A\left(P_{4}\right)$ embeds into this one-relator group.

The importance of choosing the right path

Consider the path graph P_{4} :

The isomorphism ψ of subpaths $a \mapsto b, b \mapsto c, c \mapsto d$ defines an HNN extension $A\left(P_{4}, \psi\right)$ of $A\left(P_{4}\right)$ over $A\left(P_{3}\right)$.

After several rounds of Tietze transformations, it turns out that $A\left(P_{4}, \psi\right)$ is a one-relator group (!), namely

$$
\mathrm{Gp}\left\langle a, t \mid a \operatorname{tat}^{-1} a^{-1} t a^{-1} t^{-1}=1\right\rangle .
$$

So, the RAAG $A\left(P_{4}\right)$ embeds into this one-relator group.
Theorem (Lohrey \& Steinberg, 2008)
There exists a (fixed) finitely generated submonoid T of $A\left(P_{4}\right)$ with undecidable membership problem.

The importance of choosing the right path

Consider the path graph P_{4} :

The isomorphism ψ of subpaths $a \mapsto b, b \mapsto c, c \mapsto d$ defines an HNN extension $A\left(P_{4}, \psi\right)$ of $A\left(P_{4}\right)$ over $A\left(P_{3}\right)$.

After several rounds of Tietze transformations, it turns out that $A\left(P_{4}, \psi\right)$ is a one-relator group (!), namely

$$
\mathrm{Gp}\left\langle a, t \mid a \operatorname{tat}^{-1} a^{-1} t a^{-1} t^{-1}=1\right\rangle .
$$

So, the RAAG $A\left(P_{4}\right)$ embeds into this one-relator group.
Theorem (Lohrey \& Steinberg, 2008)
There exists a (fixed) finitely generated submonoid T of $A\left(P_{4}\right)$ with undecidable membership problem.
$\ldots \Longrightarrow$ Theorem B.

A general construction

Let $r, w_{1}, \ldots, w_{k} \in \bar{X}^{*}$ be arbitrary, where $X=\left\{a_{1}, \ldots, a_{n}\right\}$.

A general construction

Let $r, w_{1}, \ldots, w_{k} \in \bar{X}^{*}$ be arbitrary, where $X=\left\{a_{1}, \ldots, a_{n}\right\}$. Set e to be the word

$$
a_{1} a_{1}^{-1} \ldots a_{n} a_{n}^{-1}\left(t w_{1} t^{-1}\right)\left(t w_{1}^{-1} t^{-1}\right) \ldots\left(t w_{k} t^{-1}\right)\left(t w_{k}^{-1} t^{-1}\right) a_{n}^{-1} a_{n} \ldots a_{1}^{-1} a_{1}
$$

A general construction

Let $r, w_{1}, \ldots, w_{k} \in \bar{X}^{*}$ be arbitrary, where $X=\left\{a_{1}, \ldots, a_{n}\right\}$. Set e to be the word

$$
a_{1} a_{1}^{-1} \ldots a_{n} a_{n}^{-1}\left(t w_{1} t^{-1}\right)\left(t w_{1}^{-1} t^{-1}\right) \ldots\left(t w_{k} t^{-1}\right)\left(t w_{k}^{-1} t^{-1}\right) a_{n}^{-1} a_{n} \ldots a_{1}^{-1} a_{1} .
$$

This is a Dyck word (reduces in the free group to 1) \Leftrightarrow represents an idempotent of $\operatorname{FIM}(X)$.

A general construction

Let $r, w_{1}, \ldots, w_{k} \in \bar{X}^{*}$ be arbitrary, where $X=\left\{a_{1}, \ldots, a_{n}\right\}$. Set e to be the word
$a_{1} a_{1}^{-1} \ldots a_{n} a_{n}^{-1}\left(t w_{1} t^{-1}\right)\left(t w_{1}^{-1} t^{-1}\right) \ldots\left(t w_{k} t^{-1}\right)\left(t w_{k}^{-1} t^{-1}\right) a_{n}^{-1} a_{n} \ldots a_{1}^{-1} a_{1}$.
This is a Dyck word (reduces in the free group to 1) \Leftrightarrow represents an idempotent of $\operatorname{FIM}(X)$.

Let

$$
M=\operatorname{Inv}\langle X, t \mid e r=1\rangle=\operatorname{Inv}\langle X, t \mid e=1, r=1\rangle
$$

A general construction

Let $r, w_{1}, \ldots, w_{k} \in \bar{X}^{*}$ be arbitrary, where $X=\left\{a_{1}, \ldots, a_{n}\right\}$. Set e to be the word
$a_{1} a_{1}^{-1} \ldots a_{n} a_{n}^{-1}\left(t w_{1} t^{-1}\right)\left(t w_{1}^{-1} t^{-1}\right) \ldots\left(t w_{k} t^{-1}\right)\left(t w_{k}^{-1} t^{-1}\right) a_{n}^{-1} a_{n} \ldots a_{1}^{-1} a_{1}$.
This is a Dyck word (reduces in the free group to 1) \Leftrightarrow represents an idempotent of $\operatorname{FIM}(X)$.

Let

$$
M=\operatorname{lnv}\langle X, t \mid e r=1\rangle=\operatorname{Inv}\langle X, t \mid e=1, r=1\rangle
$$

Proposition (!!!)
Let $T=\operatorname{Mon}\left\langle w_{1}, \ldots, w_{k}\right\rangle \leq G=\mathrm{Gp}\langle X \mid r=1\rangle$. Then for all
$u \in \bar{X}^{*}$ we have

$$
u \in T \leq G \Longleftrightarrow\left(t u t^{-1}\right)\left(t u^{-1} t^{-1}\right)=1 \text { in } M .
$$

Touche!

Theorem
If $M=\operatorname{Inv}\langle X|$ er $=1\rangle$ has decidable word problem then the membership problem for T in $G=G p\langle X \mid r=1\rangle$ is decidable.

Touche!

Theorem
If $M=\operatorname{Inv}\langle X|$ er $=1\rangle$ has decidable word problem then the membership problem for T in $G=G p\langle X \mid r=1\rangle$ is decidable.

Proof of Theorem A:

- Take $G=G p\left\langle a, z \mid a z a z^{-1} a^{-1} z a^{-1} z^{-1}=1\right\rangle$;

Touche!

Theorem
If $M=\operatorname{Inv}\langle X|$ er $=1\rangle$ has decidable word problem then the membership problem for T in $G=G p\langle X \mid r=1\rangle$ is decidable.

Proof of Theorem A:

- Take $G=G p\left\langle a, z \mid a z a z^{-1} a^{-1} z a^{-1} z^{-1}=1\right\rangle$;
- Take the Lohrey-Steinberg finitely generated, non-recursive submonoid T of $A\left(P_{4}\right)$;

Touche!

Theorem
If $M=\operatorname{Inv}\langle X|$ er $=1\rangle$ has decidable word problem then the membership problem for T in $G=G p\langle X \mid r=1\rangle$ is decidable.

Proof of Theorem A:

- Take $G=G p\left\langle a, z \mid a z a z^{-1} a^{-1} z a^{-1} z^{-1}=1\right\rangle$;
- Take the Lohrey-Steinberg finitely generated, non-recursive submonoid T of $A\left(P_{4}\right)$;
- Assume that its image T^{\prime} in G is generated by $w_{1}, \ldots, w_{k} \in\left\{a, z, a^{-1}, z^{-1}\right\}^{*} ;$

Touche!

Theorem
If $M=\operatorname{Inv}\langle X|$ er $=1\rangle$ has decidable word problem then the membership problem for T in $G=G p\langle X \mid r=1\rangle$ is decidable.

Proof of Theorem A:

- Take $G=G p\left\langle a, z \mid a z a z^{-1} a^{-1} z a^{-1} z^{-1}=1\right\rangle$;
- Take the Lohrey-Steinberg finitely generated, non-recursive submonoid T of $A\left(P_{4}\right)$;
- Assume that its image T^{\prime} in G is generated by $w_{1}, \ldots, w_{k} \in\left\{a, z, a^{-1}, z^{-1}\right\}^{*}$;
- Let

$$
e=a a^{-1} z z^{-1}\left(t w_{1} t^{-1}\right)\left(t w_{1}^{-1} t^{-1}\right) \ldots\left(t w_{k} t^{-1}\right)\left(t w_{k}^{-1} t^{-1}\right) z^{-1} z a^{-1} a
$$

Touche!

Theorem
If $M=\operatorname{Inv}\langle X \mid e r=1\rangle$ has decidable word problem then the membership problem for T in $G=G p\langle X \mid r=1\rangle$ is decidable.

Proof of Theorem A:

- Take $G=G p\left\langle a, z \mid a z a z^{-1} a^{-1} z a^{-1} z^{-1}=1\right\rangle$;
- Take the Lohrey-Steinberg finitely generated, non-recursive submonoid T of $A\left(P_{4}\right)$;
- Assume that its image T^{\prime} in G is generated by $w_{1}, \ldots, w_{k} \in\left\{a, z, a^{-1}, z^{-1}\right\}^{*}$;
- Let

$$
e=a a^{-1} z z^{-1}\left(t w_{1} t^{-1}\right)\left(t w_{1}^{-1} t^{-1}\right) \ldots\left(t w_{k} t^{-1}\right)\left(t w_{k}^{-1} t^{-1}\right) z^{-1} z a^{-1} a
$$

- Then by the above theorem

$$
M=\operatorname{Inv}\left\langle a, z, t \mid e a z a z^{-1} a^{-1} z a^{-1} z^{-1}=1\right\rangle
$$

has undecidable WP. Q.E.D.

Now, let's keep it positive!

Now, let's keep it positive!

Remember: in the E-unitary case, solving the WP for $\operatorname{Inv}\langle X \mid w=1\rangle$ is the same as solving the prefix membership problem for $\operatorname{Gp}\langle X \mid w=1\rangle$.

A sampler of positive results

$\operatorname{lnv}\langle X \mid w=1\rangle$ is proved to have decidable WP when...

A sampler of positive results

$\operatorname{lnv}\langle X \mid w=1\rangle$ is proved to have decidable WP when...

- w is a Dyck word $=$ an idempotent of $\operatorname{FIM}(X)$ (Birget, Margolis, Meakin, 1993);

A sampler of positive results

$\operatorname{lnv}\langle X \mid w=1\rangle$ is proved to have decidable WP when...

- w is a Dyck word $=$ an idempotent of $\operatorname{FIM}(X)$ (Birget, Margolis, Meakin, 1993);
- w-strictly positive case (Ivanov, Margolis, Meakin, 2001);

A sampler of positive results

$\operatorname{lnv}\langle X \mid w=1\rangle$ is proved to have decidable WP when...

- w is a Dyck word $=$ an idempotent of $\operatorname{FIM}(X)$ (Birget, Margolis, Meakin, 1993);
- w-strictly positive case (Ivanov, Margolis, Meakin, 2001);
- some Adjan and Baumslag-Solitar types (Margolis, Meakin, Šunik, 2005);

A sampler of positive results

$\operatorname{lnv}\langle X \mid w=1\rangle$ is proved to have decidable WP when...

- w is a Dyck word $=$ an idempotent of $\operatorname{FIM}(X)$ (Birget, Margolis, Meakin, 1993);
- w-strictly positive case (Ivanov, Margolis, Meakin, 2001);
- some Adjan and Baumslag-Solitar types (Margolis, Meakin, Šunik, 2005);
- w is a sparse word (Hermiller, Lindblad, Meakin, 2010);

A sampler of positive results

$\operatorname{lnv}\langle X \mid w=1\rangle$ is proved to have decidable WP when...

- w is a Dyck word $=$ an idempotent of $\operatorname{FIM}(X)$ (Birget, Margolis, Meakin, 1993);
- w-strictly positive case (Ivanov, Margolis, Meakin, 2001);
- some Adjan and Baumslag-Solitar types (Margolis, Meakin, Šunik, 2005);
- w is a sparse word (Hermiller, Lindblad, Meakin, 2010);
- some small cancellation conditions (A. Juhász, 2012, 2014).

A sampler of positive results

$\operatorname{lnv}\langle X \mid w=1\rangle$ is proved to have decidable WP when...

- w is a Dyck word $=$ an idempotent of $\operatorname{FIM}(X)$ (Birget, Margolis, Meakin, 1993);
- w-strictly positive case (Ivanov, Margolis, Meakin, 2001);
- some Adjan and Baumslag-Solitar types (Margolis, Meakin, Šunik, 2005);
- w is a sparse word (Hermiller, Lindblad, Meakin, 2010);
- some small cancellation conditions (A. Juhász, 2012, 2014).

And now...

- IgD \& RD Gray, 2019+

A glimpse into the toolbox (1)

Theorem (Benois, 1969)
Every finitely generated free group has decidable rational subset membership problem.

A glimpse into the toolbox (1)

Theorem (Benois, 1969)
Every finitely generated free group has decidable rational subset membership problem. Furthermore, rational subsets of (finitely generated) free groups are closed for intersection and complement.

A glimpse into the toolbox (1)

Theorem (Benois, 1969)
Every finitely generated free group has decidable rational subset membership problem. Furthermore, rational subsets of (finitely generated) free groups are closed for intersection and complement.

Let $M=\operatorname{lnv}\langle X \mid w=1\rangle$. A factorisation

$$
w \equiv w_{1} \ldots w_{m}
$$

is unital (w.r.t. M) if each piece w_{i} represents an invertible element (a unit) of M.

A glimpse into the toolbox (1)

Theorem (Benois, 1969)
Every finitely generated free group has decidable rational subset membership problem. Furthermore, rational subsets of (finitely generated) free groups are closed for intersection and complement.

Let $M=\operatorname{lnv}\langle X \mid w=1\rangle$. A factorisation

$$
w \equiv w_{1} \ldots w_{m}
$$

is unital (w.r.t. M) if each piece w_{i} represents an invertible element (a unit) of M.

Lemma
$P_{w} \leq G=\mathrm{Gp}\langle X \mid w=1\rangle$ is generated by $\bigcup_{i=1}^{m} \operatorname{pref}\left(w_{i}\right)$.

A glimpse into the toolbox (2)

In fact, for any factorisation $w \equiv w_{1} \cdots w_{m}$ we can consider the submonoid of G

$$
M\left(w_{1}, \ldots, w_{m}\right)=\left\langle\bigcup_{i=1}^{m} \operatorname{pref}\left(w_{i}\right)\right\rangle
$$

A glimpse into the toolbox (2)

In fact, for any factorisation $w \equiv w_{1} \cdots w_{m}$ we can consider the submonoid of G

$$
M\left(w_{1}, \ldots, w_{m}\right)=\left\langle\bigcup_{i=1}^{m} \operatorname{pref}\left(w_{i}\right)\right\rangle \supseteq P_{w}
$$

If $=$ holds, we say that the considered factorisation is conservative.

A glimpse into the toolbox (2)

In fact, for any factorisation $w \equiv w_{1} \cdots w_{m}$ we can consider the submonoid of G

$$
M\left(w_{1}, \ldots, w_{m}\right)=\left\langle\bigcup_{i=1}^{m} \operatorname{pref}\left(w_{i}\right)\right\rangle \supseteq P_{w}
$$

If $=$ holds, we say that the considered factorisation is conservative.
Theorem
(i) Any unital factorisation is conservative.

A glimpse into the toolbox (2)

In fact, for any factorisation $w \equiv w_{1} \cdots w_{m}$ we can consider the submonoid of G

$$
M\left(w_{1}, \ldots, w_{m}\right)=\left\langle\bigcup_{i=1}^{m} \operatorname{pref}\left(w_{i}\right)\right\rangle \supseteq P_{w}
$$

If $=$ holds, we say that the considered factorisation is conservative.
Theorem
(i) Any unital factorisation is conservative.
(ii) If $\operatorname{Inv}\langle X \mid w=1\rangle$ is E-unitary then every conservative factorisation if unital.

Theorem A

Let $G=B *_{A} C$, where A, B, C are finitely generated groups

Theorem A

Let $G=B *_{A} C$, where A, B, C are finitely generated groups such that both B, C have decidable word problems,

Theorem A

Let $G=B *_{A} C$, where A, B, C are finitely generated groups such that both B, C have decidable word problems, and the membership problem for A in both B and C is decidable.

Theorem A

Let $G=B *_{A} C$, where A, B, C are finitely generated groups such that both B, C have decidable word problems, and the membership problem for A in both B and C is decidable. Let M be a submonoid of G such that the following conditions hold:
(i) $A \subseteq M$;

Theorem A

Let $G=B *_{A} C$, where A, B, C are finitely generated groups such that both B, C have decidable word problems, and the membership problem for A in both B and C is decidable. Let M be a submonoid of G such that the following conditions hold:
(i) $A \subseteq M$;
(ii) both $M \cap B$ and $M \cap C$ are finitely generated and

$$
M=\operatorname{Mon}\langle(M \cap B) \cup(M \cap C)\rangle ;
$$

Theorem A

Let $G=B *_{A} C$, where A, B, C are finitely generated groups such that both B, C have decidable word problems, and the membership problem for A in both B and C is decidable. Let M be a submonoid of G such that the following conditions hold:
(i) $A \subseteq M$;
(ii) both $M \cap B$ and $M \cap C$ are finitely generated and

$$
M=\operatorname{Mon}\langle(M \cap B) \cup(M \cap C)\rangle ;
$$

(iii) the membership problem for $M \cap B$ in B is decidable;

Theorem A

Let $G=B *_{A} C$, where A, B, C are finitely generated groups such that both B, C have decidable word problems, and the membership problem for A in both B and C is decidable. Let M be a submonoid of G such that the following conditions hold:
(i) $A \subseteq M$;
(ii) both $M \cap B$ and $M \cap C$ are finitely generated and

$$
M=\operatorname{Mon}\langle(M \cap B) \cup(M \cap C)\rangle ;
$$

(iii) the membership problem for $M \cap B$ in B is decidable;
(iv) the membership problem for $M \cap C$ in C is decidable.

Theorem A

Let $G=B *_{A} C$, where A, B, C are finitely generated groups such that both B, C have decidable word problems, and the membership problem for A in both B and C is decidable. Let M be a submonoid of G such that the following conditions hold:
(i) $A \subseteq M$;
(ii) both $M \cap B$ and $M \cap C$ are finitely generated and

$$
M=\operatorname{Mon}\langle(M \cap B) \cup(M \cap C)\rangle ;
$$

(iii) the membership problem for $M \cap B$ in B is decidable;
(iv) the membership problem for $M \cap C$ in C is decidable.

Then the membership problem for M in G is decidable.

Theorem B

$$
H \leq G \text { closed for rational intersections: } R \in \operatorname{Rat}(G) \Longrightarrow R \cap H \in \operatorname{Rat}(G)
$$

Theorem B

$H \leq G$ closed for rational intersections: $R \in \operatorname{Rat}(G) \Longrightarrow R \cap H \in \operatorname{Rat}(G)$
Effectively closed for rational intersections: algorithmic aspects

Theorem B

$H \leq G$ closed for rational intersections: $R \in \operatorname{Rat}(G) \Longrightarrow R \cap H \in \operatorname{Rat}(G)$
Effectively closed for rational intersections: algorithmic aspects NB. Herbst (1991): $R \subseteq H, R \in \operatorname{Rat}(G) \Longleftrightarrow R \in \operatorname{Rat}(H)$

Theorem B

$H \leq G$ closed for rational intersections: $R \in \operatorname{Rat}(G) \Longrightarrow R \cap H \in \operatorname{Rat}(G)$
Effectively closed for rational intersections: algorithmic aspects NB. Herbst (1991): $R \subseteq H, R \in \operatorname{Rat}(G) \Longleftrightarrow R \in \operatorname{Rat}(H)$
$\lg \mathrm{D}+\mathrm{RDG}$: an effective version of this result

Theorem B

$H \leq G$ closed for rational intersections: $R \in \operatorname{Rat}(G) \Longrightarrow R \cap H \in \operatorname{Rat}(G)$
Effectively closed for rational intersections: algorithmic aspects
NB. Herbst (1991): $R \subseteq H, R \in \operatorname{Rat}(G) \Longleftrightarrow R \in \operatorname{Rat}(H)$
$\operatorname{lgD}+$ RDG: an effective version of this result
Theorem
Let $G=B *_{A} C$, where A, B, C are finitely generated groups.

Theorem B

$H \leq G$ closed for rational intersections: $R \in \operatorname{Rat}(G) \Longrightarrow R \cap H \in \operatorname{Rat}(G)$
Effectively closed for rational intersections: algorithmic aspects
NB. Herbst (1991): $R \subseteq H, R \in \operatorname{Rat}(G) \Longleftrightarrow R \in \operatorname{Rat}(H)$
$\operatorname{lgD}+$ RDG: an effective version of this result
Theorem
Let $G=B *_{A} C$, where A, B, C are finitely generated groups. Let M be a submonoid of G such that both $M \cap B$ and $M \cap C$ are finitely generated and $M=\operatorname{Mon}\langle(M \cap B) \cup(M \cap C)\rangle$.

Theorem B

$H \leq G$ closed for rational intersections: $R \in \operatorname{Rat}(G) \Longrightarrow R \cap H \in \operatorname{Rat}(G)$
Effectively closed for rational intersections: algorithmic aspects
NB. Herbst (1991): $R \subseteq H, R \in \operatorname{Rat}(G) \Longleftrightarrow R \in \operatorname{Rat}(H)$
$\operatorname{lgD}+$ RDG: an effective version of this result
Theorem
Let $G=B *_{A} C$, where A, B, C are finitely generated groups. Let M be a submonoid of G such that both $M \cap B$ and $M \cap C$ are finitely generated and $M=\operatorname{Mon}\langle(M \cap B) \cup(M \cap C)\rangle$. Assume further that the following conditions hold:
(i) B and C have decidable rational subset membership problems;

Theorem B

$H \leq G$ closed for rational intersections: $R \in \operatorname{Rat}(G) \Longrightarrow R \cap H \in \operatorname{Rat}(G)$
Effectively closed for rational intersections: algorithmic aspects
NB. Herbst (1991): $R \subseteq H, R \in \operatorname{Rat}(G) \Longleftrightarrow R \in \operatorname{Rat}(H)$
$\operatorname{lgD}+$ RDG: an effective version of this result
Theorem
Let $G=B *_{A} C$, where A, B, C are finitely generated groups. Let M be a submonoid of G such that both $M \cap B$ and $M \cap C$ are finitely generated and $M=\operatorname{Mon}\langle(M \cap B) \cup(M \cap C)\rangle$. Assume further that the following conditions hold:
(i) B and C have decidable rational subset membership problems;
(ii) $A \leq B$ is effectively closed for rational intersections;

Theorem B

$H \leq G$ closed for rational intersections: $R \in \operatorname{Rat}(G) \Longrightarrow R \cap H \in \operatorname{Rat}(G)$
Effectively closed for rational intersections: algorithmic aspects
NB. Herbst (1991): $R \subseteq H, R \in \operatorname{Rat}(G) \Longleftrightarrow R \in \operatorname{Rat}(H)$
$\operatorname{lgD}+$ RDG: an effective version of this result
Theorem
Let $G=B *_{A} C$, where A, B, C are finitely generated groups. Let M be a submonoid of G such that both $M \cap B$ and $M \cap C$ are finitely generated and $M=\operatorname{Mon}\langle(M \cap B) \cup(M \cap C)\rangle$. Assume further that the following conditions hold:
(i) B and C have decidable rational subset membership problems;
(ii) $A \leq B$ is effectively closed for rational intersections;
(iii) $A \leq C$ is effectively closed for rational intersections.

Theorem B

$H \leq G$ closed for rational intersections: $R \in \operatorname{Rat}(G) \Longrightarrow R \cap H \in \operatorname{Rat}(G)$
Effectively closed for rational intersections: algorithmic aspects
NB. Herbst (1991): $R \subseteq H, R \in \operatorname{Rat}(G) \Longleftrightarrow R \in \operatorname{Rat}(H)$
$\operatorname{lgD}+$ RDG: an effective version of this result
Theorem
Let $G=B *_{A} C$, where A, B, C are finitely generated groups. Let M be a submonoid of G such that both $M \cap B$ and $M \cap C$ are finitely generated and $M=\operatorname{Mon}\langle(M \cap B) \cup(M \cap C)\rangle$. Assume further that the following conditions hold:
(i) B and C have decidable rational subset membership problems;
(ii) $A \leq B$ is effectively closed for rational intersections;
(iii) $A \leq C$ is effectively closed for rational intersections.

Then the membership problem for M in G is decidable.

Applications (1): Unique marker letter theorem

Theorem
Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume that $w \equiv u\left(w_{1}, \ldots, w_{k}\right)$ determines a conservative factorisation of w.

Applications (1): Unique marker letter theorem

Theorem
Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume that $w \equiv u\left(w_{1}, \ldots, w_{k}\right)$
determines a conservative factorisation of w. Furthermore, suppose that for all $1 \leq i \leq k$ there is a letter $x_{i} \in X$ which appears exactly once in w_{i} and does not appear in any $w_{j}, j \neq i$.

Applications (1): Unique marker letter theorem

Theorem
Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume that $w \equiv u\left(w_{1}, \ldots, w_{k}\right)$ determines a conservative factorisation of w. Furthermore, suppose that for all $1 \leq i \leq k$ there is a letter $x_{i} \in X$ which appears exactly once in w_{i} and does not appear in any $w_{j}, j \neq i$. Then G has decidable prefix membership problem.

Applications (1): Unique marker letter theorem

Theorem
Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume that $w \equiv u\left(w_{1}, \ldots, w_{k}\right)$ determines a conservative factorisation of w. Furthermore, suppose that for all $1 \leq i \leq k$ there is a letter $x_{i} \in X$ which appears exactly once in w_{i} and does not appear in any $w_{j}, j \neq i$. Then G has decidable prefix membership problem.
So, if w satisfies these conditions and $M=\operatorname{lnv}\langle X \mid w=1\rangle$ is E-unitary then M has decidable word problem.

Applications (1): Unique marker letter theorem

Theorem
Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume that $w \equiv u\left(w_{1}, \ldots, w_{k}\right)$ determines a conservative factorisation of w. Furthermore, suppose that for all $1 \leq i \leq k$ there is a letter $x_{i} \in X$ which appears exactly once in w_{i} and does not appear in any $w_{j}, j \neq i$. Then G has decidable prefix membership problem.
So, if w satisfies these conditions and $M=\operatorname{lnv}\langle X \mid w=1\rangle$ is E-unitary then M has decidable word problem.

Example

The group

$$
G=\mathrm{Gp}\langle a, b, x, y| \text { axbaybaybaxbaybaxb }=1\rangle
$$

Applications (1): Unique marker letter theorem

Theorem
Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume that $w \equiv u\left(w_{1}, \ldots, w_{k}\right)$ determines a conservative factorisation of w. Furthermore, suppose that for all $1 \leq i \leq k$ there is a letter $x_{i} \in X$ which appears exactly once in w_{i} and does not appear in any $w_{j}, j \neq i$. Then G has decidable prefix membership problem.
So, if w satisfies these conditions and $M=\operatorname{lnv}\langle X \mid w=1\rangle$ is E-unitary then M has decidable word problem.

Example

The group

$$
G=G p\langle a, b, x, y \mid(a x b)(a y b)(a y b)(a x b)(a y b)(a x b)=1\rangle
$$

Applications (1): Unique marker letter theorem

Theorem
Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume that $w \equiv u\left(w_{1}, \ldots, w_{k}\right)$ determines a conservative factorisation of w. Furthermore, suppose that for all $1 \leq i \leq k$ there is a letter $x_{i} \in X$ which appears exactly once in w_{i} and does not appear in any $w_{j}, j \neq i$. Then G has decidable prefix membership problem.
So, if w satisfies these conditions and $M=\operatorname{lnv}\langle X \mid w=1\rangle$ is E-unitary then M has decidable word problem.

Example

The group

$$
G=G p\langle a, b, x, y \mid(a x b)(a y b)(a y b)(a x b)(a y b)(a x b)=1\rangle
$$

has decidable prefix membership problem

Applications (1): Unique marker letter theorem

Theorem
Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume that $w \equiv u\left(w_{1}, \ldots, w_{k}\right)$ determines a conservative factorisation of w. Furthermore, suppose that for all $1 \leq i \leq k$ there is a letter $x_{i} \in X$ which appears exactly once in w_{i} and does not appear in any $w_{j}, j \neq i$. Then G has decidable prefix membership problem.
So, if w satisfies these conditions and $M=\operatorname{lnv}\langle X \mid w=1\rangle$ is E-unitary then M has decidable word problem.

Example

The group

$$
G=G p\langle a, b, x, y \mid(a x b)(a y b)(a y b)(a x b)(a y b)(a x b)=1\rangle
$$

has decidable prefix membership problem \Longrightarrow the inverse monoid

$$
M=\operatorname{lnv}\langle a, b, x, y| \text { axbaybaybaxbaybaxb }=1\rangle
$$

has decidable WP.

Applications (2): The (in)famous O'Hare monoid

Constructed by M\&M while waiting for a connecting flight at the O'Hare Int. Airport, Chicago, sometime in the 1980s:

$$
\operatorname{Inv}\langle a, b, c, d \mid(a b c d)(a c d)(a d)(a b b c d)(a c d)=1\rangle
$$

Applications (2): The (in)famous O'Hare monoid

Constructed by M\&M while waiting for a connecting flight at the O'Hare Int. Airport, Chicago, sometime in the 1980s:

$$
\operatorname{Inv}\langle a, b, c, d \mid(a b c d)(a c d)(a d)(a b b c d)(a c d)=1\rangle
$$

It was set up as a particularly hard test-example for the E-unitary result, and it was unknown until now whether its WP is decidable.

Applications (2): The (in)famous O'Hare monoid

Constructed by M\&M while waiting for a connecting flight at the O'Hare Int. Airport, Chicago, sometime in the 1980s:

$$
\operatorname{Inv}\langle a, b, c, d \mid(a b c d)(a c d)(a d)(a b b c d)(a c d)=1\rangle
$$

It was set up as a particularly hard test-example for the E-unitary result, and it was unknown until now whether its WP is decidable.

Proposition
Let $M=\operatorname{lnv}\left\langle Y, a, d \mid\left(a u_{i_{1}} d\right) \ldots\left(a u_{i_{m}} d\right)=1\right\rangle$, with a, d not appearing in $u_{i_{j}}$'s.

Applications (2): The (in)famous O'Hare monoid

Constructed by M\&M while waiting for a connecting flight at the O'Hare Int. Airport, Chicago, sometime in the 1980s:

$$
\operatorname{Inv}\langle a, b, c, d \mid(a b c d)(a c d)(a d)(a b b c d)(a c d)=1\rangle
$$

It was set up as a particularly hard test-example for the E-unitary result, and it was unknown until now whether its WP is decidable.

Proposition

Let $M=\operatorname{lnv}\left\langle Y, a, d \mid\left(a u_{i_{1}} d\right) \ldots\left(a u_{i_{m}} d\right)=1\right\rangle$, with a, d not appearing in $u_{i j}$'s. Assume further that:

- some of the $u_{i_{j}}$'s is the empty word;

Applications (2): The (in)famous O'Hare monoid

Constructed by M\&M while waiting for a connecting flight at the O'Hare Int. Airport, Chicago, sometime in the 1980s:

$$
\operatorname{Inv}\langle a, b, c, d \mid(a b c d)(a c d)(a d)(a b b c d)(a c d)=1\rangle
$$

It was set up as a particularly hard test-example for the E-unitary result, and it was unknown until now whether its WP is decidable.

Proposition

Let $M=\operatorname{lnv}\left\langle Y, a, d \mid\left(a u_{i_{1}} d\right) \ldots\left(a u_{i_{m}} d\right)=1\right\rangle$, with a, d not appearing in $u_{i j}$'s. Assume further that:

- some of the $u_{i_{j}}$'s is the empty word;
- for each $x \in Y$ we have $x \equiv \operatorname{red}\left(u_{i_{r}} u_{i_{s}}^{-1}\right)$ for some r, s;

Applications (2): The (in)famous O'Hare monoid

Constructed by M\&M while waiting for a connecting flight at the O'Hare Int. Airport, Chicago, sometime in the 1980s:

$$
\operatorname{lnv}\langle a, b, c, d \mid(a b c d)(a c d)(a d)(a b b c d)(a c d)=1\rangle
$$

It was set up as a particularly hard test-example for the E-unitary result, and it was unknown until now whether its WP is decidable.

Proposition

Let $M=\operatorname{lnv}\left\langle Y, a, d \mid\left(a u_{i_{1}} d\right) \ldots\left(a u_{i_{m}} d\right)=1\right\rangle$, with a, d not appearing in $u_{i j}$'s. Assume further that:

- some of the $u_{i_{j}}$'s is the empty word;
- for each $x \in Y$ we have $x \equiv \operatorname{red}\left(u_{i_{r}} u_{i_{s}}^{-1}\right)$ for some r, s;
- each $a u_{i_{j}} d$ represents a unit of M.

Applications (2): The (in)famous O'Hare monoid

Constructed by M\&M while waiting for a connecting flight at the O'Hare Int. Airport, Chicago, sometime in the 1980s:

$$
\operatorname{Inv}\langle a, b, c, d \mid(a b c d)(a c d)(a d)(a b b c d)(a c d)=1\rangle
$$

It was set up as a particularly hard test-example for the E-unitary result, and it was unknown until now whether its WP is decidable.

Proposition

Let $M=\operatorname{lnv}\left\langle Y, a, d \mid\left(a u_{i_{1}} d\right) \ldots\left(a u_{i_{m}} d\right)=1\right\rangle$, with a, d not appearing in $u_{i j}$'s. Assume further that:

- some of the $u_{i j}$'s is the empty word;
- for each $x \in Y$ we have $x \equiv \operatorname{red}\left(u_{i_{r}} u_{i_{s}}^{-1}\right)$ for some r, s;
- each $a u_{i_{j}} d$ represents a unit of M.

Then $G=G p\left\langle Y, a, d \mid\left(a u_{i_{1}} d\right) \ldots\left(a u_{i_{m}} d\right)=1\right\rangle$ has decidable prefix membership problem, and so M as decidable WP.

Applications (3): Disjoint alphabets theorem

Theorem
Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ where w is cyclically reduced.

Applications (3): Disjoint alphabets theorem

Theorem
Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ where w is cyclically reduced. Again, assume that $w \equiv u\left(w_{1}, \ldots, w_{k}\right)$ determines a conservative factorisation of w.

Applications (3): Disjoint alphabets theorem

Theorem
Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ where w is cyclically reduced. Again, assume that $w \equiv u\left(w_{1}, \ldots, w_{k}\right)$ determines a conservative factorisation of w. If $i \neq j \Rightarrow\left(w_{i}\right.$ and w_{j} have no letters in common)

Applications (3): Disjoint alphabets theorem

Theorem
Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ where w is cyclically reduced. Again, assume that $w \equiv u\left(w_{1}, \ldots, w_{k}\right)$ determines a conservative factorisation of w. If $i \neq j \Rightarrow\left(w_{i}\right.$ and w_{j} have no letters in common) then G has decidable prefix membership problem and thus $M=\operatorname{lnv}\langle X \mid w=1\rangle$ has decidable $W P$.

Applications (3): Disjoint alphabets theorem

Theorem
Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ where w is cyclically reduced. Again, assume that $w \equiv u\left(w_{1}, \ldots, w_{k}\right)$ determines a conservative factorisation of w. If $i \neq j \Rightarrow\left(w_{i}\right.$ and w_{j} have no letters in common) then G has decidable prefix membership problem and thus $M=\operatorname{Inv}\langle X \mid w=1\rangle$ has decidable WP.

Example

The group

$$
G=G p\langle a, b, c, d \mid(a b a b)(c d c d)(a b a b)(c d c d)(c d c d)(a b a b)=1\rangle
$$

has decidable prefix membership problem

Applications (3): Disjoint alphabets theorem

Theorem
Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ where w is cyclically reduced. Again, assume that $w \equiv u\left(w_{1}, \ldots, w_{k}\right)$ determines a conservative factorisation of w. If $i \neq j \Rightarrow\left(w_{i}\right.$ and w_{j} have no letters in common) then G has decidable prefix membership problem and thus $M=\operatorname{Inv}\langle X \mid w=1\rangle$ has decidable $W P$.

Example

The group

$$
G=G p\langle a, b, c, d \mid(a b a b)(c d c d)(a b a b)(c d c d)(c d c d)(a b a b)=1\rangle
$$

has decidable prefix membership problem \Longrightarrow the inverse monoid

$$
M=\operatorname{Inv}\langle a, b, x, y \mid a b a b c d c d a b a b c d c d c d c d a b a b=1\rangle
$$

has decidable WP.

Applications (4): Cyclically pinched presentations

Theorem
The prefix membership problem is decidable for one-relator groups defined by cyclically pinched presentations:

$$
G=\mathrm{Gp}\left\langle X \cup Y \mid u v^{-1}=1\right\rangle
$$

where u, v are reduced words over disjoint X, Y, respectively.

Applications (4): Cyclically pinched presentations

Theorem
The prefix membership problem is decidable for one-relator groups defined by cyclically pinched presentations:

$$
G=\mathrm{Gp}\left\langle X \cup Y \mid u v^{-1}=1\right\rangle
$$

where u, v are reduced words over disjoint X, Y, respectively.

Example

This implies decidability of the prefix membership problem for surface groups:

Applications (4): Cyclically pinched presentations

Theorem
The prefix membership problem is decidable for one-relator groups defined by cyclically pinched presentations:

$$
G=\mathrm{Gp}\left\langle X \cup Y \mid u v^{-1}=1\right\rangle
$$

where u, v are reduced words over disjoint X, Y, respectively.

Example

This implies decidability of the prefix membership problem for surface groups:

- orientable (known)

$$
\mathrm{Gp}\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \mid\left[a_{1}, b_{1}\right] \ldots\left[a_{n}, b_{n}\right]=1\right\rangle
$$

Applications (4): Cyclically pinched presentations

Theorem
The prefix membership problem is decidable for one-relator groups defined by cyclically pinched presentations:

$$
G=\mathrm{Gp}\left\langle X \cup Y \mid u v^{-1}=1\right\rangle
$$

where u, v are reduced words over disjoint X, Y, respectively.

Example

This implies decidability of the prefix membership problem for surface groups:

- orientable (known)

$$
\mathrm{Gp}\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \mid\left[a_{1}, b_{1}\right] \ldots\left[a_{n}, b_{n}\right]=1\right\rangle
$$

- non-orientable (new)

$$
\operatorname{Gp}\left\langle a_{1}, \ldots, a_{n} \mid a_{1}^{2} \ldots a_{n}^{2}=1\right\rangle
$$

Theorem C

Let $G^{*}=G *_{t, \phi: A \rightarrow B}$ be an HNN extension of a finitely generated group G such that A, B are also finitely generated.

Theorem C

Let $G^{*}=G *_{t, \phi: A \rightarrow B}$ be an HNN extension of a finitely generated group G such that A, B are also finitely generated. Assume that G has decidable word problem and that the membership problems of A and B in G are decidable.

Theorem C

Let $G^{*}=G *_{t, \phi: A \rightarrow B}$ be an HNN extension of a finitely generated group G such that A, B are also finitely generated. Assume that G has decidable word problem and that the membership problems of A and B in G are decidable. Let M be a submonoid of G^{*} such that the following conditions hold:
(i) $A \cup B \subseteq M$;

Theorem C

Let $G^{*}=G *_{t, \phi: A \rightarrow B}$ be an HNN extension of a finitely generated group G such that A, B are also finitely generated. Assume that G has decidable word problem and that the membership problems of A and B in G are decidable. Let M be a submonoid of G^{*} such that the following conditions hold:
(i) $A \cup B \subseteq M$;
(ii) $M \cap G$ is finitely generated, and

$$
M=\operatorname{Mon}\left\langle(M \cap G) \cup\left\{t, t^{-1}\right\}\right\rangle ;
$$

Theorem C

Let $G^{*}=G *_{t, \phi: A \rightarrow B}$ be an HNN extension of a finitely generated group G such that A, B are also finitely generated. Assume that G has decidable word problem and that the membership problems of A and B in G are decidable. Let M be a submonoid of G^{*} such that the following conditions hold:
(i) $A \cup B \subseteq M$;
(ii) $M \cap G$ is finitely generated, and

$$
M=\operatorname{Mon}\left\langle(M \cap G) \cup\left\{t, t^{-1}\right\}\right\rangle ;
$$

(iii) the membership problem for $M \cap G$ in G is decidable.

Theorem C

Let $G^{*}=G *_{t, \phi: A \rightarrow B}$ be an HNN extension of a finitely generated group G such that A, B are also finitely generated. Assume that G has decidable word problem and that the membership problems of A and B in G are decidable. Let M be a submonoid of G^{*} such that the following conditions hold:
(i) $A \cup B \subseteq M$;
(ii) $M \cap G$ is finitely generated, and

$$
M=\operatorname{Mon}\left\langle(M \cap G) \cup\left\{t, t^{-1}\right\}\right\rangle ;
$$

(iii) the membership problem for $M \cap G$ in G is decidable.

Then the membership problem for M in G^{*} is decidable.

Theorem D

Let $G^{*}=G *_{t, \phi: A \rightarrow B}$ be an HNN extension of a finitely generated group G such that A, B are also finitely generated.

Theorem D

Let $G^{*}=G *_{t, \phi: A \rightarrow B}$ be an HNN extension of a finitely generated group G such that A, B are also finitely generated. Assume that the following conditions hold:
(i) the rational subset membership problem is decidable in G;

Theorem D

Let $G^{*}=G *_{t, \phi: A \rightarrow B}$ be an HNN extension of a finitely generated group G such that A, B are also finitely generated. Assume that the following conditions hold:
(i) the rational subset membership problem is decidable in G;
(ii) $A \leq G$ is effectively closed for rational intersections.

Theorem D

Let $G^{*}=G *_{t, \phi: A \rightarrow B}$ be an HNN extension of a finitely generated group G such that A, B are also finitely generated. Assume that the following conditions hold:
(i) the rational subset membership problem is decidable in G;
(ii) $A \leq G$ is effectively closed for rational intersections.

Then for any finite $W_{0}, W_{1}, \ldots, W_{d}, W_{1}^{\prime}, \ldots, W_{d}^{\prime} \subseteq G, d \geq 0$,

Theorem D

Let $G^{*}=G *_{t, \phi: A \rightarrow B}$ be an HNN extension of a finitely generated group G such that A, B are also finitely generated. Assume that the following conditions hold:
(i) the rational subset membership problem is decidable in G;
(ii) $A \leq G$ is effectively closed for rational intersections.

Then for any finite $W_{0}, W_{1}, \ldots, W_{d}, W_{1}^{\prime}, \ldots, W_{d}^{\prime} \subseteq G, d \geq 0$, the membership problem for

$$
M=\operatorname{Mon}\left\langle W_{0} \cup W_{1} t \cup W_{2} t^{2} \cup \cdots \cup W_{d} t^{d} \cup t W_{1}^{\prime} \cup \cdots \cup t^{d} W_{d}^{\prime}\right\rangle
$$

in G^{*} is decidable.

Applications (5): Exponent sum zero theorem

Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume some $t \in X$ has exponent sum zero in w.

Applications (5): Exponent sum zero theorem

Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume some $t \in X$ has exponent sum zero in w.

- By general theory (Lyndon, McCool, Moldavanskiĭ,...) $\Rightarrow G$ is an HNN extension of a one-relator group H :

Applications (5): Exponent sum zero theorem

Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume some $t \in X$ has exponent sum zero in w.

- By general theory (Lyndon, McCool, Moldavanskiĭ,...) $\Rightarrow G$ is an HNN extension of a one-relator group H :
- take w, replace each letter x by x_{-i} where i is the exponent sum of t in the corresponding prefix, get $\rho_{t}(w)$;

Applications (5): Exponent sum zero theorem

Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume some $t \in X$ has exponent sum zero in w.

- By general theory (Lyndon, McCool, Moldavanskiĭ,...) $\Rightarrow G$ is an HNN extension of a one-relator group H :
- take w, replace each letter x by x_{-i} where i is the exponent sum of t in the corresponding prefix, get $\rho_{t}(w)$;
- let Ξ_{w} be the alphabet of this new word;

Applications (5): Exponent sum zero theorem

Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume some $t \in X$ has exponent sum zero in w.

- By general theory (Lyndon, McCool, Moldavanskiĭ,...) $\Rightarrow G$ is an HNN extension of a one-relator group H :
\rightarrow take w, replace each letter x by x_{-i} where i is the exponent sum of t in the corresponding prefix, get $\rho_{t}(w)$;
- let Ξ_{w} be the alphabet of this new word;
- let A be the subgroup of $H=\mathrm{Gp}\left\langle\bar{\Xi}_{w} \mid \rho_{t}(w)=1\right\rangle$ generated by the subset of Ξ_{w} obtained by removing each letter's "maximum index version";

Applications (5): Exponent sum zero theorem

Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume some $t \in X$ has exponent sum zero in w.

- By general theory (Lyndon, McCool, Moldavanskiĭ,...) $\Rightarrow G$ is an HNN extension of a one-relator group H :
\rightarrow take w, replace each letter x by x_{-i} where i is the exponent sum of t in the corresponding prefix, get $\rho_{t}(w)$;
- let Ξ_{w} be the alphabet of this new word;
- let A be the subgroup of $H=\mathrm{Gp}\left\langle\bar{\Xi}_{w} \mid \rho_{t}(w)=1\right\rangle$ generated by the subset of Ξ_{w} obtained by removing each letter's "maximum index version";
- Assume further that:
$\rightarrow \rho_{t}(w)$ is cyclically reduced;

Applications (5): Exponent sum zero theorem

Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume some $t \in X$ has exponent sum zero in w.

- By general theory (Lyndon, McCool, Moldavanskiĭ,...) $\Rightarrow G$ is an HNN extension of a one-relator group H :
\rightarrow take w, replace each letter x by x_{-i} where i is the exponent sum of t in the corresponding prefix, get $\rho_{t}(w)$;
- let Ξ_{w} be the alphabet of this new word;
- let A be the subgroup of $H=\mathrm{Gp}\left\langle\Xi_{w} \mid \rho_{t}(w)=1\right\rangle$ generated by the subset of Ξ_{w} obtained by removing each letter's "maximum index version";
- Assume further that:
- $\rho_{t}(w)$ is cyclically reduced;
- the rational subset membership problem is decidable in H;

Applications (5): Exponent sum zero theorem

Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume some $t \in X$ has exponent sum zero in w.

- By general theory (Lyndon, McCool, Moldavanskiĭ,...) $\Rightarrow G$ is an HNN extension of a one-relator group H :
\checkmark take w, replace each letter x by x_{-i} where i is the exponent sum of t in the corresponding prefix, get $\rho_{t}(w)$;
- let Ξ_{w} be the alphabet of this new word;
- let A be the subgroup of $H=\mathrm{Gp}\left\langle\Xi_{w} \mid \rho_{t}(w)=1\right\rangle$ generated by the subset of Ξ_{w} obtained by removing each letter's "maximum index version";
- Assume further that:
$-\rho_{t}(w)$ is cyclically reduced;
- the rational subset membership problem is decidable in H;
- $A \leq H$ is effectively closed for rational intersections.

Applications (5): Exponent sum zero theorem

Let $G=\operatorname{Gp}\langle X \mid w=1\rangle$ and assume some $t \in X$ has exponent sum zero in w.

- By general theory (Lyndon, McCool, Moldavanskiĭ,...) $\Rightarrow G$ is an HNN extension of a one-relator group H :
\checkmark take w, replace each letter x by x_{-i} where i is the exponent sum of t in the corresponding prefix, get $\rho_{t}(w)$;
- let Ξ_{w} be the alphabet of this new word;
- let A be the subgroup of $H=\mathrm{Gp}\left\langle\bar{\Xi}_{w} \mid \rho_{t}(w)=1\right\rangle$ generated by the subset of Ξ_{w} obtained by removing each letter's "maximum index version";
- Assume further that:
- $\rho_{t}(w)$ is cyclically reduced;
- the rational subset membership problem is decidable in H;
- $A \leq H$ is effectively closed for rational intersections.

Then G has decidable prefix membership problem.

Applications (5): Exponent sum zero theorem

Examples

- $\mathrm{Gp}\left\langle a, b, c, t \mid t^{-1} a t c b t^{-2} a t^{2} c b t^{-3} a t^{3} c=1\right\rangle, \ldots ;$

Applications (5): Exponent sum zero theorem

Examples

- $\mathrm{Gp}\left\langle a, b, c, t \mid t^{-1} a t c b t^{-2} a t^{2} c b t^{-3} a t^{3} c=1\right\rangle, \ldots$;
- large classes of Adjan-type presentations not covered by previous results;

Applications (5): Exponent sum zero theorem

Examples

- $\mathrm{Gp}\left\langle a, b, c, t \mid t^{-1} a t c b t^{-2} a t^{2} c b t^{-3} a t^{3} c=1\right\rangle, \ldots ;$
- large classes of Adjan-type presentations not covered by previous results;
- conjugacy pinched presentations $\operatorname{Gp}\left\langle X, t \mid t^{-1} u t v^{-1}=1\right\rangle$ where u, v are reduced words over X;

Applications (5): Exponent sum zero theorem

Examples

- $\mathrm{Gp}\left\langle a, b, c, t \mid t^{-1} a t c b t^{-2} a t^{2} c b t^{-3} a t^{3} c=1\right\rangle, \ldots ;$
- large classes of Adjan-type presentations not covered by previous results;
- conjugacy pinched presentations $\operatorname{Gp}\left\langle X, t \mid t^{-1} u t v^{-1}=1\right\rangle$ where u, v are reduced words over X;
- in particular, Baumslag-Solitar groups

$$
B(m, n)=\mathrm{Gp}\left\langle a, b \mid b^{-1} a^{m} b a^{-n}=1\right\rangle ;
$$

Applications (5): Exponent sum zero theorem

Examples

- $\mathrm{Gp}\left\langle a, b, c, t \mid t^{-1} a t c b t^{-2} a t^{2} c b t^{-3} a t^{3} c=1\right\rangle, \ldots ;$
- large classes of Adjan-type presentations not covered by previous results;
- conjugacy pinched presentations $\mathrm{Gp}\left\langle X, t \mid t^{-1} u t v^{-1}=1\right\rangle$ where u, v are reduced words over X;
- in particular, Baumslag-Solitar groups

$$
B(m, n)=\mathrm{Gp}\left\langle a, b \mid b^{-1} a^{m} b a^{-n}=1\right\rangle ;
$$

The grand finale and an open problem

By modifying slightly the ideas from [Gray, 2019], we obtain
Theorem
There exists a reduced word w over a 3-letter alphabet X such that $G=\operatorname{Gp}\langle X \mid w=1\rangle$ has undecidable prefix membership problem.

The grand finale and an open problem

By modifying slightly the ideas from [Gray, 2019], we obtain
Theorem
There exists a reduced word w over a 3-letter alphabet X such that $G=\mathrm{Gp}\langle X \mid w=1\rangle$ has undecidable prefix membership problem.

Open Problem
Characterise the words $w \in \bar{X}^{*}$ such that the prefix membership problem for $\operatorname{Gp}\langle X \mid w=1\rangle$ is decidable.

The grand finale and an open problem

By modifying slightly the ideas from [Gray, 2019], we obtain
Theorem
There exists a reduced word w over a 3-letter alphabet X such that $G=G p\langle X \mid w=1\rangle$ has undecidable prefix membership problem.

Open Problem

Characterise the words $w \in \bar{X}^{*}$ such that the prefix membership problem for $\operatorname{Gp}\langle X \mid w=1\rangle$ is decidable. In particular, what about cyclically reduced words?

KÖSZÖNÖM A FIGYELMET!

Questions and comments to: dockie@dmi.uns.ac.rs

Further information may be found at:
http://people.dmi.uns.ac.rs/~dockie

