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And so the story begins...

nce upon a time, deep in the magic forest of Al-Jabr,
there liveth a beast, both fearsome and beautiful, daunting and
enchanting, and its name was

Hall’s universal group.

This beast, countably infinite by its size, hath the following
properties:

I Universal: It containeth a copy of every finite group as a
subgroup.

I Locally finite: Every finitely generated subgroup was finite.

I Homogeneous: Every two isomorphic subgroups A,B were
conjugate. In fact, any isomorphism φ : A→ B was a
restriction of some inner automorphism (of the whole beast).
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And so the story begins...

All the people, peasants and nobleman alike, feareth the beast.

For along came Ser Roland, the finest and bravest knight of the
proud Fräıssé clan, and told the people: there is only One. There
was no other creature in the whole Universe quite like this one.

The beast was ancient, createth from Darkness at the dawn of
Time. It was even known to the old and famous sorcerer
Euclides...!

Naaah, I’m just kidding you folks ,, it was constructed by
Philip Hall in 1959 in his beautiful paper Some constructions for
locally finite groups.
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Construction of Hall’s universal group U

I Take any finite group G = G0 with at least 3 elements.

I By Cayley’s Theorem, G embeds into SG = G1 via the right
regular representation φ : g 7→ ρg , where ρg is a permutation
of G defined by xρg = xg for all x ∈ G .

I Repeat. (That is, go to step 1 with G1 in the role of our finite
group G , etc. etc. etc.)

This results in a chain of embeddings G0 → G1 → G2 → . . .

Theorem (P.Hall, 1959)

Regardless of the initial group G0, the direct limit of this chain is,
up to isomorphism, one and the same countable group U . It is
universal (for finite groups), locally finite, and homogeneous;
moreover, it is the unique countable group with these properties.
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How, on Earth, something isomorphic (but not conjugate)
can become conjugate?

Well, this is the magic of the Cayley embedding. , Let’s take a
look at an example.

Let G = S4, and consider its subgroups:

K = {(), (12)}, L = {(), (12)(34)}.

Clearly, K ∼= Z2
∼= L, but they are not conjugate in G because of

the different cycle structure.

However, in SS4 , both ρ(12) and ρ(12)(34) are permutations (of a
24-element set) of order 2 without any fixed points. Therefore,
they are both products of 12 disjoint transpositions, and thus it
follows that Kφ and Lφ are conjugate (in SG ).
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Manfred Droste at AAA83, March 2012, Novi Sad

Is there a countable universal
locally finite homogeneous (inverse) semigroup?
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The keyword: Amalgamation
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Amalgamation and the Fräıssé Theorem

An amalgam in a class K of first-order structures is an ensemble
(S ,A,B, f1, f2) consisting of structures S ,A,B ∈ K along with two
embeddings f1 : S → A and f2 : S → B.

An amalgam (S ,A,B, f1, f2) in K is embeddable into a structure C
if there are embeddings g1 : A→ C and g2 : B → C such that
f1g1 = f2g2, that is:

K has the amalgamation property (AP) if any amalgam in K can
be embedded into some structure C ∈ K.
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Amalgamation and the Fräıssé Theorem

Fact
Finite groups have the AP.

Actually, they form an amalgamation
class (= AP + countably many isomorphism types + closed for
taking substructures + JEP).

Theorem (R.Fräıssé)

I For any countably infinite homogeneous structure A, the class
of all of its finitely generated substructures (the age of A) is
an amalgamation class.

I For any amalgamation class K of finitely generated structures
there exists a countably infinite homogeneous structure A
whose age is K. This A is unique up to isomorphism and is
called the Fräıssé limit of K.

So, in model-theoretical terminology, Hall’s universal group U is
the Fräıssé limit of the class of all finite groups.
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the Fräıssé limit of the class of all finite groups.

NBSAN, York, 7-8 Jan 2018 Igor Dolinka8



Amalgamation and the Fräıssé Theorem
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Houston, we’ve got a (slllight) problem...!

I Kimura (1957, PhD thesis): The class of finite semigroups
does not have the AP.

I T.E.Hall (1975, proof credited to C.J.Ash): The class of finite
inverse semigroups does not have the AP.

Conclusion: There is no countable universal locally finite
homogeneous semigroup. There is no such inverse semigroup
either.
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So...(?)
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Modifying the question

Instead, it might be sensible to ask:

How homogeneous can a countable universal
locally finite (inverse) semigroup be?

How one can ‘measure’ the degree of (partial) homogeneity (of a
semigroup)? Answer: amalgamation bases!

A finite (inverse) semigroup S is an amalgamation base for the
class of all finite (inverse) semigroups if every amalgam based on S
(i.e. an amalgam of the form (S , ..., ..., ..., ...)) embeds into some
finite (inverse) semigroup.
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Amalgamation bases

I T.E.Hall (1975): A finite inverse semigroup S belongs to A,
the class of all amalgamation bases for finite inverse
semigroups, if and only if S is J -linear (i.e. J -classes form
a chain).

Reproved by Okniński and Putcha (1991) using
representation theory.

I The class B of all amalgamation bases for finite semigroups
has not been characterised so far. We do know that any
semigroup in B must be J -linear, but the converse is not
true.

I Known: B contains all finite groups, all reducts of inverse
semigroups from A, and, most importantly, all full
transformation semigroups Tn (K.Shoji, 2016).
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Maximal homogeneity

T – a countable universal locally finite (inverse) semigroup
S – a finite (inverse) semigroup

We say that Aut(T ) acts homogeneously on copies of S in T
if for all U1,U2 ≤ T such that U1

∼= S ∼= U2, every isomorphism
φ : U1 → U2 extends to an automorphism of T .

Proposition

Aut(T ) acts homogeneously on copies of S in T =⇒ S ∈ B
(resp. S ∈ A in the inverse case).

T is maximally homogeneous if Aut(T ) acts homogeneously on
copies of S in T for all S ∈ B (resp. S ∈ A).
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The maximally homogeneous semigroup T

Recall that Hall’s universal group U was obtained as a direct limit
of a chain of embeddings of symmetric groups.

If we have a chain of semigroup embeddings

M0 → M1 → M2 → . . .

such that Mi
∼= Tni for all i and some ni ≥ 1, then the semigroup

arising as the direct limit of this chain is called a full
transformation limit semigroup.

Note that every infinite full transformation limit semigroup must be universal
and locally finite. So, maybe it makes sense to restrict our quest to semigroups
of this type. And indeed...

Theorem (ID & Gray, 2017)

There is a unique maximally homogeneous full transformation limit
semigroup T .
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The maximally homogeneous inverse semigroup I

Similarly, if we have a chain of inverse semigroup embeddings

K0 → K1 → K2 → . . .

such that Ki
∼= Ini for all i and some ni ≥ 1, then the inverse

semigroup arising as the direct limit of this chain is called a
symmetric inverse limit semigroup.

Theorem (ID & Gray, 2017)

There is a unique maximally homogeneous symmetric inverse limit
semigroup I.
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The methods and non-methods (to construct T and I)

I T and I are not homogeneous, so they cannot be constructed
using Fräıssé’s Theorem.

I However, one can make use of a well-known generalisation,
sometimes called the Hrushovski construction.

I Recommended reading: D.Evans’ Lecture notes from his talks at

the Hausdorff Institute of Maths, Bonn, September 2013.

I Of course, it is tempting to try and iterate the Cayley /
Vagner-Preston Theorem for semigroups / inverse semigroups
and look at the direct limits of chains:

Tn → TTn → TTTn → . . . and In → IIn → IIIn → . . .

However, this will fail: we can prove that (most of) the
maximal subgroups of these limits are not isomorphic to U ,
whereas all the maximal subgroups of both T and I are
isomorphic to U .
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Structure of I and T

Even though I and T are not homogeneous, they still display a
high degree of symmetry in their combinatorial and algebraic
structure.

In particular, we hope to stumble upon a number of well-known
homogeneous objects in the course of studying the structural
features of I and T .
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The structural properties of I

Theorem (ID & RDG, 2017)

1. I/J is a chain order-isomorphic to Q.

2. Every maximal subgroup of I is isomorphic to Hall’s group U .

3. We have D = J in I, and all principal factors are isomorphic
to the Brandt semigroup B(N,U).

4. The semilattice of idempotents E (I) is isomorphic to the
countable universal homogeneous semilattice Ω.
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The structural properties of I

To establish (4), we used the characterisation of Ω by Droste,
Kuske & Truss (1999), stating that a countable ∧-semilattice is
∼= Ω if and only if:

I it has no minimal or maximal elements;

I any pair of elements has an upper bound;

I the following axiom (∗) holds:
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The structural properties of I

I Given α, γ, δ, ε ∈ E (I), there is a finite inverse subsemigroup
S ∼= In (for some n ≥ 1) that contains them.

I We use the Vagner-Preston embedding S → IS and consider
IS as an extension of S ; here we find a suitable idempotent β.

I Using the fact that In ∈ A is an amalgamation base for finite
inverse semigroups (because it is J -linear) and the Extension
Property from the Hrushovski construction, we ‘tuck in’ β
back into I to conclude that E (I) has (∗).

NBSAN, York, 7-8 Jan 2018 Igor Dolinka19



The structural properties of I

I Given α, γ, δ, ε ∈ E (I), there is a finite inverse subsemigroup
S ∼= In (for some n ≥ 1) that contains them.

I We use the Vagner-Preston embedding S → IS and consider
IS as an extension of S ; here we find a suitable idempotent β.

I Using the fact that In ∈ A is an amalgamation base for finite
inverse semigroups (because it is J -linear) and the Extension
Property from the Hrushovski construction, we ‘tuck in’ β
back into I to conclude that E (I) has (∗).
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The structural properties of T

Theorem (ID & RDG, 2017)

1. T /J is a chain order-isomorphic to Q.

2. Every maximal subgroup of T is isomorphic to Hall’s group U .

3. We have D = J in T , and, as Aut(T ) act transitively on the
chain of J -classes, all principal factors are isomorphic to
each other.

4. T is regular, idempotent generated, and self-dual (isomorphic
to its opposite semigroup).

5. The Graham-Houghton graph of every D-class of T is
isomorphic to the countable random bipartite graph.
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Graham-Houghton graphs: a reminder

Vertices: R-classes (one part) and L -classes (the other part) of a
fixed D-class of a semigroup S .

Edges: (R, L) is an edge ⇔ R ∩ L is a group ⇔ R ∩ L contains an
idempotent

Example: The rank 2 D-class of T4.
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The random bipartite graph

The countable random bipartite graph = the Fräıssé limit of the
class of all finite bipartite graphs

It is uniquely characterised among countably infinite bipartite
graph by the condition:

For any two finite disjoint sets U,V from one part of the bipartition,

there is a vertex w in the other part such that w ∼ U and w 6∼ V .
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Key ingredient: The Flower Lemma

Lemma
Let A1, . . . ,Ak ,B1, . . . ,B` be
t-element subsets of

[m] = {1, . . . ,m}.
If |M| < t then there exists a
partition P of [m] with t parts
such that P ⊥ Ai and P 6⊥ Bj .

Proposition
Let 1 < r < n. Then ∃φ : Tn → Tm such that
∀a1, . . . , ak , b1, . . . , b` ∈ Jr ⊆ Tn from distinct
L -classes ∃c ∈ Tm such that in Tm:

I Rc ∩ Laiφ are groups

I Rc ∩ Lbjφ are not groups
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Doing it the other way round

I A statement dual to the previous proposition also holds.

By
using the Extension Property once again, this suffices to
obtain the random bipartite graph result.

I However, this relies solely on the fact that we can prove
T ∼= T opp. This we establish by showing that T opp is
maximally homogeneous and full transformation limit, hence,
by our earlier uniqueness result, it must be ∼= T .

I It is completely unclear what are the full combinatorial
ramifications of this dual result.

I It is related to the following interesting combinatorial
question: Given a family of distinct partitions P1, . . . ,Pk ,
Q1, . . . ,Q` of [m], each with exactly t non-empty parts, under
what conditions can one guarantee that there is a t-element
subset A of [m] which is a transversal of each of Pi , and of
none of Qj?
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Speaking of questions...

Problem 1: Describe the (unique) principal factor of T . Is this the same
as the unique countable universal CS-homogeneous completely 0-simple
semigroup? (Which exists, btw, again by the Hrushovski construction.)

Problem 2: Is T (resp. I) the only countable universal locally finite
maximally homogeneous (inverse) semigroup? (That is, can we drop the
limit condition?)

Problem 3: Does every countable locally finite (inverse) semigroup
embed into T (resp. I)?

Problem 4: Does there exist a countable locally finite (inverse) semigroup
which embeds every countable locally finite (inverse) semigroup?

Remark
There exist 2ℵ0 non-isomorphic countable locally finite groups, and
U embeds all of them.
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THANK YOU!

Questions and comments to:

dockie@dmi.uns.ac.rs

Further information may be found at:

http://people.dmi.uns.ac.rs/∼dockie
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