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Variants of semigroups

Let (S , ·) be a semigroup and a ∈ S .

Given these, one can easily
define an alternative product ?a on S , namely

x ?a y = xay .

This is the variant Sa = (S , ?a) of S with respect to a.

First mention of variants (as far as we know): Lyapin’s book from
1960 (in Russian).

Magill (1967): Semigroups of functions X → Y under an
operation defined by

f · g = f ◦ θ ◦ g ,
where θ is a fixed function Y → X . For Y = X , this is exactly a
variant of TX .
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History of variants – continued

Hickey (1980s): Variants of general semigroups → a new
characterisation of Nambooripad’s order on regular semigroups

Khan & Lawson (2001): Variants of regular semigroups (natural
relation to Rees matrix semigroups). In fact, they obtain a natural
generalisation of the notion of group of units for non-monoidal
regular semigroups.

G. Y. Tsyaputa (2004/5): variants of finite full transformation
semigroups Tn

I classification of non-isomorphic variants

I idempotents, Green’s relations

I analogous questions for PT n

A more accessible account of her results may be found in the
monograph of Ganyushkin & Mazorchuk Classical Finite
Transformation Semigroups (Springer, 2009).
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Several examples

For a group G and a ∈ G , we always have G a ∼= G via x 7→ xa.

The identity element in G a is a−1.

On the other hand, if S the bicyclic monoid, then a, b ∈ S , a 6= b
implies Sa 6∼= Sb.

If S is a monoid, a, u, v ∈ S , and u, v are units, then Suav ∼= Sa

via x 7→ vxu.

Thus, for any a ∈ TX there exists e ∈ E (TX ) such that T a
X
∼= T e

X .

A WORD OF CAUTION: If S is a regular semigroup, Sa is not
regular in general! However, for regular S and arbitrary a ∈ S ,
Reg(Sa) is always a subsemigroup of Sa (Khan & Lawson).
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A word of caution, you said...?

Egg-box picture of T a
4 for a = [1, 2, 3, 3]
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4 for a = [1, 1, 1, 4]
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Three important sets

P1 = {x ∈ S : xa R x},

P2 = {x ∈ S : ax L x},

P = P1 ∩ P2

Easy facts:

I y ∈ P1 ⇔ Ly ⊆ P1,

I y ∈ P2 ⇔ Ry ⊆ P2,

I Reg(Sa) ⊆ P

NBSAN, York, January 14, 2015 Igor Dolinka: Variants of Tn6



Three important sets

P1 = {x ∈ S : xa R x}, P2 = {x ∈ S : ax L x},

P = P1 ∩ P2

Easy facts:

I y ∈ P1 ⇔ Ly ⊆ P1,

I y ∈ P2 ⇔ Ry ⊆ P2,

I Reg(Sa) ⊆ P

NBSAN, York, January 14, 2015 Igor Dolinka: Variants of Tn6



Three important sets

P1 = {x ∈ S : xa R x}, P2 = {x ∈ S : ax L x},

P = P1 ∩ P2

Easy facts:

I y ∈ P1 ⇔ Ly ⊆ P1,

I y ∈ P2 ⇔ Ry ⊆ P2,

I Reg(Sa) ⊆ P

NBSAN, York, January 14, 2015 Igor Dolinka: Variants of Tn6



Three important sets

P1 = {x ∈ S : xa R x}, P2 = {x ∈ S : ax L x},

P = P1 ∩ P2

Easy facts:

I y ∈ P1 ⇔ Ly ⊆ P1,

I y ∈ P2 ⇔ Ry ⊆ P2,

I Reg(Sa) ⊆ P

NBSAN, York, January 14, 2015 Igor Dolinka: Variants of Tn6



Three important sets

P1 = {x ∈ S : xa R x}, P2 = {x ∈ S : ax L x},

P = P1 ∩ P2

Easy facts:

I y ∈ P1 ⇔ Ly ⊆ P1,

I y ∈ P2 ⇔ Ry ⊆ P2,

I Reg(Sa) ⊆ P

NBSAN, York, January 14, 2015 Igor Dolinka: Variants of Tn6



Three important sets

P1 = {x ∈ S : xa R x}, P2 = {x ∈ S : ax L x},

P = P1 ∩ P2

Easy facts:

I y ∈ P1 ⇔ Ly ⊆ P1,

I y ∈ P2 ⇔ Ry ⊆ P2,

I Reg(Sa) ⊆ P

NBSAN, York, January 14, 2015 Igor Dolinka: Variants of Tn6



Green’s relations: Ra,L a,H a,Da

Ra
x =

{
Rx ∩ P1 if x ∈ P1

{x} if x ∈ S \ P1,

Lax =

{
Lx ∩ P2 if x ∈ P2

{x} if x ∈ S \ P2,

Ha
x =

{
Hx if x ∈ P

{x} if x ∈ S \ P,

Da
x =





Dx ∩ P if x ∈ P

Lax if x ∈ P2 \ P1

Ra
x if x ∈ P1 \ P2

{x} if x ∈ S \ (P1 ∪ P2).
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Group H-classes vs group Ha-classes (in P)

Let S = T4 and a = [1, 2, 3, 3].

x Is Hx a group H -class of T4? Is Hx a group H a-class of T a
4 ?

[1, 1, 3, 3] Yes Yes
[4, 2, 2, 4] Yes No
[2, 4, 2, 4] No Yes
[1, 3, 1, 3] No No
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Our goal for today...

...is to conduct a thorough algebraic and combinatorial analysis of
T a
X where |X | = n and a is a fixed transformation on X .

As we noted, we may assume that a is idempotent with
r = rank(a) < n,

a =

(
A1 · · · Ar

a1 · · · ar

)
,

so that ai ∈ Ai for all i ∈ [1, r ].

Here A = im(a) = {a1, . . . , ar} and α = ker(a) = (A1| · · · |Ar ),
with λi = |Ai |. Furthermore, for I = {i1, . . . , im} ⊆ [1, r ] we write
ΛI = λi1 · · ·λim and Λ = λ1 · · ·λr .
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P1, P2, P in T a
X

Let B ⊆ X and let β be an equivalence relation on X .

We say that
B saturates β if each β-class contains at least one element of B.
Also, we say that β separates B if each β-class contains at most
one element of B.

P1 = {f ∈ TX : rank(fa) = rank(f )}
= {f ∈ TX : α separates im(f )}

P2 = {f ∈ TX : rank(af ) = rank(f )}
= {f ∈ TX : A saturates ker(f )}

P = {f ∈ TX : rank(afa) = rank(f )} = Reg(T a
X ) ≤ T a

X
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Green’s relations in T a
X (Tsyaputa, 2004)

Ra
f =

{
Rf ∩ P1 if f ∈ P1

{f } if f ∈ TX \ P1,

Laf =

{
Lf ∩ P2 if f ∈ P2

{f } if f ∈ TX \ P2,

Ha
f =

{
Hf if f ∈ P

{f } if f ∈ TX \ P,

Da
f =





Df ∩ P if f ∈ P

Laf if f ∈ P2 \ P1

Ra
f if f ∈ P1 \ P2

{f } if f ∈ TX \ (P1 ∪ P2).
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‘High-energy semigroup theory’

I Recall that in TX , the D-classes form a chain:

Dn > Dn−1 > · · · > D2 > D1.

I Each of the D-classes Dr+1, . . . ,Dn is completely ‘shattered’
into singleton ‘shrapnels’ / Da-classes in T a

X .

I Since all constant maps trivially belong to P, D1 is preserved,
and remains a right zero band.

I For 2 ≤ m ≤ r , the class Dr separates into a single regular
chunk Dr ∩ P and a number of non-regular pieces, as seen on
the following picture...
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‘High-energy semigroup theory’

Theorem 4.2 yields an intuitive picture of the Green’s structure of T a
X . Recall that the D-classes of TX are

precisely the sets Dm = {f 2 TX : rank(f) = m} for 1  m  n = |X|. Each of the D-classes Dr+1, . . . , Dn

separates completely into singleton Da-classes in T a
X . (We will study these classes in more detail shortly.)

Next, note that D1 ✓ P (as the constant maps clearly belong to both P1 and P2), so D1 remains a (regular)
Da-class of T a

X . Now fix some 2  m  r, and recall that we are assuming that r < n. The D-class Dm is
split into a single regular Da-class, namely Dm \P , and a number of non-regular Da-classes. Some of these
non-regular Da-classes are singletons, namely those of the form Da

f = {f} where f 2 Dm belongs to neither
P1 nor P2. Some of the non-regular Da-classes consist of one non-singleton L a-class, namely those of the
form Da

f = La
f = Lf \P2, where f 2 Dm belongs to P2 \P1; the H a-classes contained in such a Da-class are

all singletons. The remaining non-regular Da-classes in Dm consist of one non-singleton Ra-class, namely
those of the form Da

f = Ra
f = Rf \ P1, where f 2 Dm belongs to P1 \ P2; the H a-classes contained in such

a Da-class are all singletons. This is all pictured (schematically) in Figure 4; see also Figures 2 and 3.

✓ P1 6✓ P1

✓ P2

6✓ P2

✓ P1 6✓ P1

✓ P2

6✓ P2

Figure 4: A schematic diagram of the way a D-class Dm of TX (with 2  m  r) breaks up into Da-classes
in T a

X . Group H - and H a-classes are shaded grey.

We now give some information about the order on the J a = Da-classes of T a
X . Recall that in TX , Df  Dg

if and only if rank(f)  rank(g). The situation is more complicated in T a
X .

Proposition 4.4. Let f, g 2 TX . Then Da
f  Da

g in T a
X if and only if one of the following holds:

(i) f = g,

(ii) rank(f)  rank(aga),

(iii) im(f) ✓ im(ag),

(iv) ker(f) ◆ ker(ga).

The maximal Da-classes are those of the form Da
f = {f} where rank(f) > r.

Proof. Note that Da
f  Da

g if and only if one of the following holds:

(a) f = g,

(b) f = uagav for some u, v 2 TX ,

(c) f = uag for some u 2 TX ,

(d) f = gav for some v 2 TX .

We clearly have the implications (b) ) (ii), (c) ) (iii), and (d) ) (iv). Next, note that (ii) implies
Df  Daga in TX , from which (b) follows. Next suppose (iii) holds. Since im(f) ✓ im(ag), we may write

f =
⇣

F1 ··· Fm
f1 ··· fm

⌘
and ag =

⇣
G1 ··· Gm Gm+1 ··· Gl

f1 ··· fm gm+1 ··· gl

⌘
. For i 2 m, let gi 2 Gi. We then have f = uag, where

10
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Order of the Da-classes

Let f , g ∈ TX . Then Da
f ≤ Da

g in T a
X if and only if one of the

following holds:

I f = g ,

I rank(f ) ≤ rank(aga),

I im(f ) ⊆ im(ag),

I ker(f ) ⊇ ker(ga).

The maximal Da-classes are those of the form Da
f = {f } where

rank(f ) > r .
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Order of the Da-classes

NBSAN, York, January 14, 2015 Igor Dolinka: Variants of Tn15



The rank of T a
X

Let M = {f ∈ TX : rank(f ) > r}.

Then T a
X = 〈M〉; furthermore, any generating set for T a

X contains
M.

Consequently, M is the unique minimal (with respect to
containment or size) generating set of T a

X , and

rank(T a
X ) = |M| =

n∑

m=r+1

S(n,m)

(
n

m

)
m!,

where S(n,m) denotes the Stirling number of the second kind.
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‘Positioning’ with respect to the regular classes

I If f ∈ P, then Da
f ≤ Da

g if and only if rank(f ) ≤ rank(aga).

I If g ∈ P, then Da
f ≤ Da

g if and only if rank(f ) ≤ rank(g).

Consequences:

I The regular Da-classes of T a
X form a chain: Da

1 < · · · < Da
r

(where Da
m = {f ∈ P : rank(f ) = m} for m ∈ [1, r ]).

I ‘Co-ordinatisation’ of the non-regular, ‘fragmented’
Da-classes: if rank(f ) = m ≤ r and rank(afa) = p < m, then
Da
f sits below Da

m and above Da
p .

I The ‘crown’: A maximal Da-class Da
f = {f } sits above Da

r if
and only if rank(afa) = r . The number of such Da-classes is
equal to (nn−r − rn−r )r !Λ.
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Reg(T a
X ) – examples

1 1 1 1 1 1 1 1 1 1

2 2 2 2
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1 1 1 1 1
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2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2
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3 3 3
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2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2
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1 1 1 1 1
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2 2 2 2
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2 2 2 2 2 2
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2 2 2 2 2 2

2 2 2 2 2 2
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3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

3 3 3

4 4

4 4

4 4

4 4

Egg-box diagrams of the regular subsemigroups P = Reg(T a
5 ) in the cases

(from left to right): a = [1, 1, 1, 1, 1], a = [1, 2, 2, 2, 2], a = [1, 1, 2, 2, 2],

a = [1, 2, 3, 3, 3], a = [1, 2, 2, 3, 3], a = [1, 2, 3, 4, 4].
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Do you see what I am seeing???

1 1 1

2 2

2 2

2 2

3

1 1 1 1 1

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

Egg-box diagrams of T3 (left) and Reg(T a
5 ) for a = [1, 2, 2, 3, 3] (right).
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No, this is not just a coincidence...!

T (X ,A) = {f ∈ TX : im(f ) ⊆ A}

T (X , α) = {f ∈ TX : ker(f ) ⊇ α}
– transformation semigroups with restricted range (Sanwong &
Sommanee, 2008), and restricted kernel (Mendes-Gonçalves &
Sullivan, 2010).

Fact:
Reg(T (X ,A)) = T (X ,A) ∩ P2

Reg(T (X , α)) = T (X , α) ∩ P1
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Structure Theorem – Part 1

ψ : f 7→ (fa, af )

is a well-defined embedding of Reg(T a
X ) into the direct product

Reg(T (X ,A))× Reg(T (X , α)).

Its image consists of all pairs
(g , h) such that

rank(g) = rank(h) and g |A = (ha)|A.

Thus Reg(T a
X ) is a subdirect product of Reg(T a

X ) and
Reg(T (X , α)).
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Structure Theorem – Part 2

The maps
φ1 : Reg(T (X ,A))→ TA : g 7→ g |A
φ2 : Reg(T (X , α))→ TA : g 7→ (ga)|A

are epimorphisms,

and the following diagram commutes:

Further, the induced map φ = ψ1φ1 = ψ2φ2 = Reg(T a
X )→ TA is

an epimorphism that is ‘group / non-group preserving’.
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Size and rank of P = Reg(T a
X )

|P| =
r∑

m=1

m!mn−rS(r ,m)
∑

I∈([1,r ]
m )

ΛI .

Let D be the top (rank-r) Da-class of P.

rank(P) = rank(D) + rank(P : D) = rn−r + 1
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The idempotent generated subsemigroup 〈Ea(T a
X )〉a

I Ea(T a
X ) = {f ∈ TX : (af )|im(f ) = id|im(f )}.

I |Ea(T a
X )| =

r∑

m=1

mn−m ∑

I∈([1,r ]
m )

ΛI .

I We obtain a pleasing generalisation of celebrated Howie’s
Theorem:

EaX = 〈Ea(T a
X )〉a = Ea(D) ∪ (P \ D).
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The idempotent generated subsemigroup 〈Ea(T a
X )〉a

I

rank(EaX ) = idrank(EaX ) = rn−r + ρr ,

where ρ2 = 2 and ρr =
(r

2

)
if r ≥ 3.

I The number of idempotent generating sets of EaX of the
minimal possible size is

[
(r − 1)n−rΛ

]ρr Λ!S(rn−r ,Λ)
∑

Γ∈Tr

1

λ
d+

Γ (1)
1 · · ·λd

+
Γ (r)

r

.

where Tr is the set of all strongly connected tournaments on r
vertices.
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The ideals of P

I The ideals of P are precisely

I am = {f ∈ P : rank(f ) ≤ m}

for m ∈ [1, r ].

I They are all idempotent generated (by Ea(Da
m)) except

P = I ar itself.

I

rank(I am) = idrank(I am) =

{
mn−rS(r ,m) if 1 < m < r

n if m = 1.
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Future work

I Conduct an analogous study for variants of:
I full linear (matrix) monoids
I symmetric inverse semigroups
I various diagram semigroups (partition, (partial) Brauer,

(partial) Jones, wire, Kaufmann,. . . )
I . . .

I Consider an ‘Ehresmann-style’ defined small (semi)category
(aka partial monoid / semigroup) S . One can turn each
hom-set Sij (i - domain, j - codomain) into a semigroup by
fixing a ‘sandwich’ element a ∈ Sji and defining

x ? y = x ◦ a ◦ y .

These sandwich semigroups generalise the variants.
I applicable to functions, matrices, diagrams,. . .
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THANK YOU!

Questions and comments to:

dockie@dmi.uns.ac.rs

Further information may be found at:

http://people.dmi.uns.ac.rs/∼dockie
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