Variants of semigroups - the case study of finite full transformation monoids

Igor Dolinka

dockie@dmi.uns.ac.rs

Department of Mathematics and Informatics, University of Novi Sad

The 19th NBSAN Meeting York, UK, January 14, 2015

Prime suspects

Mr. Shady Corleone

Violet Moon (special undercover agent)

Now seriously... co-authors

I.D.

James East (U. of Western Sydney)

Let (S, \cdot) be a semigroup and $a \in S$.

Let (S, \cdot) be a semigroup and $a \in S$. Given these, one can easily define an alternative product \star_a on S, namely

 $x \star_a y = xay$.

Let (S, \cdot) be a semigroup and $a \in S$. Given these, one can easily define an alternative product \star_a on S, namely

 $x \star_a y = xay$.

This is the variant $S^a = (S, \star_a)$ of S with respect to a.

Let (S, \cdot) be a semigroup and $a \in S$. Given these, one can easily define an alternative product \star_a on S, namely

$$x \star_a y = xay.$$

This is the variant $S^a = (S, \star_a)$ of S with respect to a.

First mention of variants (as far as we know): Lyapin's book from 1960 (in Russian).

Let (S, \cdot) be a semigroup and $a \in S$. Given these, one can easily define an alternative product \star_a on S, namely

$$x \star_a y = xay.$$

This is the variant $S^a = (S, \star_a)$ of S with respect to a.

First mention of variants (as far as we know): Lyapin's book from 1960 (in Russian).

Magill (1967): Semigroups of functions $X \rightarrow Y$ under an operation defined by

$$f \cdot g = f \circ \theta \circ g,$$

where θ is a fixed function $Y \to X$.

Let (S, \cdot) be a semigroup and $a \in S$. Given these, one can easily define an alternative product \star_a on S, namely

$$x \star_a y = xay.$$

This is the variant $S^a = (S, \star_a)$ of S with respect to a.

First mention of variants (as far as we know): Lyapin's book from 1960 (in Russian).

Magill (1967): Semigroups of functions $X \rightarrow Y$ under an operation defined by

$$f \cdot g = f \circ \theta \circ g,$$

where θ is a fixed function $Y \to X$. For Y = X, this is exactly a variant of \mathcal{T}_X .

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

Khan & Lawson (2001): Variants of regular semigroups (natural relation to Rees matrix semigroups).

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

Khan & Lawson (2001): Variants of regular semigroups (natural relation to Rees matrix semigroups). In fact, they obtain a natural generalisation of the notion of group of units for non-monoidal regular semigroups.

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

Khan & Lawson (2001): Variants of regular semigroups (natural relation to Rees matrix semigroups). In fact, they obtain a natural generalisation of the notion of group of units for non-monoidal regular semigroups.

G. Y. Tsyaputa (2004/5): variants of finite full transformation semigroups T_n

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

Khan & Lawson (2001): Variants of regular semigroups (natural relation to Rees matrix semigroups). In fact, they obtain a natural generalisation of the notion of group of units for non-monoidal regular semigroups.

G. Y. Tsyaputa (2004/5): variants of finite full transformation semigroups T_n

classification of non-isomorphic variants

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

Khan & Lawson (2001): Variants of regular semigroups (natural relation to Rees matrix semigroups). In fact, they obtain a natural generalisation of the notion of group of units for non-monoidal regular semigroups.

G. Y. Tsyaputa (2004/5): variants of finite full transformation semigroups T_n

- classification of non-isomorphic variants
- idempotents, Green's relations

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

Khan & Lawson (2001): Variants of regular semigroups (natural relation to Rees matrix semigroups). In fact, they obtain a natural generalisation of the notion of group of units for non-monoidal regular semigroups.

G. Y. Tsyaputa (2004/5): variants of finite full transformation semigroups T_n

- classification of non-isomorphic variants
- idempotents, Green's relations
- analogous questions for \mathcal{PT}_n

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

Khan & Lawson (2001): Variants of regular semigroups (natural relation to Rees matrix semigroups). In fact, they obtain a natural generalisation of the notion of group of units for non-monoidal regular semigroups.

G. Y. Tsyaputa (2004/5): variants of finite full transformation semigroups T_n

- classification of non-isomorphic variants
- idempotents, Green's relations
- analogous questions for \mathcal{PT}_n

A more accessible account of her results may be found in the monograph of Ganyushkin & Mazorchuk Classical Finite Transformation Semigroups (Springer, 2009).

For a group G and $a \in G$, we always have $G^a \cong G$ via $x \mapsto xa$.

For a group G and $a \in G$, we always have $G^a \cong G$ via $x \mapsto xa$. The identity element in G^a is a^{-1} .

For a group G and $a \in G$, we always have $G^a \cong G$ via $x \mapsto xa$. The identity element in G^a is a^{-1} .

On the other hand, if S the bicyclic monoid, then $a, b \in S$, $a \neq b$ implies $S^a \not\cong S^b$.

For a group G and $a \in G$, we always have $G^a \cong G$ via $x \mapsto xa$. The identity element in G^a is a^{-1} .

On the other hand, if S the bicyclic monoid, then $a, b \in S$, $a \neq b$ implies $S^a \not\cong S^b$.

If S is a monoid, $a, u, v \in S$, and u, v are units, then $S^{uav} \cong S^a$ via $x \mapsto vxu$.

For a group G and $a \in G$, we always have $G^a \cong G$ via $x \mapsto xa$. The identity element in G^a is a^{-1} .

On the other hand, if S the bicyclic monoid, then $a, b \in S$, $a \neq b$ implies $S^a \not\cong S^b$.

If S is a monoid, $a, u, v \in S$, and u, v are units, then $S^{uav} \cong S^a$ via $x \mapsto vxu$.

Thus, for any $a \in \mathcal{T}_X$ there exists $e \in E(\mathcal{T}_X)$ such that $\mathcal{T}_X^a \cong \mathcal{T}_X^e$.

For a group G and $a \in G$, we always have $G^a \cong G$ via $x \mapsto xa$. The identity element in G^a is a^{-1} .

On the other hand, if S the bicyclic monoid, then $a, b \in S$, $a \neq b$ implies $S^a \not\cong S^b$.

If S is a monoid, $a, u, v \in S$, and u, v are units, then $S^{uav} \cong S^a$ via $x \mapsto vxu$.

Thus, for any $a \in \mathcal{T}_X$ there exists $e \in E(\mathcal{T}_X)$ such that $\mathcal{T}_X^a \cong \mathcal{T}_X^e$.

A WORD OF CAUTION: If S is a regular semigroup, S^a is not regular in general!

For a group G and $a \in G$, we always have $G^a \cong G$ via $x \mapsto xa$. The identity element in G^a is a^{-1} .

On the other hand, if S the bicyclic monoid, then $a, b \in S$, $a \neq b$ implies $S^a \not\cong S^b$.

If S is a monoid, $a, u, v \in S$, and u, v are units, then $S^{uav} \cong S^a$ via $x \mapsto vxu$.

Thus, for any $a \in \mathcal{T}_X$ there exists $e \in E(\mathcal{T}_X)$ such that $\mathcal{T}_X^a \cong \mathcal{T}_X^e$.

A WORD OF CAUTION: If S is a regular semigroup, S^a is not regular in general! However, for regular S and arbitrary $a \in S$, $\operatorname{Reg}(S^a)$ is always a subsemigroup of S^a (Khan & Lawson).

A word of caution, you said...?

A word of caution, you said...?

Egg-box picture of \mathcal{T}_4^a for a = [1, 1, 3, 3]

A word of caution, you said...?

Egg-box picture of \mathcal{T}_4^a for a = [1, 1, 1, 4]

$$P_1=\{x\in S:\ \textit{xa}\ \mathscr{R}\ x\},$$

$$P_1 = \{ x \in S : xa \mathscr{R} x \}, \qquad P_2 = \{ x \in S : ax \mathscr{L} x \},$$

$$P_1 = \{x \in S : xa \mathscr{R} x\}, \qquad P_2 = \{x \in S : ax \mathscr{L} x\},$$

 $P = P_1 \cap P_2$

$$P_1 = \{x \in S : xa \mathscr{R} x\}, \qquad P_2 = \{x \in S : ax \mathscr{L} x\},$$

 $P = P_1 \cap P_2$

Easy facts:

▶ $y \in P_1 \iff L_y \subseteq P_1$,

$$P_1 = \{x \in S : xa \mathscr{R} x\}, \qquad P_2 = \{x \in S : ax \mathscr{L} x\},$$

 $P = P_1 \cap P_2$

Easy facts:

- $y \in P_1 \Leftrightarrow L_y \subseteq P_1$,
- ► $y \in P_2 \iff R_y \subseteq P_2$,

$$P_1 = \{x \in S : xa \mathscr{R} x\}, \qquad P_2 = \{x \in S : ax \mathscr{L} x\},$$

 $P = P_1 \cap P_2$

Easy facts:

- ► $y \in P_1 \iff L_y \subseteq P_1$,
- ► $y \in P_2 \iff R_y \subseteq P_2$,
- ▶ $\operatorname{Reg}(S^a) \subseteq P$

Green's relations: $\mathscr{R}^{a}, \mathscr{L}^{a}, \mathscr{H}^{a}, \mathscr{D}^{a}$

$$R_x^a = \begin{cases} R_x \cap P_1 & \text{if } x \in P_1 \\ \{x\} & \text{if } x \in S \setminus P_1, \end{cases}$$

Green's relations: $\mathscr{R}^{a}, \mathscr{L}^{a}, \mathscr{H}^{a}, \mathscr{D}^{a}$

$$R_x^a = \begin{cases} R_x \cap P_1 & \text{if } x \in P_1 \\ \{x\} & \text{if } x \in S \setminus P_1, \end{cases}$$
$$L_x^a = \begin{cases} L_x \cap P_2 & \text{if } x \in P_2 \\ \{x\} & \text{if } x \in S \setminus P_2, \end{cases}$$

Green's relations: $\mathscr{R}^{a}, \mathscr{L}^{a}, \mathscr{H}^{a}, \mathscr{D}^{a}$

$$R_x^a = \begin{cases} R_x \cap P_1 & \text{if } x \in P_1 \\ \{x\} & \text{if } x \in S \setminus P_1, \end{cases}$$
$$L_x^a = \begin{cases} L_x \cap P_2 & \text{if } x \in P_2 \\ \{x\} & \text{if } x \in S \setminus P_2, \end{cases}$$
$$H_x^a = \begin{cases} H_x & \text{if } x \in P \\ \{x\} & \text{if } x \in S \setminus P, \end{cases}$$
Green's relations: $\mathscr{R}^{a}, \mathscr{L}^{a}, \mathscr{H}^{a}, \mathscr{D}^{a}$

$$R_x^a = \begin{cases} R_x \cap P_1 & \text{if } x \in P_1 \\ \{x\} & \text{if } x \in S \setminus P_1, \end{cases}$$
$$L_x^a = \begin{cases} L_x \cap P_2 & \text{if } x \in P_2 \\ \{x\} & \text{if } x \in S \setminus P_2, \end{cases}$$
$$H_x^a = \begin{cases} H_x & \text{if } x \in P \\ \{x\} & \text{if } x \in S \setminus P, \end{cases}$$
$$D_x^a = \begin{cases} D_x \cap P & \text{if } x \in P \\ L_x^a & \text{if } x \in P \setminus P, \end{cases}$$
$$R_x^a & \text{if } x \in P \setminus P_1 \\ R_x^a & \text{if } x \in P \setminus P_2 \\ \{x\} & \text{if } x \in S \setminus P, \end{cases}$$

Group \mathcal{H} -classes vs group \mathcal{H}^a -classes (in P)

Let $S = T_4$ and a = [1, 2, 3, 3].

Group \mathcal{H} -classes vs group \mathcal{H}^a -classes (in P)

Let $S = T_4$ and a = [1, 2, 3, 3].

X	Is H_x a group \mathscr{H} -class of \mathcal{T}_4 ?	Is H_{x} a group \mathscr{H}^{a} -class of \mathcal{T}_{4}^{a} ?
[1, 1, 3, 3]	Yes	Yes
[4, 2, 2, 4]	Yes	No
[2, 4, 2, 4]	No	Yes
[1, 3, 1, 3]	No	No

...is to conduct a thorough algebraic and combinatorial analysis of \mathcal{T}_X^a where |X| = n and *a* is a fixed transformation on *X*.

...is to conduct a thorough algebraic and combinatorial analysis of \mathcal{T}_X^a where |X| = n and a is a fixed transformation on X.

As we noted, we may assume that a is idempotent with $r = \operatorname{rank}(a) < n$,

$$a = \begin{pmatrix} A_1 & \cdots & A_r \\ a_1 & \cdots & a_r \end{pmatrix},$$

so that $a_i \in A_i$ for all $i \in [1, r]$.

...is to conduct a thorough algebraic and combinatorial analysis of \mathcal{T}_X^a where |X| = n and *a* is a fixed transformation on *X*.

As we noted, we may assume that a is idempotent with $r = \operatorname{rank}(a) < n$,

$$a = \begin{pmatrix} A_1 & \cdots & A_r \\ a_1 & \cdots & a_r \end{pmatrix},$$

so that $a_i \in A_i$ for all $i \in [1, r]$.

Here $A = im(a) = \{a_1, \ldots, a_r\}$ and $\alpha = ker(a) = (A_1 | \cdots | A_r)$, with $\lambda_i = |A_i|$.

...is to conduct a thorough algebraic and combinatorial analysis of \mathcal{T}_X^a where |X| = n and a is a fixed transformation on X.

As we noted, we may assume that a is idempotent with $r = \operatorname{rank}(a) < n$,

$$a = \begin{pmatrix} A_1 & \cdots & A_r \\ a_1 & \cdots & a_r \end{pmatrix},$$

so that $a_i \in A_i$ for all $i \in [1, r]$.

Here
$$A = im(a) = \{a_1, \ldots, a_r\}$$
 and $\alpha = ker(a) = (A_1 | \cdots | A_r)$,
with $\lambda_i = |A_i|$. Furthermore, for $I = \{i_1, \ldots, i_m\} \subseteq [1, r]$ we write
 $\Lambda_I = \lambda_{i_1} \cdots \lambda_{i_m}$ and $\Lambda = \lambda_1 \cdots \lambda_r$.

Let $B \subseteq X$ and let β be an equivalence relation on X.

Let $B \subseteq X$ and let β be an equivalence relation on X. We say that B saturates β if each β -class contains at least one element of B.

Let $B \subseteq X$ and let β be an equivalence relation on X. We say that B saturates β if each β -class contains at least one element of B. Also, we say that β separates B if each β -class contains at most one element of B.

Let $B \subseteq X$ and let β be an equivalence relation on X. We say that B saturates β if each β -class contains at least one element of B. Also, we say that β separates B if each β -class contains at most one element of B.

$$P_1 = \{f \in \mathcal{T}_X : \operatorname{rank}(fa) = \operatorname{rank}(f)\} \\ = \{f \in \mathcal{T}_X : \alpha \text{ separates } \operatorname{im}(f)\}$$

Let $B \subseteq X$ and let β be an equivalence relation on X. We say that B saturates β if each β -class contains at least one element of B. Also, we say that β separates B if each β -class contains at most one element of B.

$$P_1 = \{ f \in \mathcal{T}_X : \operatorname{rank}(fa) = \operatorname{rank}(f) \} \\ = \{ f \in \mathcal{T}_X : \alpha \text{ separates } \operatorname{im}(f) \}$$

$$P_2 = \{f \in \mathcal{T}_X : \operatorname{rank}(af) = \operatorname{rank}(f)\} \\ = \{f \in \mathcal{T}_X : A \text{ saturates } \operatorname{ker}(f)\}$$

Let $B \subseteq X$ and let β be an equivalence relation on X. We say that B saturates β if each β -class contains at least one element of B. Also, we say that β separates B if each β -class contains at most one element of B.

1 (())

$$P_{1} = \{f \in \mathcal{T}_{X} : \operatorname{rank}(fa) = \operatorname{rank}(f)\}$$

= $\{f \in \mathcal{T}_{X} : \alpha \text{ separates } \operatorname{im}(f)\}$
$$P_{2} = \{f \in \mathcal{T}_{X} : \operatorname{rank}(af) = \operatorname{rank}(f)\}$$

= $\{f \in \mathcal{T}_{X} : A \text{ saturates } \ker(f)\}$
$$P = \{f \in \mathcal{T}_{X} : \operatorname{rank}(afa) = \operatorname{rank}(f)\} = \operatorname{Reg}(\mathcal{T}_{X}^{a}) \leq \mathcal{T}_{X}^{a}$$

$$R_f^a = \begin{cases} R_f \cap P_1 & \text{if } f \in P_1 \\ \{f\} & \text{if } f \in \mathcal{T}_X \setminus P_1, \end{cases}$$

$$R_f^a = \begin{cases} R_f \cap P_1 & \text{if } f \in P_1 \\ \{f\} & \text{if } f \in \mathcal{T}_X \setminus P_1, \end{cases}$$
$$L_f^a = \begin{cases} L_f \cap P_2 & \text{if } f \in P_2 \\ \{f\} & \text{if } f \in \mathcal{T}_X \setminus P_2, \end{cases}$$

$$R_f^a = \begin{cases} R_f \cap P_1 & \text{if } f \in P_1 \\ \{f\} & \text{if } f \in \mathcal{T}_X \setminus P_1, \end{cases}$$
$$L_f^a = \begin{cases} L_f \cap P_2 & \text{if } f \in P_2 \\ \{f\} & \text{if } f \in \mathcal{T}_X \setminus P_2, \end{cases}$$
$$H_f^a = \begin{cases} H_f & \text{if } f \in P \\ \{f\} & \text{if } f \in \mathcal{T}_X \setminus P, \end{cases}$$

$$\begin{split} R_f^a &= \begin{cases} R_f \cap P_1 & \text{if } f \in P_1 \\ \{f\} & \text{if } f \in \mathcal{T}_X \setminus P_1, \end{cases} \\ L_f^a &= \begin{cases} L_f \cap P_2 & \text{if } f \in P_2 \\ \{f\} & \text{if } f \in \mathcal{T}_X \setminus P_2, \end{cases} \\ H_f^a &= \begin{cases} H_f & \text{if } f \in \mathcal{P} \\ \{f\} & \text{if } f \in \mathcal{T}_X \setminus P, \end{cases} \\ D_f^a &= \begin{cases} D_f \cap P & \text{if } f \in P \\ L_f^a & \text{if } f \in P_2 \setminus P_1 \\ R_f^a & \text{if } f \in P_1 \setminus P_2 \\ \{f\} & \text{if } f \in \mathcal{T}_X \setminus (P_1 \cup P_2). \end{cases} \end{split}$$

```
'High-energy semigroup theory'
```

▶ Recall that in \mathcal{T}_X , the \mathscr{D} -classes form a chain:

 $D_n > D_{n-1} > \cdots > D_2 > D_1.$

• Recall that in \mathcal{T}_X , the \mathscr{D} -classes form a chain:

$$D_n > D_{n-1} > \cdots > D_2 > D_1.$$

► Each of the D-classes D_{r+1},..., D_n is completely 'shattered' into singleton 'shrapnels' / D^a-classes in T^a_X.

• Recall that in \mathcal{T}_X , the \mathscr{D} -classes form a chain:

$$D_n > D_{n-1} > \cdots > D_2 > D_1.$$

- ► Each of the D-classes D_{r+1},..., D_n is completely 'shattered' into singleton 'shrapnels' / D^a-classes in T^a_X.
- Since all constant maps trivially belong to P, D₁ is preserved, and remains a right zero band.

• Recall that in \mathcal{T}_X , the \mathscr{D} -classes form a chain:

$$D_n > D_{n-1} > \cdots > D_2 > D_1.$$

- ► Each of the D-classes D_{r+1},..., D_n is completely 'shattered' into singleton 'shrapnels' / D^a-classes in T^a_X.
- Since all constant maps trivially belong to P, D₁ is preserved, and remains a right zero band.
- For 2 ≤ m ≤ r, the class D_r separates into a single regular chunk D_r ∩ P and a number of non-regular pieces, as seen on the following picture...

- ► *f* = *g*,
- $rank(f) \leq rank(aga)$,

- ► *f* = *g*,
- $rank(f) \leq rank(aga)$,
- $\operatorname{im}(f) \subseteq \operatorname{im}(ag)$,

- ► *f* = *g*,
- $rank(f) \leq rank(aga)$,
- $\operatorname{im}(f) \subseteq \operatorname{im}(ag)$,
- $\ker(f) \supseteq \ker(ga)$.

Let $f, g \in \mathcal{T}_X$. Then $D_f^a \leq D_g^a$ in \mathcal{T}_X^a if and only if one of the following holds:

- ► *f* = *g*,
- $rank(f) \leq rank(aga)$,
- $\operatorname{im}(f) \subseteq \operatorname{im}(ag)$,
- $\ker(f) \supseteq \ker(ga)$.

The maximal \mathcal{D}^a -classes are those of the form $D_f^a = \{f\}$ where rank(f) > r.

The rank of \mathcal{T}_X^a

Let
$$M = \{f \in \mathcal{T}_X : \operatorname{rank}(f) > r\}.$$

The rank of \mathcal{T}_X^a

Let
$$M = \{f \in \mathcal{T}_X : \operatorname{rank}(f) > r\}.$$

Then $\mathcal{T}_X^a = \langle M \rangle$; furthermore, any generating set for \mathcal{T}_X^a contains M.

The rank of \mathcal{T}_X^a

Let
$$M = \{f \in \mathcal{T}_X : \operatorname{rank}(f) > r\}.$$

Then $\mathcal{T}_X^a = \langle M \rangle$; furthermore, any generating set for \mathcal{T}_X^a contains M.

Consequently, M is the unique minimal (with respect to containment or size) generating set of \mathcal{T}_{χ}^{a} , and

$$\operatorname{rank}(\mathcal{T}_X^a) = |M| = \sum_{m=r+1}^n S(n,m) \binom{n}{m} m!,$$

where S(n, m) denotes the Stirling number of the second kind.

'Positioning' with respect to the regular classes

'Positioning' with respect to the regular classes

▶ If $f \in P$, then $D_f^a \leq D_g^a$ if and only if rank $(f) \leq \operatorname{rank}(aga)$.

'Positioning' with respect to the regular classes

- ▶ If $f \in P$, then $D_f^a \leq D_g^a$ if and only if rank $(f) \leq \operatorname{rank}(aga)$.
- If $g \in P$, then $D_f^a \leq D_g^a$ if and only if $rank(f) \leq rank(g)$.
- ▶ If $f \in P$, then $D_f^a \leq D_g^a$ if and only if rank $(f) \leq \operatorname{rank}(aga)$.
- If $g \in P$, then $D_f^a \leq D_g^a$ if and only if $rank(f) \leq rank(g)$.

- ▶ If $f \in P$, then $D_f^a \leq D_g^a$ if and only if rank $(f) \leq \operatorname{rank}(aga)$.
- If $g \in P$, then $D_f^a \leq D_g^a$ if and only if $rank(f) \leq rank(g)$.

Consequences:

▶ The regular \mathscr{D}^a -classes of \mathcal{T}^a_X form a chain: $D^a_1 < \cdots < D^a_r$ (where $D^a_m = \{f \in P : \operatorname{rank}(f) = m\}$ for $m \in [1, r]$).

- ▶ If $f \in P$, then $D_f^a \leq D_g^a$ if and only if rank $(f) \leq \operatorname{rank}(aga)$.
- If $g \in P$, then $D_f^a \leq D_g^a$ if and only if $rank(f) \leq rank(g)$.

- ▶ The regular \mathscr{D}^a -classes of \mathcal{T}^a_X form a chain: $D^a_1 < \cdots < D^a_r$ (where $D^a_m = \{f \in P : \operatorname{rank}(f) = m\}$ for $m \in [1, r]$).
- 'Co-ordinatisation' of the non-regular, 'fragmented' \mathscr{D}^{a} -classes: if rank $(f) = m \leq r$ and rank(afa) = p < m, then D_{f}^{a} sits below D_{m}^{a} and above D_{p}^{a} .

- ▶ If $f \in P$, then $D_f^a \leq D_g^a$ if and only if rank $(f) \leq \operatorname{rank}(aga)$.
- If $g \in P$, then $D_f^a \leq D_g^a$ if and only if $rank(f) \leq rank(g)$.

- ▶ The regular \mathscr{D}^a -classes of \mathcal{T}^a_X form a chain: $D^a_1 < \cdots < D^a_r$ (where $D^a_m = \{f \in P : \operatorname{rank}(f) = m\}$ for $m \in [1, r]$).
- 'Co-ordinatisation' of the non-regular, 'fragmented' \mathscr{D}^a -classes: if rank $(f) = m \le r$ and rank(afa) = p < m, then D_f^a sits below D_m^a and above D_p^a .
- The 'crown': A maximal D^a-class D^a_f = {f} sits above D^a_r if and only if rank(afa) = r.

- ▶ If $f \in P$, then $D_f^a \leq D_g^a$ if and only if rank $(f) \leq \operatorname{rank}(aga)$.
- If $g \in P$, then $D_f^a \leq D_g^a$ if and only if $rank(f) \leq rank(g)$.

- ▶ The regular \mathscr{D}^a -classes of \mathcal{T}^a_X form a chain: $D^a_1 < \cdots < D^a_r$ (where $D^a_m = \{f \in P : \operatorname{rank}(f) = m\}$ for $m \in [1, r]$).
- 'Co-ordinatisation' of the non-regular, 'fragmented' \mathscr{D}^a -classes: if rank $(f) = m \le r$ and rank(afa) = p < m, then D_f^a sits below D_m^a and above D_p^a .
- The 'crown': A maximal D^a-class D^a_f = {f} sits above D^a_r if and only if rank(afa) = r. The number of such D^a-classes is equal to (n^{n-r} r^{n-r})r!Λ.

$\operatorname{Reg}(\mathcal{T}_X^a)$ – examples

Egg-box diagrams of the regular subsemigroups $P = \text{Reg}(\mathcal{T}_5^a)$ in the cases (from left to right): a = [1, 1, 1, 1, 1], a = [1, 2, 2, 2, 2], a = [1, 1, 2, 2, 2], a = [1, 2, 3, 3, 3], a = [1, 2, 2, 3, 3], a = [1, 2, 3, 4, 4].

Do you see what I am seeing???

Egg-box diagrams of \mathcal{T}_3 (left) and $\operatorname{Reg}(\mathcal{T}_5^a)$ for a = [1, 2, 2, 3, 3] (right).

$$\mathcal{T}(X,A) = \{f \in \mathcal{T}_X : \operatorname{im}(f) \subseteq A\}$$

$$\mathcal{T}(X,A) = \{f \in \mathcal{T}_X : \operatorname{im}(f) \subseteq A\}$$

$$\mathcal{T}(X, \alpha) = \{ f \in \mathcal{T}_X : \operatorname{ker}(f) \supseteq \alpha \}$$

$$\mathcal{T}(X,A) = \{f \in \mathcal{T}_X : \operatorname{im}(f) \subseteq A\}$$

$$\mathcal{T}(X, \alpha) = \{ f \in \mathcal{T}_X : \ker(f) \supseteq \alpha \}$$

- transformation semigroups with restricted range (Sanwong & Sommanee, 2008), and restricted kernel (Mendes-Gonçalves & Sullivan, 2010).

$$\mathcal{T}(X,A) = \{ f \in \mathcal{T}_X : \operatorname{im}(f) \subseteq A \}$$

$$\mathcal{T}(X, \alpha) = \{ f \in \mathcal{T}_X : \ker(f) \supseteq \alpha \}$$

- transformation semigroups with restricted range (Sanwong & Sommanee, 2008), and restricted kernel (Mendes-Gonçalves & Sullivan, 2010).

Fact:

$$\operatorname{Reg}(\mathcal{T}(X,A)) = \mathcal{T}(X,A) \cap P_2$$
$$\operatorname{Reg}(\mathcal{T}(X,\alpha)) = \mathcal{T}(X,\alpha) \cap P_1$$

$$\psi: \mathbf{f} \mapsto (\mathbf{f}\mathbf{a}, \mathbf{a}\mathbf{f})$$

is a well-defined embedding of $\operatorname{Reg}(\mathcal{T}_X^a)$ into the direct product $\operatorname{Reg}(\mathcal{T}(X, A)) \times \operatorname{Reg}(\mathcal{T}(X, \alpha)).$

$$\psi: f \mapsto (fa, af)$$

is a well-defined embedding of $\operatorname{Reg}(\mathcal{T}_X^a)$ into the direct product $\operatorname{Reg}(\mathcal{T}(X,A)) \times \operatorname{Reg}(\mathcal{T}(X,\alpha))$. Its image consists of all pairs (g,h) such that

$$\operatorname{rank}(g) = \operatorname{rank}(h)$$
 and $g|_A = (ha)|_A$.

$$\psi: f \mapsto (fa, af)$$

is a well-defined embedding of $\operatorname{Reg}(\mathcal{T}_X^a)$ into the direct product $\operatorname{Reg}(\mathcal{T}(X,A)) \times \operatorname{Reg}(\mathcal{T}(X,\alpha))$. Its image consists of all pairs (g, h) such that

$$\operatorname{rank}(g) = \operatorname{rank}(h)$$
 and $g|_A = (ha)|_A$.

Thus $\operatorname{Reg}(\mathcal{T}_X^a)$ is a subdirect product of $\operatorname{Reg}(\mathcal{T}_X^a)$ and $\operatorname{Reg}(\mathcal{T}(X, \alpha))$.

The maps

$$\phi_1 : \operatorname{Reg}(\mathcal{T}(X, A)) \to \mathcal{T}_A : g \mapsto g|_A$$

 $\phi_2 : \operatorname{Reg}(\mathcal{T}(X, \alpha)) \to \mathcal{T}_A : g \mapsto (ga)|_A$

are epimorphisms,

The maps

$$\phi_1 : \operatorname{Reg}(\mathcal{T}(X, A)) \to \mathcal{T}_A : g \mapsto g|_A$$
$$\phi_2 : \operatorname{Reg}(\mathcal{T}(X, \alpha)) \to \mathcal{T}_A : g \mapsto (ga)|_A$$

are epimorphisms, and the following diagram commutes:

The maps

$$\phi_1 : \operatorname{Reg}(\mathcal{T}(X, A)) \to \mathcal{T}_A : g \mapsto g|_A$$
$$\phi_2 : \operatorname{Reg}(\mathcal{T}(X, \alpha)) \to \mathcal{T}_A : g \mapsto (ga)|_A$$

are epimorphisms, and the following diagram commutes:

Further, the induced map $\phi = \psi_1 \phi_1 = \psi_2 \phi_2 = \operatorname{Reg}(\mathcal{T}_X^a) \to \mathcal{T}_A$ is an epimorphism that is 'group / non-group preserving'.

$$|P| = \sum_{m=1}^{r} m! m^{n-r} S(r,m) \sum_{l \in \binom{[1,r]}{m}} \Lambda_{l}.$$

$$|P| = \sum_{m=1}^{r} m! m^{n-r} S(r,m) \sum_{I \in \binom{[1,r]}{m}} \Lambda_{I}.$$

Let D be the top (rank-r) \mathcal{D}^a -class of P.

$$|P| = \sum_{m=1}^{r} m! m^{n-r} S(r,m) \sum_{I \in \binom{[1,r]}{m}} \Lambda_{I}.$$

Let D be the top (rank-r) \mathcal{D}^a -class of P.

$$\operatorname{rank}(P) = \operatorname{rank}(D) + \operatorname{rank}(P:D) = r^{n-r} + 1$$

$$\bullet \ E_a(\mathcal{T}_X^a) = \{ f \in \mathcal{T}_X : \ (af)|_{\mathsf{im}(f)} = \mathrm{id}|_{\mathsf{im}(f)} \}.$$

$$E_a(\mathcal{T}_X^a) = \{ f \in \mathcal{T}_X : (af)|_{\mathsf{im}(f)} = \mathrm{id}|_{\mathsf{im}(f)} \}.$$

$$|E_a(\mathcal{T}_X^a)| = \sum_{m=1}^r m^{n-m} \sum_{I \in \binom{[1,r]}{m}} \Lambda_I.$$

$$E_{a}(\mathcal{T}_{X}^{a}) = \{ f \in \mathcal{T}_{X} : (af)|_{\mathsf{im}(f)} = \mathrm{id}|_{\mathsf{im}(f)} \}.$$

$$|E_{a}(\mathcal{T}_{X}^{a})| = \sum_{m=1}^{r} m^{n-m} \sum_{I \in \binom{[1,r]}{m}} \Lambda_{I}.$$

We obtain a pleasing generalisation of celebrated Howie's Theorem:

$$\mathcal{E}_X^a = \langle E_a(\mathcal{T}_X^a) \rangle_a = E_a(D) \cup (P \setminus D).$$

$$\operatorname{rank}(\mathcal{E}_X^a) = \operatorname{idrank}(\mathcal{E}_X^a) = r^{n-r} + \rho_r,$$

where $\rho_2 = 2$ and $\rho_r = \binom{r}{2}$ if $r \ge 3$.

►

$$\operatorname{rank}(\mathcal{E}_X^a) = \operatorname{idrank}(\mathcal{E}_X^a) = r^{n-r} + \rho_r,$$

where $\rho_2 = 2$ and $\rho_r = \binom{r}{2}$ if $r \ge 3$.

► The number of idempotent generating sets of *E^a_X* of the minimal possible size is

$$\left[(r-1)^{n-r}\Lambda\right]^{\rho_r}\Lambda!S(r^{n-r},\Lambda)\sum_{\Gamma\in\mathbb{T}_r}\frac{1}{\lambda_1^{d_{\Gamma}^+(1)}\cdots\lambda_r^{d_{\Gamma}^+(r)}}$$

where \mathbb{T}_r is the set of all strongly connected tournaments on r vertices.

The ideals of P

► The ideals of *P* are precisely

$$I_m^a = \{f \in P : \operatorname{rank}(f) \le m\}$$

for $m \in [1, r]$.

The ideals of P

The ideals of P are precisely

$$I_m^a = \{f \in P : \operatorname{rank}(f) \le m\}$$

for $m \in [1, r]$.

► They are all idempotent generated (by E_a(D^a_m)) except P = I^a_r itself.

The ideals of P

The ideals of P are precisely

$$I_m^a = \{f \in P : \operatorname{rank}(f) \le m\}$$

for $m \in [1, r]$.

► They are all idempotent generated (by E_a(D^a_m)) except P = I^a_r itself.

$$\operatorname{rank}(I_m^a) = \operatorname{idrank}(I_m^a) = \begin{cases} m^{n-r}S(r,m) & \text{if } 1 < m < r \\ n & \text{if } m = 1. \end{cases}$$

Conduct an analogous study for variants of:

- Conduct an analogous study for variants of:
 - full linear (matrix) monoids

- Conduct an analogous study for variants of:
 - full linear (matrix) monoids
 - symmetric inverse semigroups

- Conduct an analogous study for variants of:
 - full linear (matrix) monoids
 - symmetric inverse semigroups
 - various diagram semigroups (partition, (partial) Brauer, (partial) Jones, wire, Kaufmann,...)

▶ ...
Future work

- Conduct an analogous study for variants of:
 - full linear (matrix) monoids
 - symmetric inverse semigroups
 - various diagram semigroups (partition, (partial) Brauer, (partial) Jones, wire, Kaufmann,...)
 - ▶ ...
- Consider an 'Ehresmann-style' defined small (semi)category (aka partial monoid / semigroup) S.

Future work

- Conduct an analogous study for variants of:
 - full linear (matrix) monoids
 - symmetric inverse semigroups
 - various diagram semigroups (partition, (partial) Brauer, (partial) Jones, wire, Kaufmann,...)
 - ▶
- ► Consider an 'Ehresmann-style' defined small (semi)category (aka partial monoid / semigroup) *S*. One can turn each hom-set S_{ij} (*i* - domain, *j* - codomain) into a semigroup by fixing a 'sandwich' element $a \in S_{ji}$ and defining

$$x \star y = x \circ a \circ y.$$

Future work

- Conduct an analogous study for variants of:
 - full linear (matrix) monoids
 - symmetric inverse semigroups
 - various diagram semigroups (partition, (partial) Brauer, (partial) Jones, wire, Kaufmann,...)
 - ▶
- ► Consider an 'Ehresmann-style' defined small (semi)category (aka partial monoid / semigroup) *S*. One can turn each hom-set S_{ij} (*i* - domain, *j* - codomain) into a semigroup by fixing a 'sandwich' element $a \in S_{ji}$ and defining

$$x \star y = x \circ a \circ y.$$

These sandwich semigroups generalise the variants.

applicable to functions, matrices, diagrams,...

THANK YOU!

Questions and comments to: dockie@dmi.uns.ac.rs

Further information may be found at: http://people.dmi.uns.ac.rs/~dockie