Variants of semigroups - the case study of finite full transformation monoids

Igor Dolinka
dockie@dmi.uns.ac.rs

Department of Mathematics and Informatics, University of Novi Sad

The 19th NBSAN Meeting
York, UK, January 14, 2015

Prime suspects

Mr. Shady Corleone

Violet Moon
(special undercover agent)

Now seriously... co-authors

I.D.

James East
(U. of Western Sydney)

Variants of semigroups

Let (S, \cdot) be a semigroup and $a \in S$.

Variants of semigroups

Let (S, \cdot) be a semigroup and $a \in S$. Given these, one can easily define an alternative product \star_{a} on S, namely

$$
x \star_{a} y=x a y
$$

Variants of semigroups

Let (S, \cdot) be a semigroup and $a \in S$. Given these, one can easily define an alternative product \star_{a} on S, namely

$$
x \star_{a} y=x a y
$$

This is the variant $S^{a}=\left(S, \star_{a}\right)$ of S with respect to a.

Variants of semigroups

Let (S, \cdot) be a semigroup and $a \in S$. Given these, one can easily define an alternative product \star_{a} on S, namely

$$
x \star_{a} y=x a y
$$

This is the variant $S^{a}=\left(S, \star_{a}\right)$ of S with respect to a.
First mention of variants (as far as we know): Lyapin's book from 1960 (in Russian).

Variants of semigroups

Let (S, \cdot) be a semigroup and $a \in S$. Given these, one can easily define an alternative product \star_{a} on S, namely

$$
x \star_{a} y=x a y
$$

This is the variant $S^{a}=\left(S, \star_{a}\right)$ of S with respect to a.
First mention of variants (as far as we know): Lyapin's book from 1960 (in Russian).

Magill (1967): Semigroups of functions $X \rightarrow Y$ under an operation defined by

$$
f \cdot g=f \circ \theta \circ g
$$

where θ is a fixed function $Y \rightarrow X$.

Variants of semigroups

Let (S, \cdot) be a semigroup and $a \in S$. Given these, one can easily define an alternative product \star_{a} on S, namely

$$
x \star_{a} y=x a y
$$

This is the variant $S^{a}=\left(S, \star_{a}\right)$ of S with respect to a.
First mention of variants (as far as we know): Lyapin's book from 1960 (in Russian).

Magill (1967): Semigroups of functions $X \rightarrow Y$ under an operation defined by

$$
f \cdot g=f \circ \theta \circ g
$$

where θ is a fixed function $Y \rightarrow X$. For $Y=X$, this is exactly a variant of \mathcal{T}_{X}.

History of variants - continued

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

History of variants - continued

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

Khan \& Lawson (2001): Variants of regular semigroups (natural relation to Rees matrix semigroups).

History of variants - continued

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

Khan \& Lawson (2001): Variants of regular semigroups (natural relation to Rees matrix semigroups). In fact, they obtain a natural generalisation of the notion of group of units for non-monoidal regular semigroups.

History of variants - continued

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

Khan \& Lawson (2001): Variants of regular semigroups (natural relation to Rees matrix semigroups). In fact, they obtain a natural generalisation of the notion of group of units for non-monoidal regular semigroups.
G. Y. Tsyaputa (2004/5): variants of finite full transformation semigroups \mathcal{T}_{n}

History of variants - continued

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

Khan \& Lawson (2001): Variants of regular semigroups (natural relation to Rees matrix semigroups). In fact, they obtain a natural generalisation of the notion of group of units for non-monoidal regular semigroups.
G. Y. Tsyaputa (2004/5): variants of finite full transformation semigroups \mathcal{T}_{n}

- classification of non-isomorphic variants

History of variants - continued

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

Khan \& Lawson (2001): Variants of regular semigroups (natural relation to Rees matrix semigroups). In fact, they obtain a natural generalisation of the notion of group of units for non-monoidal regular semigroups.
G. Y. Tsyaputa (2004/5): variants of finite full transformation semigroups \mathcal{T}_{n}

- classification of non-isomorphic variants
- idempotents, Green's relations

History of variants - continued

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

Khan \& Lawson (2001): Variants of regular semigroups (natural relation to Rees matrix semigroups). In fact, they obtain a natural generalisation of the notion of group of units for non-monoidal regular semigroups.
G. Y. Tsyaputa (2004/5): variants of finite full transformation semigroups \mathcal{T}_{n}

- classification of non-isomorphic variants
- idempotents, Green's relations
- analogous questions for $\mathcal{P} \mathcal{T}_{n}$

History of variants - continued

Hickey (1980s): Variants of general semigroups \rightarrow a new characterisation of Nambooripad's order on regular semigroups

Khan \& Lawson (2001): Variants of regular semigroups (natural relation to Rees matrix semigroups). In fact, they obtain a natural generalisation of the notion of group of units for non-monoidal regular semigroups.
G. Y. Tsyaputa (2004/5): variants of finite full transformation semigroups \mathcal{T}_{n}

- classification of non-isomorphic variants
- idempotents, Green's relations
- analogous questions for $\mathcal{P} \mathcal{T}_{n}$

A more accessible account of her results may be found in the monograph of Ganyushkin \& Mazorchuk Classical Finite Transformation Semigroups (Springer, 2009).

Several examples

For a group G and $a \in G$, we always have $G^{a} \cong G$ via $x \mapsto x a$.

Several examples

For a group G and $a \in G$, we always have $G^{a} \cong G$ via $x \mapsto x a$. The identity element in G^{a} is a^{-1}.

Several examples

For a group G and $a \in G$, we always have $G^{a} \cong G$ via $x \mapsto x a$. The identity element in G^{a} is a^{-1}.
On the other hand, if S the bicyclic monoid, then $a, b \in S, a \neq b$ implies $S^{a} \not \approx S^{b}$.

Several examples

For a group G and $a \in G$, we always have $G^{a} \cong G$ via $x \mapsto x a$. The identity element in G^{a} is a^{-1}.

On the other hand, if S the bicyclic monoid, then $a, b \in S, a \neq b$ implies $S^{a} \neq S^{b}$.
If S is a monoid, $a, u, v \in S$, and u, v are units, then $S^{u a v} \cong S^{a}$ via $x \mapsto v x u$.

Several examples

For a group G and $a \in G$, we always have $G^{a} \cong G$ via $x \mapsto x a$. The identity element in G^{a} is a^{-1}.

On the other hand, if S the bicyclic monoid, then $a, b \in S, a \neq b$ implies $S^{a} \neq S^{b}$.
If S is a monoid, $a, u, v \in S$, and u, v are units, then $S^{u a v} \cong S^{a}$ via $x \mapsto v x u$.

Thus, for any $a \in \mathcal{T}_{X}$ there exists $e \in E\left(\mathcal{T}_{X}\right)$ such that $\mathcal{T}_{X}^{a} \cong \mathcal{T}_{X}^{e}$.

Several examples

For a group G and $a \in G$, we always have $G^{a} \cong G$ via $x \mapsto x a$. The identity element in G^{a} is a^{-1}.

On the other hand, if S the bicyclic monoid, then $a, b \in S, a \neq b$ implies $S^{a} \neq S^{b}$.
If S is a monoid, $a, u, v \in S$, and u, v are units, then $S^{u a v} \cong S^{a}$ via $x \mapsto v x u$.

Thus, for any $a \in \mathcal{T}_{X}$ there exists $e \in E\left(\mathcal{T}_{X}\right)$ such that $\mathcal{T}_{X}^{a} \cong \mathcal{T}_{X}^{e}$.
A WORD OF CAUTION: If S is a regular semigroup, S^{a} is not regular in general!

Several examples

For a group G and $a \in G$, we always have $G^{a} \cong G$ via $x \mapsto x a$. The identity element in G^{a} is a^{-1}.

On the other hand, if S the bicyclic monoid, then $a, b \in S, a \neq b$ implies $S^{a} \neq S^{b}$.
If S is a monoid, $a, u, v \in S$, and u, v are units, then $S^{u a v} \cong S^{a}$ via $x \mapsto v x u$.

Thus, for any $a \in \mathcal{T}_{X}$ there exists $e \in E\left(\mathcal{T}_{X}\right)$ such that $\mathcal{T}_{X}^{a} \cong \mathcal{T}_{X}^{e}$.
A WORD OF CAUTION: If S is a regular semigroup, S^{a} is not regular in general! However, for regular S and arbitrary $a \in S$, $\operatorname{Reg}\left(S^{a}\right)$ is always a subsemigroup of S^{a} (Khan \& Lawson).

A word of caution, you said...?

Egg-box picture of $\mathcal{T}_{4}{ }^{\text {a }}$ for $a=[1,2,3,3]$

A word of caution, you said...?

Egg-box picture of $\mathcal{T}_{4}{ }^{\text {a }}$ for $a=[1,1,3,3]$

A word of caution, you said...?

Egg-box picture of $\mathcal{T}_{4}^{\text {a }}$ for $a=[1,1,1,4]$

Three important sets

$$
P_{1}=\{x \in S: x a \mathscr{R} x\},
$$

Three important sets

$$
P_{1}=\{x \in S: x a \mathscr{R} x\}, \quad P_{2}=\{x \in S: a x \mathscr{L} x\},
$$

Three important sets

$$
\begin{gathered}
P_{1}=\{x \in S: x a \mathscr{R} x\}, \quad P_{2}=\{x \in S: a x \mathscr{L} x\}, \\
P=P_{1} \cap P_{2}
\end{gathered}
$$

Three important sets

$$
\begin{gathered}
P_{1}=\{x \in S: \text { xa } \mathscr{R} x\}, \quad P_{2}=\{x \in S: \text { ax } \mathscr{L} x\}, \\
P=P_{1} \cap P_{2}
\end{gathered}
$$

Easy facts:

- $y \in P_{1} \Leftrightarrow L_{y} \subseteq P_{1}$,

Three important sets

$$
\begin{gathered}
P_{1}=\{x \in S: \text { xa } \mathscr{R} x\}, \quad P_{2}=\{x \in S: \text { ax } \mathscr{L} x\}, \\
P=P_{1} \cap P_{2}
\end{gathered}
$$

Easy facts:

- $y \in P_{1} \Leftrightarrow L_{y} \subseteq P_{1}$,
- $y \in P_{2} \Leftrightarrow R_{y} \subseteq P_{2}$,

Three important sets

$$
\begin{gathered}
P_{1}=\{x \in S: \text { xa } \mathscr{R} x\}, \quad P_{2}=\{x \in S: \text { ax } \mathscr{L} x\}, \\
P=P_{1} \cap P_{2}
\end{gathered}
$$

Easy facts:

- $y \in P_{1} \Leftrightarrow L_{y} \subseteq P_{1}$,
- $y \in P_{2} \Leftrightarrow R_{y} \subseteq P_{2}$,
- $\operatorname{Reg}\left(S^{a}\right) \subseteq P$

Green's relations: $\mathscr{R}^{a}, \mathscr{L}^{a}, \mathscr{H}^{a}, \mathscr{D}^{a}$

$$
R_{x}^{a}= \begin{cases}R_{x} \cap P_{1} & \text { if } x \in P_{1} \\ \{x\} & \text { if } x \in S \backslash P_{1},\end{cases}
$$

Green's relations: $\mathscr{R}^{a}, \mathscr{L}^{a}, \mathscr{H}^{a}, \mathscr{D}^{a}$

$$
\begin{aligned}
& R_{x}^{a}= \begin{cases}R_{x} \cap P_{1} & \text { if } x \in P_{1} \\
\{x\} & \text { if } x \in S \backslash P_{1},\end{cases} \\
& L_{x}^{a}= \begin{cases}L_{x} \cap P_{2} & \text { if } x \in P_{2} \\
\{x\} & \text { if } x \in S \backslash P_{2},\end{cases}
\end{aligned}
$$

Green's relations: $\mathscr{R}^{a}, \mathscr{L}^{a}, \mathscr{H}^{a}, \mathscr{D}^{a}$

$$
\begin{aligned}
& R_{x}^{a}= \begin{cases}R_{x} \cap P_{1} & \text { if } x \in P_{1} \\
\{x\} & \text { if } x \in S \backslash P_{1},\end{cases} \\
& L_{x}^{a}= \begin{cases}L_{x} \cap P_{2} & \text { if } x \in P_{2} \\
\{x\} & \text { if } x \in S \backslash P_{2},\end{cases} \\
& H_{x}^{a}= \begin{cases}H_{x} & \text { if } x \in P \\
\{x\} & \text { if } x \in S \backslash P,\end{cases}
\end{aligned}
$$

Green's relations: $\mathscr{R}^{a}, \mathscr{L}^{a}, \mathscr{H}^{a}, \mathscr{D}^{a}$

$$
\begin{aligned}
& R_{x}^{a}= \begin{cases}R_{x} \cap P_{1} & \text { if } x \in P_{1} \\
\{x\} & \text { if } x \in S \backslash P_{1},\end{cases} \\
& L_{x}^{a}= \begin{cases}L_{x} \cap P_{2} & \text { if } x \in P_{2} \\
\{x\} & \text { if } x \in S \backslash P_{2},\end{cases} \\
& H_{x}^{a}= \begin{cases}H_{x} & \text { if } x \in P \\
\{x\} & \text { if } x \in S \backslash P,\end{cases} \\
& D_{x}^{a}= \begin{cases}D_{x} \cap P & \text { if } x \in P \\
L_{x}^{a} & \text { if } x \in P_{2} \backslash P_{1} \\
R_{x}^{a} & \text { if } x \in P_{1} \backslash P_{2} \\
\{x\} & \text { if } x \in S \backslash\left(P_{1} \cup P_{2}\right) .\end{cases}
\end{aligned}
$$

Group \mathcal{H}-classes vs group \mathcal{H}^{a}-classes (in P)

Let $S=\mathcal{T}_{4}$ and $a=[1,2,3,3]$.

Group \mathcal{H}-classes vs group $\mathcal{H}^{\text {a}}$-classes (in P)

$$
\text { Let } S=\mathcal{T}_{4} \text { and } a=[1,2,3,3]
$$

x	Is H_{x} a group \mathscr{H}-class of \mathcal{T}_{4} ?	Is H_{x} a group \mathscr{H}^{a}-class of \mathcal{T}_{4} ? $?$
$[1,1,3,3]$	Yes	Yes
$[4,2,2,4]$	Yes	No
$[2,4,2,4]$	No	Yes
$[1,3,1,3]$	No	No

Our goal for today...

...is to conduct a thorough algebraic and combinatorial analysis of $\mathcal{T}_{X}^{\text {a }}$ where $|X|=n$ and a is a fixed transformation on X.

Our goal for today...

...is to conduct a thorough algebraic and combinatorial analysis of $\mathcal{T}_{X}^{\text {a }}$ where $|X|=n$ and a is a fixed transformation on X.

As we noted, we may assume that a is idempotent with $r=\operatorname{rank}(a)<n$,

$$
a=\left(\begin{array}{ccc}
A_{1} & \cdots & A_{r} \\
a_{1} & \cdots & a_{r}
\end{array}\right)
$$

so that $a_{i} \in A_{i}$ for all $i \in[1, r]$.

Our goal for today...

...is to conduct a thorough algebraic and combinatorial analysis of $\mathcal{T}_{X}^{\text {a }}$ where $|X|=n$ and a is a fixed transformation on X.

As we noted, we may assume that a is idempotent with $r=\operatorname{rank}(a)<n$,

$$
a=\left(\begin{array}{ccc}
A_{1} & \cdots & A_{r} \\
a_{1} & \cdots & a_{r}
\end{array}\right)
$$

so that $a_{i} \in A_{i}$ for all $i \in[1, r]$.
Here $A=\operatorname{im}(a)=\left\{a_{1}, \ldots, a_{r}\right\}$ and $\alpha=\operatorname{ker}(a)=\left(A_{1}|\cdots| A_{r}\right)$, with $\lambda_{i}=\left|A_{i}\right|$.

Our goal for today...

...is to conduct a thorough algebraic and combinatorial analysis of $\mathcal{T}_{X}^{\text {a }}$ where $|X|=n$ and a is a fixed transformation on X.

As we noted, we may assume that a is idempotent with
$r=\operatorname{rank}(a)<n$,

$$
a=\left(\begin{array}{ccc}
A_{1} & \cdots & A_{r} \\
a_{1} & \cdots & a_{r}
\end{array}\right)
$$

so that $a_{i} \in A_{i}$ for all $i \in[1, r]$.
Here $A=\operatorname{im}(a)=\left\{a_{1}, \ldots, a_{r}\right\}$ and $\alpha=\operatorname{ker}(a)=\left(A_{1}|\cdots| A_{r}\right)$, with $\lambda_{i}=\left|A_{i}\right|$. Furthermore, for $I=\left\{i_{1}, \ldots, i_{m}\right\} \subseteq[1, r]$ we write $\Lambda_{I}=\lambda_{i_{1}} \cdots \lambda_{i_{m}}$ and $\Lambda=\lambda_{1} \cdots \lambda_{r}$.

P_{1}, P_{2}, P in \mathcal{T}_{X}^{a}

Let $B \subseteq X$ and let β be an equivalence relation on X.

Let $B \subseteq X$ and let β be an equivalence relation on X. We say that B saturates β if each β-class contains at least one element of B.

Let $B \subseteq X$ and let β be an equivalence relation on X. We say that B saturates β if each β-class contains at least one element of B. Also, we say that β separates B if each β-class contains at most one element of B.

P_{1}, P_{2}, P in \mathcal{T}_{X}^{a}

Let $B \subseteq X$ and let β be an equivalence relation on X. We say that B saturates β if each β-class contains at least one element of B. Also, we say that β separates B if each β-class contains at most one element of B.

$$
\begin{aligned}
P_{1} & =\left\{f \in \mathcal{T}_{X}: \operatorname{rank}(f a)=\operatorname{rank}(f)\right\} \\
& =\left\{f \in \mathcal{T}_{X}: \alpha \text { separates } \operatorname{im}(f)\right\}
\end{aligned}
$$

P_{1}, P_{2}, P in \mathcal{T}_{X}^{a}

Let $B \subseteq X$ and let β be an equivalence relation on X. We say that B saturates β if each β-class contains at least one element of B. Also, we say that β separates B if each β-class contains at most one element of B.

$$
\begin{aligned}
P_{1} & =\left\{f \in \mathcal{T}_{X}: \quad \operatorname{rank}(f a)=\operatorname{rank}(f)\right\} \\
& =\left\{f \in \mathcal{T}_{X}: \alpha \text { separates } \operatorname{im}(f)\right\} \\
P_{2} & =\left\{f \in \mathcal{T}_{X}: \operatorname{rank}(a f)=\operatorname{rank}(f)\right\} \\
& =\left\{f \in \mathcal{T}_{X}: \quad A \text { saturates } \operatorname{ker}(f)\right\}
\end{aligned}
$$

P_{1}, P_{2}, P in \mathcal{T}_{X}^{a}

Let $B \subseteq X$ and let β be an equivalence relation on X. We say that B saturates β if each β-class contains at least one element of B. Also, we say that β separates B if each β-class contains at most one element of B.

$$
\begin{aligned}
P_{1} & =\left\{f \in \mathcal{T}_{X}: \operatorname{rank}(f a)=\operatorname{rank}(f)\right\} \\
& =\left\{f \in \mathcal{T}_{X}: \alpha \text { separates } \operatorname{im}(f)\right\}
\end{aligned}
$$

$P_{2}=\left\{f \in \mathcal{T}_{X}: \operatorname{rank}(a f)=\operatorname{rank}(f)\right\}$ $=\left\{f \in \mathcal{T}_{X}: A\right.$ saturates $\left.\operatorname{ker}(f)\right\}$
$P=\left\{f \in \mathcal{T}_{X}: \operatorname{rank}(a f a)=\operatorname{rank}(f)\right\}=\operatorname{Reg}\left(\mathcal{T}_{X}^{a}\right) \leq \mathcal{T}_{X}^{a}$

Green's relations in \mathcal{T}_{X}^{a} (Tsyaputa, 2004)

$$
R_{f}^{a}= \begin{cases}R_{f} \cap P_{1} & \text { if } f \in P_{1} \\ \{f\} & \text { if } f \in \mathcal{T}_{X} \backslash P_{1},\end{cases}
$$

Green's relations in \mathcal{T}_{X}^{a} (Tsyaputa, 2004)

$$
\begin{aligned}
& R_{f}^{a}= \begin{cases}R_{f} \cap P_{1} & \text { if } f \in P_{1} \\
\{f\} & \text { if } f \in \mathcal{T}_{X} \backslash P_{1},\end{cases} \\
& L_{f}^{a}= \begin{cases}L_{f} \cap P_{2} & \text { if } f \in P_{2} \\
\{f\} & \text { if } f \in \mathcal{T}_{X} \backslash P_{2},\end{cases}
\end{aligned}
$$

Green's relations in \mathcal{T}_{X}^{a} (Tsyaputa, 2004)

$$
\begin{aligned}
& R_{f}^{a}= \begin{cases}R_{f} \cap P_{1} & \text { if } f \in P_{1} \\
\{f\} & \text { if } f \in \mathcal{T}_{x} \backslash P_{1},\end{cases} \\
& L_{f}^{a}= \begin{cases}L_{f} \cap P_{2} & \text { if } f \in P_{2} \\
\{f\} & \text { if } f \in \mathcal{T}_{x} \backslash P_{2},\end{cases} \\
& H_{f}^{a}= \begin{cases}H_{f} & \text { if } f \in P \\
\{f\} & \text { if } f \in \mathcal{T}_{x} \backslash P,\end{cases}
\end{aligned}
$$

Green's relations in \mathcal{T}_{X}^{a} (Tsyaputa, 2004)

$$
\begin{aligned}
& R_{f}^{a}= \begin{cases}R_{f} \cap P_{1} & \text { if } f \in P_{1} \\
\{f\} & \text { if } f \in \mathcal{T}_{X} \backslash P_{1},\end{cases} \\
& L_{f}^{a}= \begin{cases}L_{f} \cap P_{2} & \text { if } f \in P_{2} \\
\{f\} & \text { if } f \in \mathcal{T}_{X} \backslash P_{2},\end{cases} \\
& H_{f}^{a}= \begin{cases}H_{f} & \text { if } f \in P \\
\{f\} & \text { if } f \in \mathcal{T}_{X} \backslash P_{2},\end{cases} \\
& D_{f}^{a}= \begin{cases}D_{f} \cap P & \text { if } f \in P \\
L_{f}^{a} & \text { if } f \in P_{2} \backslash P_{1} \\
R_{f}^{a} & \text { if } f \in P_{1} \backslash P_{2} \\
\{f\} & \text { if } f \in \mathcal{T}_{X} \backslash\left(P_{1} \cup P_{2}\right) .\end{cases}
\end{aligned}
$$

'High-energy semigroup theory'

'High-energy semigroup theory'

- Recall that in \mathcal{T}_{X}, the \mathscr{D}-classes form a chain:

$$
D_{n}>D_{n-1}>\cdots>D_{2}>D_{1}
$$

'High-energy semigroup theory'

- Recall that in \mathcal{T}_{X}, the \mathscr{D}-classes form a chain:

$$
D_{n}>D_{n-1}>\cdots>D_{2}>D_{1}
$$

- Each of the \mathscr{D}-classes D_{r+1}, \ldots, D_{n} is completely 'shattered' into singleton 'shrapnels' / $\mathscr{D}^{\text {a }}$-classes in \mathcal{T}_{X}^{a}.

'High-energy semigroup theory'

- Recall that in \mathcal{T}_{X}, the \mathscr{D}-classes form a chain:

$$
D_{n}>D_{n-1}>\cdots>D_{2}>D_{1}
$$

- Each of the \mathscr{D}-classes D_{r+1}, \ldots, D_{n} is completely 'shattered' into singleton 'shrapnels' / $\mathscr{D}^{\text {a }}$-classes in \mathcal{T}_{X}^{a}.
- Since all constant maps trivially belong to P, D_{1} is preserved, and remains a right zero band.

'High-energy semigroup theory'

- Recall that in \mathcal{T}_{X}, the \mathscr{D}-classes form a chain:

$$
D_{n}>D_{n-1}>\cdots>D_{2}>D_{1}
$$

- Each of the \mathscr{D}-classes D_{r+1}, \ldots, D_{n} is completely 'shattered' into singleton 'shrapnels' / $\mathscr{D}^{\text {a }}$-classes in \mathcal{T}_{X}^{a}.
- Since all constant maps trivially belong to P, D_{1} is preserved, and remains a right zero band.
- For $2 \leq m \leq r$, the class D_{r} separates into a single regular chunk $D_{r} \cap P$ and a number of non-regular pieces, as seen on the following picture...
'High-energy semigroup theory'

Order of the $\mathscr{D}^{\text {a}}$-classes

Let $f, g \in \mathcal{T}_{X}$. Then $D_{f}^{a} \leq D_{g}^{a}$ in \mathcal{T}_{X}^{a} if and only if one of the following holds:

Order of the $\mathscr{D}^{\text {a}}$-classes

Let $f, g \in \mathcal{T}_{X}$. Then $D_{f}^{a} \leq D_{g}^{a}$ in \mathcal{T}_{X}^{a} if and only if one of the following holds:

- $f=g$,

Order of the $\mathscr{D}^{\text {a }}$-classes

Let $f, g \in \mathcal{T}_{X}$. Then $D_{f}^{a} \leq D_{g}^{a}$ in \mathcal{T}_{X}^{a} if and only if one of the following holds:

- $f=g$,
- $\operatorname{rank}(f) \leq \operatorname{rank}(a g a)$,

Order of the $\mathscr{D}^{\text {a}}$-classes

Let $f, g \in \mathcal{T}_{X}$. Then $D_{f}^{a} \leq D_{g}^{a}$ in \mathcal{T}_{X}^{a} if and only if one of the following holds:

- $f=g$,
- $\operatorname{rank}(f) \leq \operatorname{rank}(a g a)$,
- $\operatorname{im}(f) \subseteq \operatorname{im}(a g)$,

Order of the $\mathscr{D}^{\text {a}}$-classes

Let $f, g \in \mathcal{T}_{X}$. Then $D_{f}^{a} \leq D_{g}^{a}$ in \mathcal{T}_{X}^{a} if and only if one of the following holds:

- $f=g$,
- $\operatorname{rank}(f) \leq \operatorname{rank}(a g a)$,
- $\operatorname{im}(f) \subseteq i m(a g)$,
- $\operatorname{ker}(f) \supseteq \operatorname{ker}(g a)$.

Order of the $\mathscr{D}^{\text {a}}$-classes

Let $f, g \in \mathcal{T}_{X}$. Then $D_{f}^{a} \leq D_{g}^{a}$ in \mathcal{T}_{X}^{a} if and only if one of the following holds:

- $f=g$,
- $\operatorname{rank}(f) \leq \operatorname{rank}(a g a)$,
- $\operatorname{im}(f) \subseteq i m(a g)$,
- $\operatorname{ker}(f) \supseteq \operatorname{ker}(g a)$.

The maximal \mathscr{D}^{a}-classes are those of the form $D_{f}^{a}=\{f\}$ where $\operatorname{rank}(f)>r$.

Order of the $\mathscr{D}^{\text {a }}$-classes

The rank of \mathcal{T}_{X}^{a}

Let $M=\left\{f \in \mathcal{T}_{X}: \operatorname{rank}(f)>r\right\}$.

The rank of \mathcal{T}_{X}^{a}

Let $M=\left\{f \in \mathcal{T}_{X}: \operatorname{rank}(f)>r\right\}$.
Then $\mathcal{T}_{X}^{a}=\langle M\rangle$; furthermore, any generating set for \mathcal{T}_{X}^{a} contains M.

The rank of \mathcal{T}_{X}^{a}

Let $M=\left\{f \in \mathcal{T}_{X}: \operatorname{rank}(f)>r\right\}$.
Then $\mathcal{T}_{X}^{a}=\langle M\rangle$; furthermore, any generating set for \mathcal{T}_{X}^{a} contains M.

Consequently, M is the unique minimal (with respect to containment or size) generating set of $\mathcal{T}_{\mathcal{X}}^{Z}$, and

$$
\operatorname{rank}\left(\mathcal{T}_{X}^{\mathfrak{a}}\right)=|M|=\sum_{m=r+1}^{n} S(n, m)\binom{n}{m} m!,
$$

where $S(n, m)$ denotes the Stirling number of the second kind.

'Positioning' with respect to the regular classes

'Positioning' with respect to the regular classes

- If $f \in P$, then $D_{f}^{a} \leq D_{g}^{a}$ if and only if $\operatorname{rank}(f) \leq \operatorname{rank}(a g a)$.

'Positioning' with respect to the regular classes

- If $f \in P$, then $D_{f}^{a} \leq D_{g}^{a}$ if and only if $\operatorname{rank}(f) \leq \operatorname{rank}(a g a)$.
- If $g \in P$, then $D_{f}^{a} \leq D_{g}^{a}$ if and only if $\operatorname{rank}(f) \leq \operatorname{rank}(g)$.

'Positioning' with respect to the regular classes

- If $f \in P$, then $D_{f}^{a} \leq D_{g}^{a}$ if and only if $\operatorname{rank}(f) \leq \operatorname{rank}(a g a)$.
- If $g \in P$, then $D_{f}^{a} \leq D_{g}^{a}$ if and only if $\operatorname{rank}(f) \leq \operatorname{rank}(g)$.

Consequences:

'Positioning' with respect to the regular classes

- If $f \in P$, then $D_{f}^{a} \leq D_{g}^{a}$ if and only if $\operatorname{rank}(f) \leq \operatorname{rank}(a g a)$.
- If $g \in P$, then $D_{f}^{a} \leq D_{g}^{a}$ if and only if $\operatorname{rank}(f) \leq \operatorname{rank}(g)$.

Consequences:

- The regular $\mathscr{D}^{\text {a}}$-classes of \mathcal{T}_{X}^{a} form a chain: $D_{1}^{a}<\cdots<D_{r}^{a}$ (where $D_{m}^{a}=\{f \in P: \operatorname{rank}(f)=m\}$ for $m \in[1, r]$).

'Positioning' with respect to the regular classes

- If $f \in P$, then $D_{f}^{a} \leq D_{g}^{a}$ if and only if $\operatorname{rank}(f) \leq \operatorname{rank}(a g a)$.
- If $g \in P$, then $D_{f}^{a} \leq D_{g}^{a}$ if and only if $\operatorname{rank}(f) \leq \operatorname{rank}(g)$.

Consequences:

- The regular $\mathscr{D}^{\text {a }}$-classes of \mathcal{T}_{X}^{a} form a chain: $D_{1}^{a}<\cdots<D_{r}^{a}$ (where $D_{m}^{a}=\{f \in P: \operatorname{rank}(f)=m\}$ for $m \in[1, r]$).
- 'Co-ordinatisation' of the non-regular, 'fragmented' $\mathscr{D}^{\text {a }}$-classes: if $\operatorname{rank}(f)=m \leq r$ and $\operatorname{rank}(a f a)=p<m$, then D_{f}^{a} sits below D_{m}^{a} and above D_{p}^{a}.

'Positioning' with respect to the regular classes

- If $f \in P$, then $D_{f}^{a} \leq D_{g}^{a}$ if and only if $\operatorname{rank}(f) \leq \operatorname{rank}(a g a)$.
- If $g \in P$, then $D_{f}^{a} \leq D_{g}^{a}$ if and only if $\operatorname{rank}(f) \leq \operatorname{rank}(g)$.

Consequences:

- The regular $\mathscr{D}^{\text {a}}$-classes of \mathcal{T}_{X}^{a} form a chain: $D_{1}^{a}<\cdots<D_{r}^{a}$ (where $D_{m}^{a}=\{f \in P: \operatorname{rank}(f)=m\}$ for $m \in[1, r]$).
- 'Co-ordinatisation' of the non-regular, 'fragmented' $\mathscr{D}^{\text {a }}$-classes: if $\operatorname{rank}(f)=m \leq r$ and $\operatorname{rank}(a f a)=p<m$, then D_{f}^{a} sits below D_{m}^{a} and above D_{p}^{a}.
- The 'crown': A maximal \mathscr{D}^{a}-class $D_{f}^{a}=\{f\}$ sits above D_{r}^{a} if and only if $\operatorname{rank}(a f a)=r$.

'Positioning' with respect to the regular classes

- If $f \in P$, then $D_{f}^{a} \leq D_{g}^{a}$ if and only if $\operatorname{rank}(f) \leq \operatorname{rank}(a g a)$.
- If $g \in P$, then $D_{f}^{a} \leq D_{g}^{a}$ if and only if $\operatorname{rank}(f) \leq \operatorname{rank}(g)$.

Consequences:

- The regular $\mathscr{D}^{\text {a}}$-classes of \mathcal{T}_{X}^{a} form a chain: $D_{1}^{a}<\cdots<D_{r}^{a}$ (where $D_{m}^{a}=\{f \in P: \operatorname{rank}(f)=m\}$ for $m \in[1, r]$).
- 'Co-ordinatisation' of the non-regular, 'fragmented' $\mathscr{D}^{\text {a }}$-classes: if $\operatorname{rank}(f)=m \leq r$ and $\operatorname{rank}(a f a)=p<m$, then D_{f}^{a} sits below D_{m}^{a} and above D_{p}^{a}.
- The 'crown': A maximal \mathscr{D}^{a}-class $D_{f}^{a}=\{f\}$ sits above D_{r}^{a} if and only if $\operatorname{rank}(a f a)=r$. The number of such \mathscr{D}^{a}-classes is equal to $\left(n^{n-r}-r^{n-r}\right) r!\Lambda$.

$\operatorname{Reg}\left(\mathcal{T}_{X}^{a}\right)$ - examples

1	1	1	1

Egg-box diagrams of the regular subsemigroups $P=\operatorname{Reg}\left(\mathcal{T}_{5}{ }^{a}\right)$ in the cases
(from left to right): $a=[1,1,1,1,1], a=[1,2,2,2,2], a=[1,1,2,2,2]$,

$$
a=[1,2,3,3,3], a=[1,2,2,3,3], a=[1,2,3,4,4] .
$$

Do you see what I am seeing???

Egg-box diagrams of \mathcal{T}_{3} (left) and $\operatorname{Reg}\left(\mathcal{T}_{5}^{a}\right)$ for $a=[1,2,2,3,3]$ (right).

No, this is not just a coincidence...!

No, this is not just a coincidence...!

$$
\mathcal{T}(X, A)=\left\{f \in \mathcal{T}_{X}: \operatorname{im}(f) \subseteq A\right\}
$$

No, this is not just a coincidence...!

$$
\begin{aligned}
& \mathcal{T}(X, A)=\left\{f \in \mathcal{T}_{X}: \operatorname{im}(f) \subseteq A\right\} \\
& \mathcal{T}(X, \alpha)=\left\{f \in \mathcal{T}_{X}: \operatorname{ker}(f) \supseteq \alpha\right\}
\end{aligned}
$$

No, this is not just a coincidence...!

$$
\mathcal{T}(X, A)=\left\{f \in \mathcal{T}_{X}: \operatorname{im}(f) \subseteq A\right\}
$$

$$
\mathcal{T}(X, \alpha)=\left\{f \in \mathcal{T}_{X}: \operatorname{ker}(f) \supseteq \alpha\right\}
$$

- transformation semigroups with restricted range (Sanwong \& Sommanee, 2008), and restricted kernel (Mendes-Gonçalves \& Sullivan, 2010).

No, this is not just a coincidence...!

$$
\begin{aligned}
& \mathcal{T}(X, A)=\left\{f \in \mathcal{T}_{X}: \operatorname{im}(f) \subseteq A\right\} \\
& \mathcal{T}(X, \alpha)=\left\{f \in \mathcal{T}_{X}: \operatorname{ker}(f) \supseteq \alpha\right\}
\end{aligned}
$$

- transformation semigroups with restricted range (Sanwong \& Sommanee, 2008), and restricted kernel (Mendes-Gonçalves \& Sullivan, 2010).

Fact:

$$
\begin{aligned}
& \operatorname{Reg}(\mathcal{T}(X, A))=\mathcal{T}(X, A) \cap P_{2} \\
& \operatorname{Reg}(\mathcal{T}(X, \alpha))=\mathcal{T}(X, \alpha) \cap P_{1}
\end{aligned}
$$

Structure Theorem - Part 1

$$
\psi: f \mapsto(f a, a f)
$$

is a well-defined embedding of $\operatorname{Reg}\left(\mathcal{T}_{X}^{a}\right)$ into the direct product $\operatorname{Reg}(\mathcal{T}(X, A)) \times \operatorname{Reg}(\mathcal{T}(X, \alpha))$.

Structure Theorem - Part 1

$$
\psi: f \mapsto(f a, a f)
$$

is a well-defined embedding of $\operatorname{Reg}\left(\mathcal{T}_{X}^{a}\right)$ into the direct product $\operatorname{Reg}(\mathcal{T}(X, A)) \times \operatorname{Reg}(\mathcal{T}(X, \alpha))$. Its image consists of all pairs (g, h) such that

$$
\operatorname{rank}(g)=\operatorname{rank}(h) \quad \text { and }\left.\quad g\right|_{A}=\left.(h a)\right|_{A} .
$$

Structure Theorem - Part 1

$$
\psi: f \mapsto(f a, a f)
$$

is a well-defined embedding of $\operatorname{Reg}\left(\mathcal{T}_{X}^{a}\right)$ into the direct product $\operatorname{Reg}(\mathcal{T}(X, A)) \times \operatorname{Reg}(\mathcal{T}(X, \alpha))$. Its image consists of all pairs (g, h) such that

$$
\operatorname{rank}(g)=\operatorname{rank}(h) \quad \text { and }\left.\quad g\right|_{A}=\left.(h a)\right|_{A} .
$$

Thus $\operatorname{Reg}\left(\mathcal{T}_{X}^{a}\right)$ is a subdirect product of $\operatorname{Reg}\left(\mathcal{T}_{X}^{a}\right)$ and $\operatorname{Reg}(\mathcal{T}(X, \alpha))$.

Structure Theorem - Part 2

The maps

$$
\begin{gathered}
\phi_{1}: \operatorname{Reg}(\mathcal{T}(X, A)) \rightarrow \mathcal{T}_{A}:\left.g \mapsto g\right|_{A} \\
\phi_{2}: \operatorname{Reg}(\mathcal{T}(X, \alpha)) \rightarrow \mathcal{T}_{A}:\left.g \mapsto(g a)\right|_{A}
\end{gathered}
$$

are epimorphisms,

Structure Theorem - Part 2

The maps

$$
\begin{gathered}
\phi_{1}: \operatorname{Reg}(\mathcal{T}(X, A)) \rightarrow \mathcal{T}_{A}:\left.g \mapsto g\right|_{A} \\
\phi_{2}: \operatorname{Reg}(\mathcal{T}(X, \alpha)) \rightarrow \mathcal{T}_{A}:\left.g \mapsto(g a)\right|_{A}
\end{gathered}
$$

are epimorphisms, and the following diagram commutes:

Structure Theorem - Part 2

The maps

$$
\begin{gathered}
\phi_{1}: \operatorname{Reg}(\mathcal{T}(X, A)) \rightarrow \mathcal{T}_{A}:\left.g \mapsto g\right|_{A} \\
\phi_{2}: \operatorname{Reg}(\mathcal{T}(X, \alpha)) \rightarrow \mathcal{T}_{A}:\left.g \mapsto(g a)\right|_{A}
\end{gathered}
$$

are epimorphisms, and the following diagram commutes:

Further, the induced map $\phi=\psi_{1} \phi_{1}=\psi_{2} \phi_{2}=\operatorname{Reg}\left(\mathcal{T}_{X}^{a}\right) \rightarrow \mathcal{T}_{A}$ is an epimorphism that is 'group / non-group preserving'.

Size and rank of $P=\operatorname{Reg}\left(\mathcal{T}_{X}^{a}\right)$

Size and rank of $P=\operatorname{Reg}\left(\mathcal{T}_{X}^{a}\right)$

$$
|P|=\sum_{m=1}^{r} m!m^{n-r} S(r, m) \sum_{I \in\binom{[1, r]}{m}} \Lambda_{l} .
$$

Size and rank of $P=\operatorname{Reg}\left(\mathcal{T}_{X}^{a}\right)$

$$
|P|=\sum_{m=1}^{r} m!m^{n-r} S(r, m) \sum_{I \in\binom{[1, r]}{m}} \Lambda_{I} .
$$

Let D be the top (rank-r) $\mathscr{D}^{\text {a }}$-class of P.

Size and rank of $P=\operatorname{Reg}\left(\mathcal{T}_{X}^{a}\right)$

$$
|P|=\sum_{m=1}^{r} m!m^{n-r} S(r, m) \sum_{l \in\binom{[1, r l}{m}} \Lambda_{l} .
$$

Let D be the top (rank-r) $\mathscr{D}^{\text {a }}$-class of P.

$$
\operatorname{rank}(P)=\operatorname{rank}(D)+\operatorname{rank}(P: D)=r^{n-r}+1
$$

The idempotent generated subsemigroup $\left\langle E_{a}\left(\mathcal{T}_{X}^{a}\right)\right\rangle_{a}$

The idempotent generated subsemigroup $\left\langle E_{a}\left(\mathcal{T}_{X}^{a}\right)\right\rangle_{a}$

- $E_{a}\left(\mathcal{T}_{X}^{a}\right)=\left\{f \in \mathcal{T}_{X}:\left.(a f)\right|_{i m(f)}=\left.\operatorname{id}\right|_{i m(f)}\right\}$.

The idempotent generated subsemigroup $\left\langle E_{a}\left(\mathcal{T}_{X}^{a}\right)\right\rangle_{a}$

- $E_{a}\left(\mathcal{T}_{X}^{a}\right)=\left\{f \in \mathcal{T}_{X}:\left.(a f)\right|_{\operatorname{im}(f)}=\left.\operatorname{id}\right|_{\operatorname{im}(f)}\right\}$.
- $\left|E_{a}\left(\mathcal{T}_{X}^{a}\right)\right|=\sum_{m=1}^{r} m^{n-m} \sum_{I \in\binom{(1, r)}{m}} \Lambda_{l}$.

The idempotent generated subsemigroup $\left\langle E_{a}\left(\mathcal{T}_{X}^{a}\right)\right\rangle_{a}$

- $E_{a}\left(\mathcal{T}_{X}^{\mathfrak{X}}\right)=\left\{f \in \mathcal{T}_{X}:\left.(a f)\right|_{i m(f)}=\left.\operatorname{id}\right|_{\operatorname{im}(f)}\right\}$.
- $\left|E_{a}\left(\mathcal{T}_{X}^{a}\right)\right|=\sum_{m=1}^{r} m^{n-m} \sum_{l \in\binom{(1, r)}{m}} \Lambda_{l}$.
- We obtain a pleasing generalisation of celebrated Howie's Theorem:

$$
\mathcal{E}_{X}^{a}=\left\langle E_{a}\left(\mathcal{T}_{X}^{a}\right)\right\rangle_{a}=E_{a}(D) \cup(P \backslash D)
$$

The idempotent generated subsemigroup $\left\langle E_{a}\left(\mathcal{T}_{X}^{a}\right)\right\rangle_{a}$

$$
\begin{aligned}
& \operatorname{rank}\left(\mathcal{E}_{X}^{a}\right)=\operatorname{idrank}\left(\mathcal{E}_{X}^{a}\right)=r^{n-r}+\rho_{r}, \\
& \text { where } \rho_{2}=2 \text { and } \rho_{r}=\binom{r}{2} \text { if } r \geq 3 .
\end{aligned}
$$

The idempotent generated subsemigroup $\left\langle E_{a}\left(\mathcal{T}_{X}^{a}\right)\right\rangle_{a}$

$$
\operatorname{rank}\left(\mathcal{E}_{X}^{a}\right)=\operatorname{idrank}\left(\mathcal{E}_{X}^{a}\right)=r^{n-r}+\rho_{r},
$$

where $\rho_{2}=2$ and $\rho_{r}=\binom{r}{2}$ if $r \geq 3$.

- The number of idempotent generating sets of \mathcal{E}_{X}^{a} of the minimal possible size is

$$
\left[(r-1)^{n-r} \Lambda\right]^{\rho_{r}} \Lambda!S\left(r^{n-r}, \Lambda\right) \sum_{\Gamma \in \mathbb{T}_{r}} \frac{1}{\lambda_{1}^{d_{\Gamma}^{+}(1)} \cdots \lambda_{r}^{d_{\Gamma}^{+}(r)}}
$$

where \mathbb{T}_{r} is the set of all strongly connected tournaments on r vertices.

The ideals of P

- The ideals of P are precisely

$$
I_{m}^{a}=\{f \in P: \operatorname{rank}(f) \leq m\}
$$

for $m \in[1, r]$.

The ideals of P

- The ideals of P are precisely

$$
I_{m}^{a}=\{f \in P: \operatorname{rank}(f) \leq m\}
$$

for $m \in[1, r]$.

- They are all idempotent generated (by $E_{a}\left(D_{m}^{a}\right)$) except $P=I_{r}^{a}$ itself.

The ideals of P

- The ideals of P are precisely

$$
I_{m}^{a}=\{f \in P: \operatorname{rank}(f) \leq m\}
$$

for $m \in[1, r]$.

- They are all idempotent generated (by $E_{a}\left(D_{m}^{a}\right)$) except $P=I_{r}^{a}$ itself.

$$
\operatorname{rank}\left(I_{m}^{a}\right)=\operatorname{idrank}\left(I_{m}^{a}\right)= \begin{cases}m^{n-r} S(r, m) & \text { if } 1<m<r \\ n & \text { if } m=1\end{cases}
$$

Future work

Future work

- Conduct an analogous study for variants of:

Future work

- Conduct an analogous study for variants of:
- full linear (matrix) monoids

Future work

- Conduct an analogous study for variants of:
- full linear (matrix) monoids
- symmetric inverse semigroups

Future work

- Conduct an analogous study for variants of:
- full linear (matrix) monoids
- symmetric inverse semigroups
- various diagram semigroups (partition, (partial) Brauer, (partial) Jones, wire, Kaufmann,...)

Future work

- Conduct an analogous study for variants of:
- full linear (matrix) monoids
- symmetric inverse semigroups
- various diagram semigroups (partition, (partial) Brauer, (partial) Jones, wire, Kaufmann,...)
- Consider an 'Ehresmann-style' defined small (semi)category (aka partial monoid / semigroup) S.

Future work

- Conduct an analogous study for variants of:
- full linear (matrix) monoids
- symmetric inverse semigroups
- various diagram semigroups (partition, (partial) Brauer, (partial) Jones, wire, Kaufmann,...)
- Consider an 'Ehresmann-style’ defined small (semi)category (aka partial monoid / semigroup) S. One can turn each hom-set $S_{i j}$ (i - domain, j-codomain) into a semigroup by fixing a 'sandwich' element $a \in S_{j i}$ and defining

$$
x \star y=x \circ a \circ y
$$

Future work

- Conduct an analogous study for variants of:
- full linear (matrix) monoids
- symmetric inverse semigroups
- various diagram semigroups (partition, (partial) Brauer, (partial) Jones, wire, Kaufmann,...)
- Consider an 'Ehresmann-style’ defined small (semi)category (aka partial monoid / semigroup) S. One can turn each hom-set $S_{i j}$ (i - domain, j-codomain) into a semigroup by fixing a 'sandwich' element $a \in S_{j i}$ and defining

$$
x \star y=x \circ a \circ y .
$$

These sandwich semigroups generalise the variants.

- applicable to functions, matrices, diagrams,...

THANK YOU!

Questions and comments to: dockie@dmi.uns.ac.rs

Further information may be found at: http://people.dmi.uns.ac.rs/~dockie

