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I'm free like a river

Flowin’ freely to infinity

I'm free to be sure of what

I am and who | need not be

I'm much freer - like the meaning

Of the word ‘free’ that crazy man defines
Free - free like the vision that

The mind of only you are ever gonna see

Stevie Wonder: Free
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I'm free like a river

Flowin’ freely to infinity

I'm free to be sure of what

I am and who | need not be

I'm much freer - like the meaning

Of the word ‘free’ that crazy man defines
Free - free like the vision that

The mind of only you are ever gonna see

Stevie Wonder: Free

Man is condemned to be free.

Jean-Paul Sartre
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|dempotent generated semigroups

Many natural semigroups are idempotent-generated (S = (E(S))):

MI SANU, 16 December 2016 1 Igor Dolinka: Free |G semigroups



ldempotent generated semigroups

Many natural semigroups are idempotent-generated (S = (E(S))):

» The semigroup 7, \ Sy of singular (non-invertible)
transformations on a finite set (Howie, 1966);
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ldempotent generated semigroups

Many natural semigroups are idempotent-generated (S = (E(S))):
» The semigroup 7, \ S, of singular (non-invertible)
transformations on a finite set (Howie, 1966);

» The singular part of M,(F), the semigroup of all n x n
matrices over a field ' (Erdos (not Paul!), 1967);
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> In 2006, Putcha completed the classification of linear
algebraic monoids that are idempotent-generated;
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Many natural semigroups are idempotent-generated (S = (E(S))):
» The semigroup 7, \ S, of singular (non-invertible)
transformations on a finite set (Howie, 1966);

» The singular part of M,(F), the semigroup of all n x n
matrices over a field ' (Erdos (not Paul!), 1967);

> In 2006, Putcha completed the classification of linear
algebraic monoids that are idempotent-generated;

» The singular part of P, the singular part of the partition
monoid on a finite set (East, FitzGerald, 2012);
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ldempotent generated semigroups

Many natural semigroups are idempotent-generated (S = (E(S))):

» The semigroup 7, \ S, of singular (non-invertible)
transformations on a finite set (Howie, 1966);

» The singular part of M,(F), the semigroup of all n x n
matrices over a field ' (Erdos (not Paul!), 1967);

> In 2006, Putcha completed the classification of linear
algebraic monoids that are idempotent-generated;

» The singular part of P, the singular part of the partition
monoid on a finite set (East, FitzGerald, 2012);

Hence:
What can we say about the structure of the free-est
idempotent-generated (1G) semigroup with a fixed
structure/configuration of idempotents 777
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Biordered sets of idempotents

‘Configuration of idempotents’ = biordered sets
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Biordered sets of idempotents

‘Configuration of idempotents’ = biordered sets = relational
structures (E(S), <(), <(") with two quasi-orders such that

e <) f o e=ef, e< foe=fe
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Biordered sets of idempotents

‘Configuration of idempotents’ = biordered sets = relational
structures (E(S), <(), <(") with two quasi-orders such that

e <) f o e=ef, e< foe=fe

Biordered sets can be finitely axiomatised by several simple rules
(Easdown, Nambooripad, '80s).
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Biordered sets can be finitely axiomatised by several simple rules
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Biordered sets of idempotents

‘Configuration of idempotents’ = biordered sets = relational
structures (E(S), <(), <(") with two quasi-orders such that

e <) f o e=ef, e< foe=fe

Biordered sets can be finitely axiomatised by several simple rules
(Easdown, Nambooripad, '80s).

Basic pair {e, f} of idempotents:

{e,f}N{ef,fe} # &

thatis, ef =eoref =forfe=ceor fe="*.
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Biordered sets of idempotents

‘Configuration of idempotents’ = biordered sets = relational
structures (E(S), <(), <(") with two quasi-orders such that

e <) f o e=ef, e< foe=fe

Biordered sets can be finitely axiomatised by several simple rules
(Easdown, Nambooripad, '80s).

Basic pair {e, f} of idempotents:
{e,f}N{ef,fe} # &

thatis, ef = eoref =f or fe=eor fe =f.
(Note: if, for example, ef € {e, f}, then (fe)? = fe.)
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Biordered sets of idempotents

‘Configuration of idempotents’ = biordered sets = relational
structures (E(S), <(), <(") with two quasi-orders such that

e <) f o e=ef, e< foe=fe

Biordered sets can be finitely axiomatised by several simple rules
(Easdown, Nambooripad, '80s).

Basic pair {e, f} of idempotents:
{e,f}N{ef,fe} # &

thatis, ef = eoref =f or fe=eor fe =f.
(Note: if, for example, ef € {e, f}, then (fe)? = fe.)

Alternatively: Biordered set of a semigroup S = the partial algebra
on E(S) obtained by retaining the products of basic pairs (in S).
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Free |G semigroups: idea

» To every semigroup S with idempotents E associate the
free-est semigroup |G(E) whose idempotents form the same
biordered set as in S.
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Free |G semigroups: idea

» To every semigroup S with idempotents E associate the
free-est semigroup |G(E) whose idempotents form the same
biordered set as in S.

» To every regular semigroup S with idempotents E associate
the free-est regular semigroup RIG(E) in whose idempotents
form the same biordered set as in S.
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Free |G semigroups: formal definitions

Let E be the biordered set of idempotents of a semigroup S.
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Free |G semigroups: formal definitions

Let E be the biordered set of idempotents of a semigroup S.

IG(E) := (E | e- f = ef where {e,f} is a basic pair ).

Suppose now S is regular. We define the sandwich sets:

S(e,f)={hc E : ehf = ef, fhe=h} £ @
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Free |G semigroups: formal definitions

Let E be the biordered set of idempotents of a semigroup S.

IG(E) := (E | e- f = ef where {e,f} is a basic pair ).

Suppose now S is regular. We define the sandwich sets:

S(e,f)={hc E : ehf = ef, fhe=h} £ @

RIG(E) := (E | IG, ehf = ef (e,f € E, he S(e, f))).
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Example 1. Three-element meet semilattice

Let S =

MI SANU, 16 December 2016 5 Igor Dolinka: Free |G semigroups



Example 1. Three-element meet semilattice

Let S =

V4

IG(S) = (e,f,z|e®> =e, f2=f, 22 =2z, ez=ze = fz = zf = z):
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Example 1: Three-element meet semilattice

e
Let S =
z
IG(S) = (e,f,z|e®> =e, f2=f, 22 =2z, ez=ze = fz = zf = z):
e
(ef)e| (ef)
(fe)' | (fe)'f
[ ]
z
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Example 1: Three-element meet semilattice

e
Let S =
z
IG(S) = (e,f,z|e®> =e, f2=f, 22 =2z, ez=ze = fz = zf = z):
e
(ef) e| (ef)
(fe)' | (fe)'f
[ ]
z

RIG(S) = (e,f,z|IG, ef = fe=z)=S.
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Example 2: 2 x 2 rectangular band

S = (ejj | ejers = €ir (1,4, k, 1 € {1,2})):

€11

€12

€21

€22
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Example 2: 2 x 2 rectangular band

S = (ejj | ejers = €ir (1,4, k, 1 € {1,2})):

€11

€12

€21

€22

|G(5) = (e,-j ’ €jjekl = €j (i,_j, k1€ {1,2}, i=korj= /)>:
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Example 2: 2 x 2 rectangular band

S = (ejj | ejers = €ir (1,4, k, 1 € {1,2})):

€11]€12

€21]€22

|G(5) = (e,-j ’ €jjekl = €j (i,j, k, | € {1,2}, =k orj = /)>2

(e11622)  enn(er2en1) er

(612621)i (elle22)i

(ex1e12) exn(exnerr) e

(exen)’ | (exen)
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Example 2: 2 x 2 rectangular band

S = (ejj | ejers = €ir (1,4, k, 1 € {1,2})):

€11]€12

€21]€22

|G(5) = (e,-j ’ €jjekl = €j (i,j, k, | € {1,2}, =k orj = /)>2

(e11622)  enn(er2en1) er

(612621)i (elle22)i

(ex1e12) exn(exnerr) e

(exen)’ | (exen)

RIG(S) = 1G(S).
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Relationships between S = (E), IG(E), and RIG(E)

» (Easdown, 1985) The natural (surjective) homomorphism
¢ IG(E) — S (S = (E(S))) has the following properties:
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> (Easdown, 1985) The natural (surjective) homomorphism
¢ IG(E) — S (S = (E(S))) has the following properties:

» the restriction of ¢ to E is an isomorphism of biordered sets;
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Relationships between S = (E), IG(E), and RIG(E)

> (Easdown, 1985) The natural (surjective) homomorphism
¢ IG(E) — S (S = (E(S))) has the following properties:

» the restriction of ¢ to E is an isomorphism of biordered sets;

» the maximal subgroup He in S is the ¢-image of its
counterpart in IG(E) (which is in turn isomorphic to its
counterpart in RIG(E)).
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Relationships between S = (E), IG(E), and RIG(E)

> (Easdown, 1985) The natural (surjective) homomorphism
¢ IG(E) — S (S = (E(S))) has the following properties:
» the restriction of ¢ to E is an isomorphism of biordered sets;
» the maximal subgroup He in S is the ¢-image of its

counterpart in IG(E) (which is in turn isomorphic to its
counterpart in RIG(E)).

> The ‘eggbox picture’ of the D-class of e has the same
dimensions in all three.
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Relationships between S = (E), IG(E), and RIG(E)

> (Easdown, 1985) The natural (surjective) homomorphism
¢ IG(E) — S (S = (E(S))) has the following properties:
» the restriction of ¢ to E is an isomorphism of biordered sets;
» the maximal subgroup He in S is the ¢-image of its
counterpart in IG(E) (which is in turn isomorphic to its
counterpart in RIG(E)).

> The ‘eggbox picture’ of the D-class of e has the same
dimensions in all three.

» IG(E) may contain other, non-regular D-classes.
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Relationships between S = (E), IG(E), and RIG(E)

> (Easdown, 1985) The natural (surjective) homomorphism
¢ IG(E) — S (S = (E(S))) has the following properties:
» the restriction of ¢ to E is an isomorphism of biordered sets;
» the maximal subgroup He in S is the ¢-image of its
counterpart in IG(E) (which is in turn isomorphic to its
counterpart in RIG(E)).

> The ‘eggbox picture’ of the D-class of e has the same
dimensions in all three.
» IG(E) may contain other, non-regular D-classes.

So, understanding IG(E) is essential in understanding the structure
of arbitrary IG semigroups.
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Relationships between S = (E), IG(E), and RIG(E)

> (Easdown, 1985) The natural (surjective) homomorphism
¢ IG(E) — S (S = (E(S))) has the following properties:

» the restriction of ¢ to E is an isomorphism of biordered sets;

» the maximal subgroup He in S is the ¢-image of its
counterpart in IG(E) (which is in turn isomorphic to its
counterpart in RIG(E)).

> The ‘eggbox picture’ of the D-class of e has the same
dimensions in all three.
» IG(E) may contain other, non-regular D-classes.
So, understanding IG(E) is essential in understanding the structure
of arbitrary IG semigroups.

Question

Which groups arise as maximal subgroups of IG(E) (and thus of
RIG(E))?
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The big picture
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The big picture
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The big picture
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The big picture

S * .
3 '(_//
[¢] i
G =7
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Let's zoom in

S €(11)
G =777

€(11)] €12 | €13

€22 €24 €22 €24

€31 | €32 ]| €33 €34

€31 €32 €33 €34
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Presentation for a max. subgroup of IG(E): Generators

Fact
G is generated by a set in 1-1 correspondence with D N E(S).
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Presentation for a max. subgroup of IG(E): Generators

Fact

G is generated by a set in 1-1 correspondence with D N E(S).

D

e(1)

€12

€13

€22

€24

€31

€32

€33

€34

generators of G

fin | A2 | fi3
o 4
1| | 3| s
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Presentation for a max. subgroup of IG(E): Generators

Fact
G is generated by a set in 1-1 correspondence with D N E(S).

D generators of G

e11)] ez | e13 fin | fi2 | fi3
€22 €24 o 4
e31 | e | €33 | e f31 | f2 | 3 | faa

G = <f,J (e,-j S DﬁE)’???>
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Typical relations: ﬂflﬁ/ = fkjflfk/ oh— 2

1 J /
11 en
| ———
i heJCe T — " [e
/\
k h - —Cew’ = P ey

€ij €jl

- ~1 -1
= relation f; “f;y = f_. 1.
€kj €kl } Y ki

Singular square [
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Presentation — Approach #1

Theorem (Nambooripad 1979; Gray, Ruskuc 2012)
The maximal subgroup G of e € E in IG(E) or RIG(E) is defined

by the presentation:
<f; ‘ fi,7r(i) =1 (I € I):
fi = fi (if rjei = r; is a Schreier rep.),
e i ] sing. sq.)).

-1 _ (-1
f’j f’l o fkj fkl (|: €kj €kl
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Presentation — Approach #1

Theorem (Nambooripad 1979; Gray, Ruskuc 2012)
The maximal subgroup G of e € E in IG(E) or RIG(E) is defined

by the presentation:
<f; ‘ fi,7r(i) =1 (I € I):
fi = fi (if rjei = r; is a Schreier rep.),
e i } sing. sq.)).

-1 _ (-1
f’j f’l o fkj fkl (|: €kj €kl

Proof: Reidemeister—Schreier rewriting process followed by Tietze

transformations.
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Graham-Houghton complex

Let S be an idempotent generated regular semigroup.
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Graham-Houghton complex

Let S be an idempotent generated regular semigroup.

GH(S): a 2-complex whose connected components are in a 1-1
correspondence with D-classes of S.
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Graham-Houghton complex

Let S be an idempotent generated regular semigroup.

GH(S): a 2-complex whose connected components are in a 1-1

correspondence with D-classes of S.

D
€11)] e12 | €13
€22 €24
€31 | €32 ]| €33 | €34
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Graham-Houghton complex

Let S be an idempotent generated regular semigroup.

GH(S): a 2-complex whose connected components are in a 1-1

correspondence with D-classes of S.

D
€11)] e12 | €13
€22 €24
€31 | €32 | €33 | €34
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Presentation — Approach #2

Theorem (Brittenham, Margolis, Meakin, 2009)

The fundamental group of GH(S) at any point of its connected
component Cg containing the edge e = the maximal subgroup of
RIG(E(S)) (and thus of IG(E(S))) containing e.

So,...
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Presentation — Approach #2

Theorem (Brittenham, Margolis, Meakin, 2009)

The fundamental group of GH(S) at any point of its connected
component Cg containing the edge e = the maximal subgroup of
RIG(E(S)) (and thus of IG(E(S))) containing e.

So,...

... let T be an arbitrary spanning tree of C.
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Presentation — Approach #2

Theorem (Brittenham, Margolis, Meakin, 2009)

The fundamental group of GH(S) at any point of its connected
component Cg containing the edge e = the maximal subgroup of
RIG(E(S)) (and thus of IG(E(S))) containing e.

So,...

... let T be an arbitrary spanning tree of C.. Then the maximal
subgroup G of e € E in IG(E) (or RIG(E)) is defined by the
presentation:

fl.jfkj—,lfk,fil—l =1((i.j, k. 1) is a 2-cell)).
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Presentation — Approach #2

Theorem (Brittenham, Margolis, Meakin, 2009)

The fundamental group of GH(S) at any point of its connected
component Cg containing the edge e = the maximal subgroup of
RIG(E(S)) (and thus of IG(E(S))) containing e.

So,...

... let T be an arbitrary spanning tree of C.. Then the maximal
subgroup G of e € E in IG(E) (or RIG(E)) is defined by the
presentation:

fitg fafy L =1 ((i,), k1) is a 2-cell)).

Obviously, a clever choice of 7 may speed up the computation.

MI SANU, 16 December 2016 14 Igor Dolinka: Free IG semigroups



Remarks (1)

» Two types of relations:
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Remarks (1)

» Two types of relations:

» Initial conditions: declaring some generators equal to 1 (or to
each other in approach #1);
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Remarks (1)

» Two types of relations:
» Initial conditions: declaring some generators equal to 1 (or to
each other in approach #1);
» Main relations: one per singular square.
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Remarks (1)

» Two types of relations:

» Initial conditions: declaring some generators equal to 1 (or to
each other in approach #1);
» Main relations: one per singular square.

> All relations of length < 4.
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Remarks (1)

» Two types of relations:

» Initial conditions: declaring some generators equal to 1 (or to
each other in approach #1);
» Main relations: one per singular square.

> All relations of length < 4.
» What can be defined by relations f,-jflf;, = fkj.lfk/?
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Remarks (1)

v

Two types of relations:

» Initial conditions: declaring some generators equal to 1 (or to
each other in approach #1);
» Main relations: one per singular square.

All relations of length < 4.
What can be defined by relations f,-jflf;, = fkj.lfk/?

> [1 b}:>ab:c.

v

v

a cC
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Remarks (2)

» But: Every semigroup can be defined by relations of the form
ab=c.

MI SANU, 16 December 2016 16 Igor Dolinka: Free |G semigroups



Remarks (2)

» But: Every semigroup can be defined by relations of the form
ab=c.

» Even better: Every finitely presented semigroup can be
defined by finitely many relations of the form ab = c.
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Remarks (2)

» But: Every semigroup can be defined by relations of the form
ab=c.

» Even better: Every finitely presented semigroup can be
defined by finitely many relations of the form ab = c.

» Some more special squares . ..
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Remarks (2)

» But: Every semigroup can be defined by relations of the form
ab=c.
» Even better: Every finitely presented semigroup can be

defined by finitely many relations of the form ab = c.

» Some more special squares . ..

-
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Remarks (2)

» But: Every semigroup can be defined by relations of the form
ab=c.
» Even better: Every finitely presented semigroup can be

defined by finitely many relations of the form ab = c.
» Some more special squares . ..

a a
[b C]=>b—c.
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Remarks (2)

» But: Every semigroup can be defined by relations of the form
ab=c.
» Even better: Every finitely presented semigroup can be

defined by finitely many relations of the form ab = c.
» Some more special squares . ..

a a
[b C]=>b—c.

e

v

v
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Remarks (2)

v

ab=c.

v

But: Every semigroup can be defined by relations of the form

Even better: Every finitely presented semigroup can be

defined by finitely many relations of the form ab = c.

» Some more special squares . ..

a a
[b C]=>b—c.

11
[1 a}:>a—1.
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The freeness conjecture

Question

Which groups arise as maximal subgroups of IG(E) (and thus of
RIG(E))?
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The freeness conjecture

Question

Which groups arise as maximal subgroups of IG(E) (and thus of
RIG(E))?

» Work of Pastijn and Nambooripad ('70s and '80s) and
McElwee (2002) led to the belief that these maximal
subgroups must always be free groups (of a suitable rank).
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The freeness conjecture

Question

Which groups arise as maximal subgroups of IG(E) (and thus of
RIG(E))?

» Work of Pastijn and Nambooripad ('70s and '80s) and
McElwee (2002) led to the belief that these maximal
subgroups must always be free groups (of a suitable rank).

» This conjecture was proved false by Brittenham, Margolis, and
Meakin in 2009 who obtained the groups Z & Z (from a

particular 73-element semigroup) and F* for an arbitrary field
F.
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The freeness conjecture

Question

Which groups arise as maximal subgroups of IG(E) (and thus of
RIG(E))?

» Work of Pastijn and Nambooripad ('70s and '80s) and
McElwee (2002) led to the belief that these maximal
subgroups must always be free groups (of a suitable rank).

» This conjecture was proved false by Brittenham, Margolis, and
Meakin in 2009 who obtained the groups Z & Z (from a
particular 73-element semigroup) and F* for an arbitrary field
F.

» Finally, Gray and Ruskuc (2012) proved that every group
arises as a maximal subgroup of some free idempotent
generated semigroup (!!!).
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Gray & Ruskuc (Israel J. Math., 2012)

Theorem
Every group is a maximal subgroup of some free idempotent
generated semigroup (over a regular semigroup).
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Gray & Ruskuc (Israel J. Math., 2012)

Theorem
Every group is a maximal subgroup of some free idempotent
generated semigroup (over a regular semigroup).

Theorem
Every finitely presented group is a maximal subgroup of some free
idempotent generated semigroup arising from a finite semigroup.
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Gray & Ruskuc (Israel J. Math., 2012)

Theorem
Every group is a maximal subgroup of some free idempotent
generated semigroup (over a regular semigroup).

Theorem
Every finitely presented group is a maximal subgroup of some free
idempotent generated semigroup arising from a finite semigroup.

Remark

Maximal subgroups of free idempotent generated semigroups
arising from finite semigroups have to be finitely presented by
Reidemeister—Schreier.
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Calculating the groups for natural examples of S

Some or all maximal subgroups in IG(E(S)) have been calculated
for the following S:
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Calculating the groups for natural examples of S

Some or all maximal subgroups in IG(E(S)) have been calculated
for the following S:

» Full transformation monoids: Gray, Ruskuc (symmetric
groups, provided rank < n — 2);
(Proc. London Math. Soc., 2012)
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Calculating the groups for natural examples of S

Some or all maximal subgroups in IG(E(S)) have been calculated
for the following S:
» Full transformation monoids: Gray, Ruskuc (symmetric
groups, provided rank < n — 2);
(Proc. London Math. Soc., 2012)
» Partial transformation monoids: IgD (symmetric groups
again);
(Comm. Algebra, 2013)
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Calculating the groups for natural examples of S

Some or all maximal subgroups in IG(E(S)) have been calculated
for the following S:

» Full transformation monoids: Gray, Ruskuc (symmetric
groups, provided rank < n — 2);
(Proc. London Math. Soc., 2012)

» Partial transformation monoids: IgD (symmetric groups
again);
(Comm. Algebra, 2013)

» Full matrix monoid over a skew field: IgD, Gray (general linear
groups, if rank < n/3, otherwise...);
(Trans. Amer. Math. Soc., 2014)
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Calculating the groups for natural examples of S

Some or all maximal subgroups in IG(E(S)) have been calculated
for the following S:

» Full transformation monoids: Gray, Ruskuc (symmetric
groups, provided rank < n — 2);
(Proc. London Math. Soc., 2012)

» Partial transformation monoids: IgD (symmetric groups
again);
(Comm. Algebra, 2013)

» Full matrix monoid over a skew field: IgD, Gray (general linear
groups, if rank < n/3, otherwise...);
(Trans. Amer. Math. Soc., 2014)

» Endomorphism monoid of a free G-act: IgD, Gould, Yang
(wreath products of G by symmetric groups).
(J. Algebra, 2015)
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Bands

Theorem (IgD, 2012)

For every left- or right seminormal band B, all maximal subgroups
of IG(B) are free. For every variety V not contained in

LSNB U RSNB there exists B € V such that IG(B) contains a
non-free maximal subgroup.
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Bands

Theorem (IgD, 2012)

For every left- or right seminormal band B, all maximal subgroups
of IG(B) are free. For every variety V not contained in

LSNB U RSNB there exists B € V such that IG(B) contains a
non-free maximal subgroup.

An example of the GH-complex in a 20-element regular band (the
top 2 x 2 D-class not shown):
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Bands

Question

Which groups arise as maximal subgroups of IG(B), B a (finite)
band?
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Bands

Question

Which groups arise as maximal subgroups of IG(B), B a (finite)
band?

Answer (IgD, Ruskuc — IJAC, 2013): All of them! (Resp. all
finitely presented ones.)
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lgD & Ruskuc construction: set-up
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lgD & Ruskuc construction: set-up

Suppose we want to obtain
G={(ab,c,...|ab=c,...)

as a maximal subgroup of 1G(B) for a band B.
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lgD & Ruskuc construction: set-up

Suppose we want to obtain
G={(ab,c,...|ab=c,...)

as a maximal subgroup of 1G(B) for a band B.
» | ={0,a,b,c,...,0,d,b,c,... };
» J={0,a,b,c,...,00};
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lgD & Ruskuc construction: set-up

Suppose we want to obtain
G={(ab,c,...|ab=c,...)

as a maximal subgroup of IG(B) for a band B.
» | ={0,a,b,c,...,0,d,b,c,... };
» J={0,a,b,c,...,00};
S T=T Ty
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lgD & Ruskuc construction: set-up

Suppose we want to obtain
G=(ab,c,...|ab=c,...)

as a maximal subgroup of 1G(B) for a band B.
» | ={0,a,b,c,...,0,d,b,c,... };
» J={0,a,b,c,...,00};
T=T ' xTs
» the minimal ideal: K = {(0,7) : 0,7 constants};

K is an | x J rectangular band.

v

v
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lgD & Ruskuc construction: set-up

» B= K UL, where L is a left zero

semigroup.

[ ]<]
I
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lgD & Ruskuc construction: set-up

» B= K UL, where L is a left zero L|o|o|o|...|o|o|o|
semigroup. |

» We ensure this by virtue of every
(0,7) € L satisfying:
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lgD & Ruskuc construction: set-up

» B= K UL, where L is a left zero L|o|o|o|...|o|o|o|

semigroup. |
> We ensure this by virtue of every Ole|o|e|efe
(0,7) € L satisfying: ale|e]|e]e]e
> 0'2 =0, T2 =T, bl|e|e]|e]|e|e
Cc [ ] [ ] [ ] L] L]
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lgD & Ruskuc construction: set-up

» B= K UL, where L is a left zero

semigroup.

» We ensure this by virtue of every

(0,7) € L satisfying:
» ol=o0,12=T1;

> ker(o) =

{{Oa a, ba C}) {0/7 a/7 bl? C/}};

[ ]<]
I
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lgD & Ruskuc construction: set-up

» B= K UL, where L is a left zero L|o|o|o|...|o|o|o|

semigroup. |
» We ensure this by virtue of every O|e[eo]|ofe]e
(0,7) € L satisfying: ale|e]|e]e]e
> 02 =0, 7'2 =T, bl|e|e]|e]|e|e
> ker(O—) = , , , , C [ ] [ ] [ ] L] L]
{{0,a,b,c},{0,d, b, c'}}; oo les K
» thus o is determined by its image ,
{x,y} transversing its kernel; aje|e|e|°l
ple|e|e|e|e
c'loe|oe]|e|e]|e
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lgD & Ruskuc construction: set-up

» B= K UL, where L is a left zero L|o|o|o|...|o|o|o|

semigroup. |
> We ensure this by virtue of every Ole|o|e|efe
(0,7) € L satisfying: ale|e]|e]e]e
> o2 = ag, 2= T, ble|e|e|e]|e
" obe), (0.9.5. )

0,a,b,c}, {0,a,b,c'}} , K

» thus o is determined by its image 0/ bl Bl Al Bl s
{x,y} transversing its kernel; CH I Il Bl
» im(7) = {0, a, b, c}; ple|e[e]|e]e
c'loe|oe]|e|e]|e
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lgD & Ruskuc construction: set-up

» B= K UL, where L is a left zero L|o|o|o|...|o|o|o|

semigroup. |
» We ensure this by virtue of every O|o[e]|ofe]e
(0,7) € L satisfying: ale|e]|e]e]e
> o2 = ag, 2= T, ble|e|e|e]|e
e 0,0,5.0)

0,a,b,c}, {0,a,b,c'}} , K

> thus o is determined by its image 0/ bl Il Il Il
{x,y} transversing its kernel; ajefefef*]°
» im(7) = {0, a, b, c}; plefe]|e|e]e
» thus 7 is specified by (c0)7. le|e|o|e]e
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lgD & Ruskuc construction: the action of L on K

| Notation | Indexing | im(c) | (co)T |
(00, 70) - {0,0'} 0
(02,72) acA {0,4'} a
(Ga,7a) acA {a,d'} 0
(ov,7v) | r=(ab,c) € R | {b,c'} a
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lgD & Ruskuc construction: the endgame

0 a b ¢ x
0| foo | foa | fob | foc |foco
a| fao | faa | fab | fac |faco
b| foo | foa | fob | foc |fboo
C| feo | fea | feb | fec |feco
0| foro| fora|forb | fore [foroo
a'|fao|fora|forb | farc [for o
b fora| fora| forb | forc [for oo
c|fero|fera|fern | fere fferco
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lgD & Ruskuc construction: the endgame

0 a b ¢ x
0| foo | foa | fob | foc |foco
a| fao | faa | fab | fac |faco
b| foo | foa | fob | foc |fboo
C| feo | fea | feb | fec |feoo
0| foro| fora|forb | fore [foroo
a'|fao|fora|forb | farc [for o
b fora| fora| forb | forc [for oo
c|fero|fera|fern | fere fferco

(00, 70)
(02, 7a)
(EB7F=")

—

0 b ¢ o
1 1 1
1 1|11 a
1 1|11]6b
1 1]1fc
1 b|lc|1
1 b|lc| a
1 b|lc|b
1 b|lc|c
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lgD & Ruskuc construction: the endgame

0 a b ¢ x 0 b ¢ oo
0| foo | foa | for | foc foco 0f1 1 1
a| fao | faa | fab | fac |faco (00, 70) all 111]a
b| feo | foa | fob | foc |fooo (02, 72) bl 1 1 (165

(2, 75)

C|feo | fea | fob | fec |feoo — cl1 1]1fc
0| foro| fora|forb | fore [foroo 0] 1 b|lc|1l
a'|fao|fora|forb | farc [for o al1 b|lc|a
b fora| fora| forb | forc [for oo bl 1 blc|b
c|fero|fera|fern | fere fferco cl1 b|lc|c
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The word problem

A semigroup S with a finite generating set A has decidable word
problem if there is an algorithm which for any two words

wi, wp € AT decides whether or not they represent the same
element of S.
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The word problem

A semigroup S with a finite generating set A has decidable word
problem if there is an algorithm which for any two words

wi, wp € AT decides whether or not they represent the same
element of S.

Example
S = (a, b | ab = ba) has decidable word problem.
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The word problem

A semigroup S with a finite generating set A has decidable word
problem if there is an algorithm which for any two words

wi, wp € AT decides whether or not they represent the same
element of S.

Example
S = (a, b | ab = ba) has decidable word problem.
Some history:

» Markov (1947) and Post (1947): first examples of finitely
presented semigroups with undecidable word problem;
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The word problem

A semigroup S with a finite generating set A has decidable word
problem if there is an algorithm which for any two words

wi, wp € AT decides whether or not they represent the same
element of S.

Example
S = (a, b | ab = ba) has decidable word problem.

Some history:

» Markov (1947) and Post (1947): first examples of finitely
presented semigroups with undecidable word problem;

» Turing (1950): finitely presented cancellative semigroup with
undecidable word problem;
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The word problem

A semigroup S with a finite generating set A has decidable word
problem if there is an algorithm which for any two words

wi, wp € AT decides whether or not they represent the same
element of S.

Example
S = (a, b | ab = ba) has decidable word problem.

Some history:
» Markov (1947) and Post (1947): first examples of finitely
presented semigroups with undecidable word problem;
» Turing (1950): finitely presented cancellative semigroup with
undecidable word problem;

» Novikov (1955) and Boone (1958): finitely presented group
with undecidable word problem.
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The word problem for IG(E)

S — a semigroup, E = E(S)

Question
Does IG(E) have a decidable word problem if E is finite?
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The word problem for IG(E)

S — a semigroup, E = E(S)

Question

Does IG(E) have a decidable word problem if E is finite?
General facts:

» E finite = every maximal subgroup of IG(E) is finitely
presented,
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The word problem for IG(E)

S — a semigroup, E = E(S)
Question
Does IG(E) have a decidable word problem if E is finite?
General facts:
» E finite = every maximal subgroup of IG(E) is finitely
presented,

» If IG(E) has a decidable word problem then every maximal
subgroup of IG(E) must have a decidable word problem.
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The word problem for IG(E)

S — a semigroup, E = E(S)

Question

Does IG(E) have a decidable word problem if E is finite?
General facts:

» E finite = every maximal subgroup of IG(E) is finitely
presented,

» If IG(E) has a decidable word problem then every maximal
subgroup of IG(E) must have a decidable word problem.

Hence, because of the Gray-Ruskuc result, the answer to the
previous question is NO, because there is a finitely presented group
with an undecidable WP.
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The word problem for IG(E)

S — a semigroup, E = E(S)

Question
Does IG(E) have a decidable word problem if E is finite?
General facts:
» E finite = every maximal subgroup of IG(E) is finitely
presented,
» If IG(E) has a decidable word problem then every maximal
subgroup of IG(E) must have a decidable word problem.

Hence, because of the Gray-Ruskuc result, the answer to the
previous question is NO, because there is a finitely presented group
with an undecidable WP. So, we obtain

Theorem
There exists a finite semigroup S such that IG(E) has an
undecidable word problem.
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The word problem for IG(E) — reloaded

S — a semigroup, E = E(S)
Question (Updated)

Does IG(E) have a decidable word problem if E is finite and every
maximal subgroup of IG(E) has a decidable word problem?
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The word problem for IG(E) — reloaded

S — a semigroup, E = E(S)

Question (Updated)

Does IG(E) have a decidable word problem if E is finite and every
maximal subgroup of IG(E) has a decidable word problem?

This question is the subject of the joint paper

IgD, R.D.Gray, N.Ruskuc: On regularity and the word problem for
free idempotent generated semigroups, arXiv: 1412.5167, 33pp.
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The word problem for IG(E) — reloaded

S — a semigroup, E = E(S)

Question (Updated)

Does IG(E) have a decidable word problem if E is finite and every
maximal subgroup of IG(E) has a decidable word problem?

This question is the subject of the joint paper

IgD, R.D.Gray, N.Ruskuc: On regularity and the word problem for
free idempotent generated semigroups, arXiv: 1412.5167, 33pp.

...just accepted few weeks ago in the Proc. London Math. Soc.
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The good news

Question (Updated)

Does IG(E) have a decidable word problem if E is finite and every
maximal subgroup of IG(E) has a decidable word problem?
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The good news

Question (Updated)

Does IG(E) have a decidable word problem if E is finite and every
maximal subgroup of IG(E) has a decidable word problem?

Theorem
There exists an algorithm deciding whether w € E™ represents a
regular element of IG(E).
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The good news

Question (Updated)

Does IG(E) have a decidable word problem if E is finite and every
maximal subgroup of IG(E) has a decidable word problem?

Theorem
There exists an algorithm deciding whether w € E™ represents a
regular element of IG(E).
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The good news

Question (Updated)

Does IG(E) have a decidable word problem if E is finite and every
maximal subgroup of IG(E) has a decidable word problem?

Theorem
There exists an algorithm deciding whether w € E™ represents a
regular element of IG(E).

Theorem

If every maximal subgroup of IG(E) has a solvable word problem,
then there is an algorithm which, given u,v € E* such that u
represents a regular element, decides whether u = v holds in IG(E).
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The good news

Question (Updated)

Does IG(E) have a decidable word problem if E is finite and every
maximal subgroup of IG(E) has a decidable word problem?

Theorem
There exists an algorithm deciding whether w € E™ represents a
regular element of IG(E).

Theorem

If every maximal subgroup of IG(E) has a solvable word problem,
then there is an algorithm which, given u,v € E* such that u
represents a regular element, decides whether u = v holds in IG(E).

Corollary

The word problem for RIG(E) is solvable iff the word problem for
each of its maximal subgroups is solvable.
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The general picture

IG(E) S
He
e.
E =E(S)
e . © ® ¢ 0 .
E non-regular E
! elements !
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The bad news

Question (Updated)

Does IG(E) have a decidable word problem if E is finite and every
maximal subgroup of IG(E) has a decidable word problem?
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The bad news

Question (Updated)

Does IG(E) have a decidable word problem if E is finite and every
maximal subgroup of IG(E) has a decidable word problem?

lgD + RDG + NR: NO.
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The bad news

Question (Updated)

Does IG(E) have a decidable word problem if E is finite and every
maximal subgroup of IG(E) has a decidable word problem?

lgD + RDG + NR: NO.

Theorem
There exists a finite band Bg 1 (constructed from a f.p. group G
and its f.g. subgroup H) such that:

(i) All maximal subgroups of IG(Bg 1) have decidable word
problems.

(it) The word problem for IG(Bg 1) is undecidable.

MI SANU, 16 December 2016 31 Igor Dolinka: Free IG semigroups



The bad news

Question (Updated)

Does IG(E) have a decidable word problem if E is finite and every
maximal subgroup of IG(E) has a decidable word problem?

lgD + RDG + NR: NO.

Theorem
There exists a finite band Bg 1 (constructed from a f.p. group G
and its f.g. subgroup H) such that:

(i) All maximal subgroups of IG(Bg 1) have decidable word
problems.

(it) The word problem for IG(Bg 1) is undecidable.

For this result we make use of another decision problem...
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The subgroup membership problem

Let G be a group with finite generating set A, and let H be a
subgroup of G given by a finite set of words which generate H.
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The subgroup membership problem

Let G be a group with finite generating set A, and let H be a
subgroup of G given by a finite set of words which generate H.

Then the membership problem for H in G is the problem of
deciding, for an arbitrary word w over the generators A, whether or
not w represents an element of the subgroup H.
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The subgroup membership problem

Let G be a group with finite generating set A, and let H be a
subgroup of G given by a finite set of words which generate H.

Then the membership problem for H in G is the problem of
deciding, for an arbitrary word w over the generators A, whether or
not w represents an element of the subgroup H.

Theorem (Mihailova, 1958)

Their exists a finitely presented group G with a finitely generated
subgroup H such that

» G has a decidable word problem, but
» the membership problem for H in G is undecidable.
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The subgroup membership problem

Let G be a group with finite generating set A, and let H be a
subgroup of G given by a finite set of words which generate H.

Then the membership problem for H in G is the problem of
deciding, for an arbitrary word w over the generators A, whether or
not w represents an element of the subgroup H.

Theorem (Mihailova, 1958)

Their exists a finitely presented group G with a finitely generated
subgroup H such that

» G has a decidable word problem, but
» the membership problem for H in G is undecidable.

Example
G =F x F (F af.g. free group), H=ker(v) (v: F — W a
natural homomorphism onto a group with an undecidable WP).
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The Bg y construction

L
Ay ¢
Ap
R
|
K
A1
1 1
Ke v N Ke
By
A Ay
— —!
Ay Ay
A/1 o' A/I/ e
N /
{0}
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Encoding the membership problem

Ay te
Ay
R
|
Ku
AL
rd %
G / B AN G
<] <]
A Al
— —n
Ay Ay
A o Al oo
N /
E non-regular |
| elements !
|
{0}

Structure of IG(Bg 1)
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Encoding the membership problem

L
Ay ¢
Ay
R
|
Kn
A
e I
G / B, G
G G
A Al
— —n
Ay Ay
A oo Al oo
N /
3 non-regular |
i elements
|
{0}

Structure of IG(Bg 1)

— — . .
Each of K and K is a Rees matrix
semigroup over G

Ke=l'xGxJ, Ke=lI"xGxJ'"
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Encoding the membership problem

A Le
A Structure of IG(Bg 1)
R — — . .
‘ Each of K and K is a Rees matrix
Kis semigroup over G
A
—/ —1!
. s A Ke=l'xGxJ, Kg=l"xGxJ"
G G
A Al For any word w over A the equality
(1/7 17 1/)(1//7 l’ 1//) — (1/7 Wil, 1/)(1//, W7 1//)
A A holds in IG(Bg 1) < w € H.
A o A
N 7
§ non-regular 3
1 elements 3
,,,,,, eeed
{0}
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Encoding the membership problem
A Structure of IG(Bg 1)

— — . .
Each of K and K is a Rees matrix
K semigroup over G

o~y 1 T A~ 1
Ry p A Ke=2l"'xGxJ, Kg=2I1"xGxJ".

By

x|

A A For any word w over A the equality
(1/7 17 1/)(1//7 l’ 1//) — (1/7 Wil, 1/)(1//7 W7 1//)
A A holds in IG(Bg 1) < w € H.

4o AL oo Conclusion: If IG(Bg #) had a decidable word

‘ problem this would imply the membership
! non-regular |
1 elements :

problem for H in G is decidable, which is a
contradiction. ¢
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THANK YOU!

Questions and comments to:
dockie@dmi.uns.ac.rs

Further information may be found at:
http://people.dmi.uns.ac.rs/~dockie
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