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I’m free like a river
Flowin’ freely to infinity
I’m free to be sure of what
I am and who I need not be
I’m much freer - like the meaning
Of the word ‘free’ that crazy man defines
Free - free like the vision that
The mind of only you are ever gonna see

Stevie Wonder: Free

Man is condemned to be free.

Jean-Paul Sartre
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Idempotent generated semigroups

Many natural semigroups are idempotent-generated (S = 〈E (S)〉):

◮ The semigroup Tn \ Sn of singular (non-invertible)
transformations on a finite set (Howie, 1966);

◮ The singular part of Mn(F), the semigroup of all n × n
matrices over a field F (Erdos (not Paul!), 1967);

◮ In 2006, Putcha completed the classification of linear
algebraic monoids that are idempotent-generated;

◮ The singular part of Pn, the singular part of the partition
monoid on a finite set (East, FitzGerald, 2012);

Hence:

What can we say about the structure of the free-est
idempotent-generated (IG) semigroup with a fixed
structure/configuration of idempotents ???
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Biordered sets of idempotents

‘Configuration of idempotents’ = biordered sets = relational
structures (E (S),≤(l),≤(r)) with two quasi-orders such that

e ≤(l) f ⇔ e = ef , e ≤(r) f ⇔ e = fe.

Biordered sets can be finitely axiomatised by several simple rules
(Easdown, Nambooripad, ’80s).

Basic pair {e, f } of idempotents:

{e, f } ∩ {ef , fe} 6= ∅

that is, ef = e or ef = f or fe = e or fe = f .
(Note: if, for example, ef ∈ {e, f }, then (fe)2 = fe.)

Alternatively: Biordered set of a semigroup S = the partial algebra
on E (S) obtained by retaining the products of basic pairs (in S).
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Free IG semigroups: idea

◮ To every semigroup S with idempotents E associate the
free-est semigroup IG(E ) whose idempotents form the same
biordered set as in S .

◮ To every regular semigroup S with idempotents E associate
the free-est regular semigroup RIG(E ) in whose idempotents
form the same biordered set as in S .
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Free IG semigroups: formal definitions

Let E be the biordered set of idempotents of a semigroup S .

IG(E ) := 〈E | e · f = ef where {e, f } is a basic pair 〉.

Suppose now S is regular. We define the sandwich sets:

S(e, f ) = {h ∈ E : ehf = ef , fhe = h} 6= ∅

RIG(E ) := 〈E | IG, ehf = ef (e, f ∈ E , h ∈ S(e, f ))〉.
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Example 1: Three-element meet semilattice

Let S =

e f

z

IG(S) = 〈e, f , z | e2 = e, f 2 = f , z2 = z , ez = ze = fz = zf = z〉:

(ef )ie (ef )i

(fe)i (fe)i f

e f

z

RIG (S) = 〈e, f , z | IG, ef = fe = z〉 = S .
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Example 2: 2× 2 rectangular band

S = 〈eij | eijekl = eil (i , j , k , l ∈ {1, 2})〉:

e11 e12

e21 e22

IG(S) = 〈eij | eijekl = eil (i , j , k , l ∈ {1, 2}, i = k or j = l)〉:

(e11e22)
i
e11

(e12e21)
i

(e12e21)
i
e12

(e11e22)
i

(e21e12)
i
e21

(e22e11)
i

(e22e11)
i
e22

(e21e12)
i

RIG(S) = IG(S).
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Relationships between S = 〈E 〉, IG(E ), and RIG(E )

◮ (Easdown, 1985) The natural (surjective) homomorphism
φ : IG(E ) → S (S = 〈E (S)〉) has the following properties:

◮ the restriction of φ to E is an isomorphism of biordered sets;
◮ the maximal subgroup He in S is the φ-image of its

counterpart in IG(E ) (which is in turn isomorphic to its
counterpart in RIG(E )).

◮ The ‘eggbox picture’ of the D-class of e has the same
dimensions in all three.

◮ IG(E ) may contain other, non-regular D-classes.

So, understanding IG(E ) is essential in understanding the structure
of arbitrary IG semigroups.

Question
Which groups arise as maximal subgroups of IG(E ) (and thus of
RIG(E ))?
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The big picture

S

e

IG(E )

e

G =???
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Let’s zoom in

e(11) e12 e13

e22 e24

e31 e32 e33 e34

e(11)
G =???

e12 e13

e22 e24

e31 e32 e33 e34

S

D

IG(E )
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Presentation for a max. subgroup of IG(E ): Generators

Fact
G is generated by a set in 1-1 correspondence with D ∩ E (S).

e(11) e12 e13

e22 e24

e31 e32 e33 e34

D

f11 f12 f13

f22 f24

f31 f32 f33 f34

generators of G

G = 〈fij (eij ∈ D ∩ E ) | ???〉

MI SANU, 16 December 2016 Igor Dolinka: Free IG semigroups10



Typical relations: f −1
ij fil = f

−1
kj fkl h = h2

1

i

k

1 j l

e11

eij eil
− · h

h · −

ekj ekl
− · h

h · −

Singular square

[

eij eil
ekj ekl

]

⇒ relation f −1
ij fil = f −1

kj fkl .
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Presentation – Approach #1

Theorem (Nambooripad 1979; Gray, Ruškuc 2012)

The maximal subgroup G of e ∈ E in IG(E ) or RIG(E ) is defined
by the presentation:

〈fij | fi ,π(i) = 1 (i ∈ I ),

fij = fil (if rjeil = rl is a Schreier rep.),

f −1
ij fil = f −1

kj fkl (

[

eij eil
ekj ekl

]

sing. sq.)〉.

Proof: Reidemeister–Schreier rewriting process followed by Tietze
transformations.
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Graham-Houghton complex

Let S be an idempotent generated regular semigroup.

GH(S): a 2-complex whose connected components are in a 1-1
correspondence with D-classes of S .

e(11) e12 e13

e22 e24

e31 e32 e33 e34

D

1

2

3

1

2

3

4

e
e13

e31 e33
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Presentation – Approach #2

Theorem (Brittenham, Margolis, Meakin, 2009)

The fundamental group of GH(S) at any point of its connected
component Ce containing the edge e ∼= the maximal subgroup of
RIG(E (S)) (and thus of IG(E (S))) containing e.

So,...

... let T be an arbitrary spanning tree of Ce . Then the maximal
subgroup G of e ∈ E in IG(E ) (or RIG(E )) is defined by the
presentation:

〈fij | fij = 1 ((i , j) ∈ T ),

fij f
−1
kj fkl f

−1
il = 1 ((i , j , k , l) is a 2-cell)〉.

Obviously, a clever choice of T may speed up the computation.
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Remarks (1)

◮ Two types of relations:
◮ Initial conditions: declaring some generators equal to 1 (or to

each other in approach #1);
◮ Main relations: one per singular square.

◮ All relations of length ≤ 4.

◮ What can be defined by relations f −1
ij fil = f −1

kj fkl?

◮

[

1 b
a c

]

⇒ ab = c .
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Remarks (2)

◮ But: Every semigroup can be defined by relations of the form
ab = c .

◮ Even better: Every finitely presented semigroup can be
defined by finitely many relations of the form ab = c .

◮ Some more special squares . . .

◮

[

a a
b c

]

⇒ b = c .

◮

[

1 1
1 a

]

⇒ a = 1.
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The freeness conjecture

Question
Which groups arise as maximal subgroups of IG(E ) (and thus of
RIG(E ))?

◮ Work of Pastijn and Nambooripad (’70s and ’80s) and
McElwee (2002) led to the belief that these maximal
subgroups must always be free groups (of a suitable rank).

◮ This conjecture was proved false by Brittenham, Margolis, and
Meakin in 2009 who obtained the groups Z⊕ Z (from a
particular 73-element semigroup) and F

∗ for an arbitrary field
F.

◮ Finally, Gray and Ruškuc (2012) proved that every group
arises as a maximal subgroup of some free idempotent
generated semigroup (!!!).
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Gray & Ruškuc (Israel J. Math., 2012)

Theorem
Every group is a maximal subgroup of some free idempotent
generated semigroup (over a regular semigroup).

Theorem
Every finitely presented group is a maximal subgroup of some free
idempotent generated semigroup arising from a finite semigroup.

Remark
Maximal subgroups of free idempotent generated semigroups
arising from finite semigroups have to be finitely presented by
Reidemeister–Schreier.
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Calculating the groups for natural examples of S

Some or all maximal subgroups in IG(E (S)) have been calculated
for the following S :

◮ Full transformation monoids: Gray, Ruškuc (symmetric
groups, provided rank ≤ n − 2);
(Proc. London Math. Soc., 2012)

◮ Partial transformation monoids: IgD (symmetric groups
again);
(Comm. Algebra, 2013)

◮ Full matrix monoid over a skew field: IgD, Gray (general linear
groups, if rank < n/3, otherwise...);
(Trans. Amer. Math. Soc., 2014)

◮ Endomorphism monoid of a free G -act: IgD, Gould, Yang
(wreath products of G by symmetric groups).
(J. Algebra, 2015)
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Bands

Theorem (IgD, 2012)

For every left- or right seminormal band B, all maximal subgroups
of IG(B) are free. For every variety V not contained in
LSNB ∪ RSNB there exists B ∈ V such that IG(B) contains a
non-free maximal subgroup.

An example of the GH-complex in a 20-element regular band (the
top 2× 2 D-class not shown):

r r r r

r r r r

r r r r

r r r r
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Bands

Question
Which groups arise as maximal subgroups of IG(B), B a (finite)
band?

Answer (IgD, Ruškuc – IJAC, 2013): All of them! (Resp. all
finitely presented ones.)

MI SANU, 16 December 2016 Igor Dolinka: Free IG semigroups21



IgD & Ruškuc construction: set-up

Suppose we want to obtain

G = 〈a, b, c , . . . | ab = c , . . . 〉

as a maximal subgroup of IG(B) for a band B .

◮ I = {0, a, b, c , . . . , 0′, a′, b′, c ′, . . . };

◮ J = {0, a, b, c , . . . ,∞};

◮ T = T ∗

I × TJ ;

◮ the minimal ideal: K = {(σ, τ) : σ, τ constants};

◮ K is an I × J rectangular band.
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IgD & Ruškuc construction: set-up

◮ B = K ∪ L, where L is a left zero
semigroup.

◮ We ensure this by virtue of every
(σ, τ) ∈ L satisfying:

◮ σ2 = σ, τ 2 = τ ;
◮ ker(σ) =

{{0, a, b, c}, {0′, a′, b′, c ′}};
◮ thus σ is determined by its image

{x , y} transversing its kernel;
◮ im(τ) = {0, a, b, c};
◮ thus τ is specified by (∞)τ .

L

0

a

b

c

0′

a
′

b
′

c
′

0 a b c ∞

K
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IgD & Ruškuc construction: the action of L on K

Notation Indexing im(σ) (∞)τ

(σ0, τ0) – {0, 0′} 0

(σa, τa) a ∈ A {0, a′} a

(σa, τ a) a ∈ A {a, a′} 0

(σr, τr) r = (ab, c) ∈ R {b, c ′} a

MI SANU, 16 December 2016 Igor Dolinka: Free IG semigroups24



IgD & Ruškuc construction: the endgame

(σr, τr) r : ab = c

0

a

b

c

0′

a′

b′

c ′

0 a b c ∞

f00 f0a f0b f0c f0∞

fa0 faa fab fac fa∞

fb0 fba fbb fbc fb∞

fc0 fca fcb fcc fc∞

f0′0 f0′a f0′b f0′c f0′∞

fa′0 fa′a fa′b fa′c fa′∞

fb′0 fb′a fb′b fb′c fb′∞

fc′0 fc′a fc′b fc′c fc′∞

−→

(σ0, τ0)

(σa, τa)

(σa, τ a)

0

a

b

c

0′

a′

b′

c ′

0 a b c ∞

1 1 1 1 1

1 1 1 1 a

1 1 1 1 b

1 1 1 1 c

1 a b c 1

1 a b c a

1 a b c b

1 a b c c
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The word problem

A semigroup S with a finite generating set A has decidable word
problem if there is an algorithm which for any two words
w1,w2 ∈ A+ decides whether or not they represent the same
element of S .

Example

S ∼= 〈a, b | ab = ba〉 has decidable word problem.

Some history:

◮ Markov (1947) and Post (1947): first examples of finitely
presented semigroups with undecidable word problem;

◮ Turing (1950): finitely presented cancellative semigroup with
undecidable word problem;

◮ Novikov (1955) and Boone (1958): finitely presented group
with undecidable word problem.
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The word problem for IG(E )

S – a semigroup, E = E (S)

Question
Does IG(E ) have a decidable word problem if E is finite?

General facts:

◮ E finite ⇒ every maximal subgroup of IG(E ) is finitely
presented,

◮ If IG(E ) has a decidable word problem then every maximal
subgroup of IG(E ) must have a decidable word problem.

Hence, because of the Gray-Ruškuc result, the answer to the
previous question is NO, because there is a finitely presented group
with an undecidable WP. So, we obtain

Theorem
There exists a finite semigroup S such that IG(E ) has an
undecidable word problem.
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The word problem for IG(E ) – reloaded

S – a semigroup, E = E (S)

Question (Updated)

Does IG(E ) have a decidable word problem if E is finite and every
maximal subgroup of IG(E ) has a decidable word problem?

This question is the subject of the joint paper

IgD, R.D.Gray, N.Ruškuc: On regularity and the word problem for
free idempotent generated semigroups, arXiv: 1412.5167, 33pp.

...just accepted few weeks ago in the Proc. London Math. Soc.
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The good news

Question (Updated)

Does IG(E ) have a decidable word problem if E is finite and every
maximal subgroup of IG(E ) has a decidable word problem?

Theorem
There exists an algorithm deciding whether w ∈ E+ represents a
regular element of IG(E ).

Theorem
If every maximal subgroup of IG(E ) has a solvable word problem,
then there is an algorithm which, given u, v ∈ E+ such that u
represents a regular element, decides whether u = v holds in IG(E ).

Corollary

The word problem for RIG(E ) is solvable iff the word problem for
each of its maximal subgroups is solvable.
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The general picture

φ

e
He

non-regular
elements

IG(E ) S

E = E (S)
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The bad news

Question (Updated)

Does IG(E ) have a decidable word problem if E is finite and every
maximal subgroup of IG(E ) has a decidable word problem?

IgD + RDG + NR: NO.

Theorem
There exists a finite band BG ,H (constructed from a f.p. group G
and its f.g. subgroup H) such that:

(i) All maximal subgroups of IG(BG ,H) have decidable word
problems.

(ii) The word problem for IG(BG ,H) is undecidable.

For this result we make use of another decision problem...
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The subgroup membership problem

Let G be a group with finite generating set A, and let H be a
subgroup of G given by a finite set of words which generate H.

Then the membership problem for H in G is the problem of
deciding, for an arbitrary word w over the generators A, whether or
not w represents an element of the subgroup H.

Theorem (Mihailova, 1958)

Their exists a finitely presented group G with a finitely generated
subgroup H such that

◮ G has a decidable word problem, but

◮ the membership problem for H in G is undecidable.

Example

G = F × F (F a f.g. free group), H = ker(ν) (ν : F → W a
natural homomorphism onto a group with an undecidable WP).
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The BG ,H construction

A1

A1
LG

R

KH

A1

B1

K ′

G

A′

1

A
′

1

A′

1 ∞′

K ′′

G

A′′

1

A
′′

1

A′′

1 ∞′′

{0}
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Encoding the membership problem

A1

A1
LG

R

KH

A1

B1

K
′

G

A′

1

A
′

1

A′

1 ∞′

K
′′

G

A′′

1

A
′′

1

A′′

1 ∞′′

non-regular

elements

{0}

G G

Structure of IG(BG ,H)

Each of K
′

G and K
′′

G is a Rees matrix
semigroup over G

K
′

G
∼= I ′ × G × J ′, K

′′

G
∼= I ′′ × G × J ′′.

For any word w over A the equality

(1′, 1, 1′)(1′′, 1, 1′′) = (1′,w−1, 1′)(1′′,w , 1′′)

holds in IG(BG ,H) ⇔ w ∈ H.

Conclusion: If IG(BG ,H) had a decidable word

problem this would imply the membership

problem for H in G is decidable, which is a

contradiction. E
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THANK YOU!

Questions and comments to:

dockie@dmi.uns.ac.rs

Further information may be found at:

http://people.dmi.uns.ac.rs/∼dockie
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