Free idempotent generated semigroups: maximal subgroups and the word problem

Igor Dolinka

dockie@dmi.uns.ac.rs

Department of Mathematics and Informatics, University of Novi Sad

Mathematics Colloquium MI SANU, Belgrade, 16 December 2016

I'm free like a river Flowin' freely to infinity I'm free to be sure of what I am and who I need not be I'm much freer - like the meaning Of the word 'free' that crazy man defines Free - free like the vision that The mind of only you are ever gonna see

Stevie Wonder: Free

Man is condemned to be free.

Jean-Paul Sartre

Idempotent generated semigroups

Many natural semigroups are idempotent-generated $(S = \langle E(S) \rangle)$:

- ► The semigroup T_n \ S_n of singular (non-invertible) transformations on a finite set (Howie, 1966);
- ► The singular part of M_n(𝔅), the semigroup of all n × n matrices over a field 𝔅 (Erdos (not Paul!), 1967);
- In 2006, Putcha completed the classification of linear algebraic monoids that are idempotent-generated;
- ► The singular part of P_n, the singular part of the partition monoid on a finite set (East, FitzGerald, 2012);

Hence:

What can we say about the structure of the free-est idempotent-generated (IG) semigroup with a fixed structure/configuration of idempotents ???

Biordered sets of idempotents

'Configuration of idempotents' = biordered sets = relational structures $(E(S), \leq^{(l)}, \leq^{(r)})$ with two quasi-orders such that

$$e \leq^{(I)} f \Leftrightarrow e = ef, \qquad e \leq^{(r)} f \Leftrightarrow e = fe.$$

Biordered sets can be finitely axiomatised by several simple rules (Easdown, Nambooripad, '80s).

Basic pair $\{e, f\}$ of idempotents:

 $\{e, f\} \cap \{ef, fe\} \neq \emptyset$

that is, ef = e or ef = f or fe = e or fe = f. (Note: if, for example, $ef \in \{e, f\}$, then $(fe)^2 = fe$.)

Alternatively: Biordered set of a semigroup S = the partial algebra on E(S) obtained by retaining the products of basic pairs (in S).

Free IG semigroups: idea

- ► To every semigroup S with idempotents E associate the free-est semigroup IG(E) whose idempotents form the same biordered set as in S.
- ► To every regular semigroup S with idempotents E associate the free-est regular semigroup RIG(E) in whose idempotents form the same biordered set as in S.

Free IG semigroups: formal definitions

Let E be the biordered set of idempotents of a semigroup S.

$$\mathsf{IG}(E) := \langle E \mid e \cdot f = ef \text{ where } \{e, f\} \text{ is a basic pair } \rangle.$$

Suppose now S is regular. We define the sandwich sets:

$$S(e, f) = \{h \in E : ehf = ef, fhe = h\} \neq \emptyset$$

$$\mathsf{RIG}(E) := \langle E \mid \mathsf{IG}, ehf = ef (e, f \in E, h \in S(e, f)) \rangle.$$

Example 1: Three-element meet semilattice

Let
$$S = \bigvee_{z}^{e} \int_{z}^{f} IG(S) = \langle e, f, z \mid e^{2} = e, f^{2} = f, z^{2} = z, ez = ze = fz = zf = z \rangle$$
:

$$(ef)^{i}e (ef)^{i} \int_{z}^{e} (ef)^{i} \int_{z}^{e} (fe)^{i}f \int_{z}^{e} (fe)^{i}f \int_{z}^{e} (fe)^{i}f fe = fe = z \rangle = S.$$

Example 2: 2×2 rectangular band

$$S = \langle e_{ij} \mid e_{ij}e_{kl} = e_{il} \ (i,j,k,l \in \{1,2\}) \rangle:$$

$$\mathsf{IG}(S) = \langle e_{ij} \mid e_{ij}e_{kl} = e_{il} \ (i,j,k,l \in \{1,2\}, \ i = k \text{ or } j = l) \rangle:$$

$(e_{11}e_{22})^i e_{11} \\ (e_{12}e_{21})^i$	$(e_{12}e_{21})^i e_{12} \ (e_{11}e_{22})^i$
$(e_{21}e_{12})^i e_{21} (e_{22}e_{11})^i$	$(e_{22}e_{11})^i e_{22} (e_{21}e_{12})^i$

$$\operatorname{RIG}(S) = \operatorname{IG}(S).$$

Relationships between $S = \langle E \rangle$, IG(E), and RIG(E)

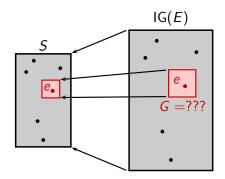
- ► (Easdown, 1985) The natural (surjective) homomorphism $\phi : IG(E) \rightarrow S$ ($S = \langle E(S) \rangle$) has the following properties:
 - the restriction of ϕ to *E* is an isomorphism of biordered sets;
 - the maximal subgroup H_e in S is the ϕ -image of its counterpart in IG(E) (which is in turn isomorphic to its counterpart in RIG(E)).
- ► The 'eggbox picture' of the *D*-class of *e* has the same dimensions in all three.
- IG(E) may contain other, non-regular D-classes.

So, understanding IG(E) is essential in understanding the structure of arbitrary IG semigroups.

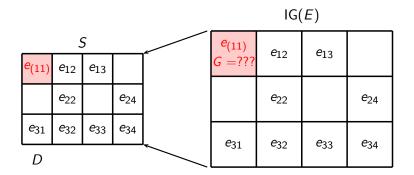
Question

Which groups arise as maximal subgroups of IG(E) (and thus of RIG(E))?

The big picture



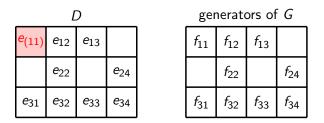
Let's zoom in



Presentation for a max. subgroup of IG(E): Generators

Fact

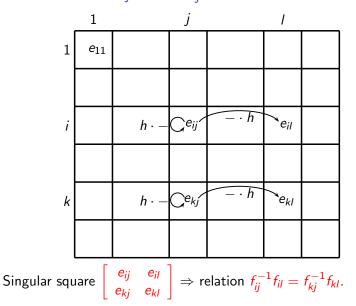
G is generated by a set in 1-1 correspondence with $D \cap E(S)$.



$$G = \langle f_{ij} \ (e_{ij} \in D \cap E) \mid ??? \rangle$$

Typical relations: $f_{ij}^{-1}f_{il} = f_{kj}^{-1}f_{kl}$

• $h = h^2$



Presentation – Approach #1

Theorem (Nambooripad 1979; Gray, Ruškuc 2012) The maximal subgroup G of $e \in E$ in IG(E) or RIG(E) is defined by the presentation:

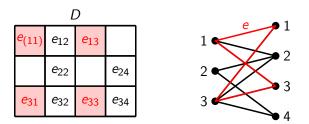
$$\langle f_{ij} \mid f_{i,\pi(i)} = 1$$
 $(i \in I),$
 $f_{ij} = f_{il}$ $(if r_j e_{il} = r_l \text{ is a Schreier rep.}),$
 $f_{ij}^{-1} f_{il} = f_{kj}^{-1} f_{kl} \left(\begin{bmatrix} e_{ij} & e_{il} \\ e_{kj} & e_{kl} \end{bmatrix} \text{ sing. sq.})
angle.$

Proof: Reidemeister–Schreier rewriting process followed by Tietze transformations.

Graham-Houghton complex

Let S be an idempotent generated regular semigroup.

GH(S): a 2-complex whose connected components are in a 1-1 correspondence with \mathcal{D} -classes of S.



Presentation – Approach #2

Theorem (Brittenham, Margolis, Meakin, 2009)

The fundamental group of GH(S) at any point of its connected component C_e containing the edge $e \cong$ the maximal subgroup of RIG(E(S)) (and thus of IG(E(S))) containing e. So,...

... let \mathcal{T} be an arbitrary spanning tree of C_e . Then the maximal subgroup G of $e \in E$ in IG(E) (or RIG(E)) is defined by the presentation:

$$\langle f_{ij} \mid f_{ij} = 1 \qquad ((i,j) \in \mathcal{T}), \ f_{ij}f_{kj}^{-1}f_{kl}f_{jl}^{-1} = 1 \ ((i,j,k,l) \text{ is a 2-cell})
angle.$$

Obviously, a clever choice of $\ensuremath{\mathcal{T}}$ may speed up the computation.

Remarks (1)

- Two types of relations:
 - Initial conditions: declaring some generators equal to 1 (or to each other in approach #1);
 - Main relations: one per singular square.
- All relations of length \leq 4.
- What can be defined by relations $f_{ij}^{-1}f_{il} = f_{kj}^{-1}f_{kl}$?

$$\blacktriangleright \begin{bmatrix} 1 & b \\ a & c \end{bmatrix} \Rightarrow ab = c.$$

Remarks (2)

- But: Every semigroup can be defined by relations of the form ab = c.
- Even better: Every finitely presented semigroup can be defined by finitely many relations of the form ab = c.
- Some more special squares ...

$$\begin{bmatrix} a & a \\ b & c \end{bmatrix} \Rightarrow b = c.$$

$$\begin{bmatrix} 1 & 1 \\ 1 & a \end{bmatrix} \Rightarrow a = 1.$$

The freeness conjecture

Question

Which groups arise as maximal subgroups of IG(E) (and thus of RIG(E))?

- Work of Pastijn and Nambooripad ('70s and '80s) and McElwee (2002) led to the belief that these maximal subgroups must always be free groups (of a suitable rank).
- ► This conjecture was proved false by Brittenham, Margolis, and Meakin in 2009 who obtained the groups Z ⊕ Z (from a particular 73-element semigroup) and F^{*} for an arbitrary field F.
- Finally, Gray and Ruškuc (2012) proved that every group arises as a maximal subgroup of some free idempotent generated semigroup (!!!).

Gray & Ruškuc (Israel J. Math., 2012)

Theorem

Every group is a maximal subgroup of some free idempotent generated semigroup (over a regular semigroup).

Theorem

Every finitely presented group is a maximal subgroup of some free idempotent generated semigroup arising from a finite semigroup.

Remark

Maximal subgroups of free idempotent generated semigroups arising from finite semigroups have to be finitely presented by Reidemeister–Schreier.

Calculating the groups for natural examples of S

Some or all maximal subgroups in IG(E(S)) have been calculated for the following S:

- ► Full transformation monoids: Gray, Ruškuc (symmetric groups, provided rank ≤ n − 2); (Proc. London Math. Soc., 2012)
- Partial transformation monoids: IgD (symmetric groups again);

(Comm. Algebra, 2013)

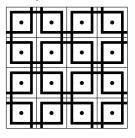
- Full matrix monoid over a skew field: IgD, Gray (general linear groups, if rank < n/3, otherwise...);
 (Trans. Amer. Math. Soc., 2014)
- Endomorphism monoid of a free G-act: IgD, Gould, Yang (wreath products of G by symmetric groups).
 - (J. Algebra, 2015)

Bands

Theorem (IgD, 2012)

For every left- or right seminormal band B, all maximal subgroups of IG(B) are free. For every variety V not contained in LSNB \cup RSNB there exists $B \in V$ such that IG(B) contains a non-free maximal subgroup.

An example of the GH-complex in a 20-element regular band (the top $2 \times 2 \mathcal{D}$ -class not shown):



Bands

Question

Which groups arise as maximal subgroups of IG(B), B a (finite) band?

Answer (IgD, Ruškuc – IJAC, 2013): All of them! (Resp. all finitely presented ones.)

IgD & Ruškuc construction: set-up

Suppose we want to obtain

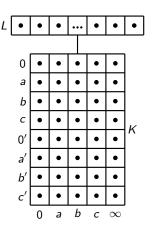
$$G = \langle a, b, c, \dots \mid ab = c, \dots \rangle$$

as a maximal subgroup of IG(B) for a band B.

• K is an
$$I \times J$$
 rectangular band.

IgD & Ruškuc construction: set-up

- $B = K \cup L$, where L is a left zero semigroup.
- We ensure this by virtue of every (σ, τ) ∈ L satisfying:
 - $\blacktriangleright \ \sigma^2 = \sigma, \ \tau^2 = \tau;$
 - ► ker(σ) = {{0, a, b, c}, {0', a', b', c'}};
 - thus σ is determined by its image
 {x, y} transversing its kernel;
 - $im(\tau) = \{0, a, b, c\};$
 - thus τ is specified by $(\infty)\tau$.



IgD & Ruškuc construction: the action of L on K

Notation	Indexing	$im(\sigma)$	$(\infty) au$	
(σ_0, τ_0)	-	$\{0, 0'\}$	0	
(σ_a, τ_a)	$a \in A$	$\{0, a'\}$	а	
$(\overline{\sigma}_a,\overline{\tau}_a)$	$a \in A$	$\{a,a'\}$	0	
$(\sigma_{\mathbf{r}}, \tau_{\mathbf{r}})$	$\mathbf{r} = (ab, c) \in R$	$\{b, c'\}$	а	

IgD & Ruškuc construction: the endgame

	0	а	b	с	∞		0	а	b	с	∞
0	<i>f</i> ₀₀	f _{0a}	f _{0b}	f _{0c}	$f_{0\infty}$	0	1	1	1	1	1
а	f _{a0}	f _{aa}	f _{ab}	f _{ac}	$f_{a\infty}$	(σ_0, au_0) a	1	1	1	1	а
b	<i>f</i> _{b0}	f _{ba}	f _{bb}	f _{bc}	$f_{b\infty}$	$egin{array}{lll} (\sigma_{a}, au_{a})\ (\overline{\sigma}_{a},\overline{ au}_{a}) \end{array} b$	1	1	1	1	Ь
с	f_{c0}	f _{ca}	f _{cb}	f _{cc}	$f_{c\infty}$	$ \xrightarrow{(O_a, T_a)} C $	1	1	1	1	с
0′	f _{0'0}	$f_{0'a}$	$f_{0'b}$	$f_{0'c}$	$f_{0'\infty}$, 0,	1	а	Ь	с	1
a'	$f_{a'0}$	$f_{a'a}$	f _{a' b}	f _{a'c}	$f_{a'\infty}$	a'	1	а	Ь	с	а
b'	$f_{b'0}$	$f_{b^\prime a}$	f _{b' b}	f _{b'c}	$f_{b'\infty}$	b	1	а	Ь	с	Ь
c'	$f_{c'0}$	$f_{c'a}$	$f_{c'b}$	$f_{c'c}$	$f_{c'\infty}$	C'	1	а	b	с	с

 $(\sigma_{\mathbf{r}}, \tau_{\mathbf{r}})$ $\mathbf{r} : ab = c$

The word problem

A semigroup S with a finite generating set A has decidable word problem if there is an algorithm which for any two words $w_1, w_2 \in A^+$ decides whether or not they represent the same element of S.

Example

 $S \cong \langle a, b \mid ab = ba \rangle$ has decidable word problem.

Some history:

- Markov (1947) and Post (1947): first examples of finitely presented semigroups with undecidable word problem;
- Turing (1950): finitely presented cancellative semigroup with undecidable word problem;
- Novikov (1955) and Boone (1958): finitely presented group with undecidable word problem.

The word problem for IG(E)

$$S$$
 – a semigroup, $E = E(S)$

Question

Does IG(E) have a decidable word problem if E is finite? General facts:

- ► E finite ⇒ every maximal subgroup of IG(E) is finitely presented,
- If IG(E) has a decidable word problem then every maximal subgroup of IG(E) must have a decidable word problem.

Hence, because of the Gray-Ruškuc result, the answer to the previous question is NO, because there is a finitely presented group with an undecidable WP. So, we obtain

Theorem

There exists a finite semigroup S such that IG(E) has an undecidable word problem.

The word problem for IG(E) – reloaded

S – a semigroup, E = E(S)

Question (Updated)

Does IG(E) have a decidable word problem if E is finite and every maximal subgroup of IG(E) has a decidable word problem?

This question is the subject of the joint paper IgD, R.D.Gray, N.Ruškuc: On regularity and the word problem for free idempotent generated semigroups, arXiv: 1412.5167, 33pp. ...just accepted few weeks ago in the Proc. London Math. Soc.

The good news

Question (Updated)

Does IG(E) have a decidable word problem if E is finite and every maximal subgroup of IG(E) has a decidable word problem?

Theorem

There exists an algorithm deciding whether $w \in E^+$ represents a regular element of IG(E).

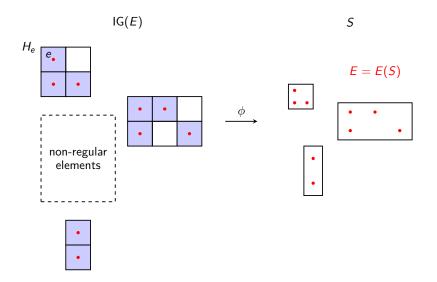
Theorem

If every maximal subgroup of IG(E) has a solvable word problem, then there is an algorithm which, given $u, v \in E^+$ such that urepresents a regular element, decides whether u = v holds in IG(E).

Corollary

The word problem for RIG(E) is solvable iff the word problem for each of its maximal subgroups is solvable.

The general picture



The bad news

Question (Updated)

Does IG(E) have a decidable word problem if E is finite and every maximal subgroup of IG(E) has a decidable word problem?

IgD + RDG + NR: NO.

Theorem

There exists a finite band $B_{G,H}$ (constructed from a f.p. group G and its f.g. subgroup H) such that:

- (i) All maximal subgroups of $IG(B_{G,H})$ have decidable word problems.
- (ii) The word problem for $IG(B_{G,H})$ is undecidable.

For this result we make use of another decision problem...

The subgroup membership problem

Let G be a group with finite generating set A, and let H be a subgroup of G given by a finite set of words which generate H.

Then the membership problem for H in G is the problem of deciding, for an arbitrary word w over the generators A, whether or not w represents an element of the subgroup H.

Theorem (Mihailova, 1958)

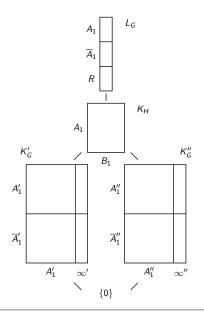
Their exists a finitely presented group G with a finitely generated subgroup H such that

- ▶ G has a decidable word problem, but
- the membership problem for H in G is undecidable.

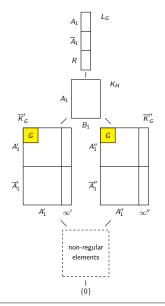
Example

 $G = F \times F$ (F a f.g. free group), $H = \text{ker}(\nu)$ ($\nu : F \rightarrow W$ a natural homomorphism onto a group with an undecidable WP).

The $B_{G,H}$ construction



Encoding the membership problem



Structure of $IG(B_{G,H})$

Each of \overline{K}'_G and \overline{K}''_G is a Rees matrix semigroup over G

$$\overline{K}'_{G} \cong I' \times G \times J', \quad \overline{K}''_{G} \cong I'' \times G \times J''.$$

For any word w over A the equality $(1', 1, 1')(1'', 1, 1'') = (1', w^{-1}, 1')(1'', w, 1'')$ holds in IG $(B_{G,H}) \Leftrightarrow w \in H$.

Conclusion: If $IG(B_{G,H})$ had a decidable word problem this would imply the membership problem for H in G is decidable, which is a contradiction. \pounds

THANK YOU!

Questions and comments to: dockie@dmi.uns.ac.rs

Further information may be found at: http://people.dmi.uns.ac.rs/~dockie