Finite groups are big as semigroups

Igor Dolinka

dockie@dmi.uns.ac.rs

Department of Mathematics and Informatics, University of Novi Sad

The 13th NBSAN Meeting York, November 21, 2012

Big algebraic structures

A finite algebra $B \in \mathcal{K}$ is \mathcal{K} -big

A finite algebra $B \in \mathcal{K}$ is \mathcal{K} -big if there exists a countably infinite algebra $A \in \mathcal{K}$

A finite algebra $B \in \mathcal{K}$ is \mathcal{K} -big if there exists a countably infinite algebra $A \in \mathcal{K}$ such that B is isomorphic to a maximal proper subalgebra of A.

A finite algebra $B \in \mathcal{K}$ is \mathcal{K} -big if there exists a countably infinite algebra $A \in \mathcal{K}$ such that B is isomorphic to a maximal proper subalgebra of A.

In other words, $A = \langle B, a \rangle$ for any $a \in A \setminus B$.

In 2001, Freese, Ježek and Nation published a paper where they fully described big lattices.

In 2001, Freese, Ježek and Nation published a paper where they fully described big lattices.

Theorem

There exist a list of 145 lattices (in fact, only 81 of them, up to dual isomorphism) such that a finite lattice is big if and only if it contains one of the lattices from the list as a sublattice.

In 2001, Freese, Ježek and Nation published a paper where they fully described big lattices.

Theorem

There exist a list of 145 lattices (in fact, only 81 of them, up to dual isomorphism) such that a finite lattice is big if and only if it contains one of the lattices from the list as a sublattice.

Open Problem

Characterise big groups.

Open Problem

Characterise big groups.

This is closely related to difficult Burnside-type problems.

Open Problem

Characterise big groups.

This is closely related to difficult Burnside-type problems.

Ol'shanskii (1982): Constructed the first *Tarski monster group* — for each prime $p > 10^{75}$ there exists a 2-generated infinite group all of whose nontrivial proper subgroups have order p.

Open Problem

Characterise big groups.

This is closely related to difficult Burnside-type problems.

Ol'shanskii (1982): Constructed the first *Tarski monster group* — for each prime $p > 10^{75}$ there exists a 2-generated infinite group all of whose nontrivial proper subgroups have order p.

 $\implies \mathbb{Z}_p$ is a big group for any prime $p > 10^{75}$.

Open Problem

Characterise big groups.

This is closely related to difficult Burnside-type problems.

Ol'shanskii (1982): Constructed the first *Tarski monster group* — for each prime $p > 10^{75}$ there exists a 2-generated infinite group all of whose nontrivial proper subgroups have order p.

 $\implies \mathbb{Z}_p$ is a big group for any prime $p > 10^{75}$.

Adyan & Lysionok (1991): For any odd $n \ge 1003$ there exists a 2-generated infinite group G such that any proper subgroup of G is contained in a cyclic subgroup of order n.

Open Problem

Characterise big groups.

This is closely related to difficult Burnside-type problems.

Ol'shanskii (1982): Constructed the first *Tarski monster group* — for each prime $p > 10^{75}$ there exists a 2-generated infinite group all of whose nontrivial proper subgroups have order p.

 $\implies \mathbb{Z}_p$ is a big group for any prime $p > 10^{75}$.

Adyan & Lysionok (1991): For any odd $n \ge 1003$ there exists a 2-generated infinite group G such that any proper subgroup of G is contained in a cyclic subgroup of order n.

 $\implies \mathbb{Z}_{2k+1}$ is a big group for any $k \ge 501$.

Problem (R. Gray, P. Marković, 2011)

Which finite groups are big with respect to the class of all semigroups?

Problem (R. Gray, P. Marković, 2011)

Which finite groups are big with respect to the class of all semigroups?

Theorem (ID & N. Ruškuc)

A finite group G is big with respect to the class of all semigroups if and only if $|G| \ge 3$.

Problem (R. Gray, P. Marković, 2011)

Which finite groups are big with respect to the class of all semigroups?

Theorem (ID & N. Ruškuc)

A finite group G is big with respect to the class of all semigroups if and only if $|G| \ge 3$.

Theorem (ID & NR)

Each finite semigroup S such that the kernel (the unique minimal ideal) of S contains a subgroup G such that $|G| \ge 3$ is a big semigroup.

Problem (R. Gray, P. Marković, 2011)

Which finite groups are big with respect to the class of all semigroups?

Theorem (ID & N. Ruškuc)

A finite group G is big with respect to the class of all semigroups if and only if $|G| \ge 3$.

Theorem (ID & NR)

Each finite semigroup S such that the kernel (the unique minimal ideal) of S contains a subgroup G such that $|G| \ge 3$ is a big semigroup.

Also: we should take care of \mathbb{Z}_2 and the trivial group...

If S is a big (finite) semigroup such that it is \cong a maximal proper subsemigroup of an infinite semigroup T, then T is called a witness for S.

If S is a big (finite) semigroup such that it is \cong a maximal proper subsemigroup of an infinite semigroup T, then T is called a witness for S.

Lemma

If $T \supset S$ is a witness for a big semigroup S, then $T \setminus S$ is contained in a single \mathscr{J} -class of T.

If S is a big (finite) semigroup such that it is \cong a maximal proper subsemigroup of an infinite semigroup T, then T is called a witness for S.

Lemma

If $T \supset S$ is a witness for a big semigroup S, then $T \setminus S$ is contained in a single \mathcal{J} -class of T. In particular, if S is a group, then T can have at most two \mathcal{J} -classes.

If S is a big (finite) semigroup such that it is \cong a maximal proper subsemigroup of an infinite semigroup T, then T is called a witness for S.

Lemma

If $T \supset S$ is a witness for a big semigroup S, then $T \setminus S$ is contained in a single \mathcal{J} -class of T. In particular, if S is a group, then T can have at most two \mathcal{J} -classes.

Idea: Construct a witness Σ_S for S as an ideal extension of an infinite Rees matrix semigroup M by S^0 ,

If S is a big (finite) semigroup such that it is \cong a maximal proper subsemigroup of an infinite semigroup T, then T is called a witness for S.

Lemma

If $T \supset S$ is a witness for a big semigroup S, then $T \setminus S$ is contained in a single \mathcal{J} -class of T. In particular, if S is a group, then T can have at most two \mathcal{J} -classes.

Idea: Construct a witness Σ_S for S as an ideal extension of an infinite Rees matrix semigroup M by S^0 , so that $\Sigma = S \cup M$,

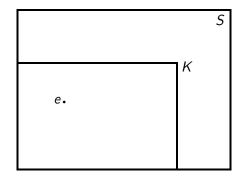
If S is a big (finite) semigroup such that it is \cong a maximal proper subsemigroup of an infinite semigroup T, then T is called a witness for S.

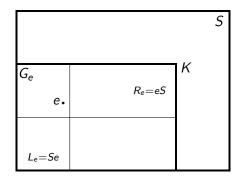
Lemma

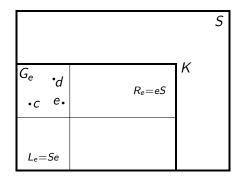
If $T \supset S$ is a witness for a big semigroup S, then $T \setminus S$ is contained in a single \mathcal{J} -class of T. In particular, if S is a group, then T can have at most two \mathcal{J} -classes.

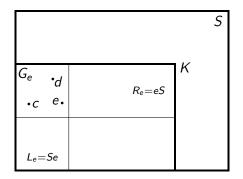
Idea: Construct a witness Σ_S for S as an ideal extension of an <u>infinite</u> Rees matrix semigroup M by S^0 , so that $\Sigma = S \cup M$, where S acts on M (from left and right) sufficiently 'transitively' to move around an arbitrary $a \in M$ along a generating set of M.

York, November 21, 2012

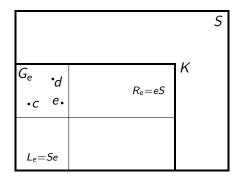






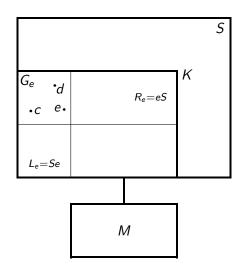


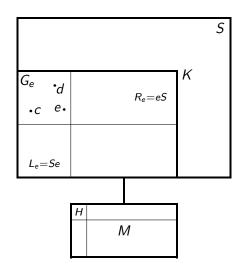
By assumption, we must have $|G_e| \ge 3$.

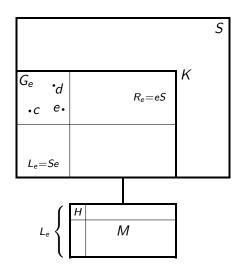


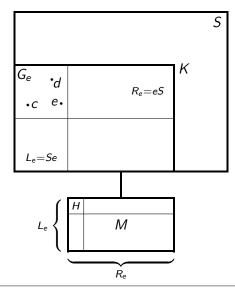
By assumption, we must have $|G_e| \geq 3$.

Thus we may fix two non-identity elements $c, d \in G_e = eSe$.









Let *H* be a 2-generated infinite periodic group, $H = \langle \gamma_1, \gamma_2 \rangle$ (i.e. a counterexample to the Burnside conjecture).

Let *H* be a 2-generated infinite periodic group, $H = \langle \gamma_1, \gamma_2 \rangle$ (i.e. a counterexample to the Burnside conjecture).

Remark

By this, we have ensured that M is infinite, periodic, finitely generated, and has finitely many left and right ideals.

Let *H* be a 2-generated infinite periodic group, $H = \langle \gamma_1, \gamma_2 \rangle$ (i.e. a counterexample to the Burnside conjecture).

Remark

By this, we have ensured that M is infinite, periodic, finitely generated, and has finitely many left and right ideals.

Let *H* be a 2-generated infinite periodic group, $H = \langle \gamma_1, \gamma_2 \rangle$ (i.e. a counterexample to the Burnside conjecture).

Remark

By this, we have ensured that M is infinite, periodic, finitely generated, and has finitely many left and right ideals.

1.
$$\lambda(e) = 1_H$$
,

Let *H* be a 2-generated infinite periodic group, $H = \langle \gamma_1, \gamma_2 \rangle$ (i.e. a counterexample to the Burnside conjecture).

Remark

By this, we have ensured that M is infinite, periodic, finitely generated, and has finitely many left and right ideals.

1.
$$\lambda(e) = 1_{H}$$
,
2. $\lambda(c) = \gamma_{1}$,

Let *H* be a 2-generated infinite periodic group, $H = \langle \gamma_1, \gamma_2 \rangle$ (i.e. a counterexample to the Burnside conjecture).

Remark

By this, we have ensured that M is infinite, periodic, finitely generated, and has finitely many left and right ideals.

1.
$$\lambda(e) = 1_H$$
,
2. $\lambda(c) = \gamma_1$,
3. $\lambda(d) = \gamma_2$,

Let *H* be a 2-generated infinite periodic group, $H = \langle \gamma_1, \gamma_2 \rangle$ (i.e. a counterexample to the Burnside conjecture).

Remark

By this, we have ensured that M is infinite, periodic, finitely generated, and has finitely many left and right ideals.

1.
$$\lambda(e) = 1_H$$
,
2. $\lambda(c) = \gamma_1$,
3. $\lambda(d) = \gamma_2$,
4. $\lambda(se) = \lambda(ese)$ for all $s \in S$.

Let *H* be a 2-generated infinite periodic group, $H = \langle \gamma_1, \gamma_2 \rangle$ (i.e. a counterexample to the Burnside conjecture).

Remark

By this, we have ensured that M is infinite, periodic, finitely generated, and has finitely many left and right ideals.

$$M = \mathcal{M}(L_e, H, R_e, P)$$

where $P = [p_{a,b}]$ is a $R_e \times L_e$ matrix.

$$M = \mathcal{M}(L_e, H, R_e, P)$$

where $P = [p_{a,b}]$ is a $R_e \times L_e$ matrix.

For $a \mathscr{R} e \mathscr{L} b$ we define

 $p_{a,b} = \lambda(a)^{-1}\lambda(ab)\lambda(b)^{-1}$

$$M = \mathcal{M}(L_e, H, R_e, P)$$

where $P = [p_{a,b}]$ is a $R_e \times L_e$ matrix.

For $a \mathscr{R} e \mathscr{L} b$ we define

$$p_{\mathsf{a},\mathsf{b}} = \lambda(\mathsf{a})^{-1}\lambda(\mathsf{a}\mathsf{b})\lambda(\mathsf{b})^{-1}$$

Remark

Since be = b we have $p_{e,b} = 1_H$.

$$M = \mathcal{M}(L_e, H, R_e, P)$$

where $P = [p_{a,b}]$ is a $R_e \times L_e$ matrix.

For $a \mathscr{R} e \mathscr{L} b$ we define

$$p_{\mathsf{a},b} = \lambda(\mathsf{a})^{-1}\lambda(\mathsf{a}b)\lambda(b)^{-1}$$

Remark

Since be = b we have $p_{e,b} = 1_H$.

The multiplication between S and M is defined by:

 $s \cdot (a, h, b) = (sa, \lambda(sa)\lambda(a)^{-1}h, b)$

$$M = \mathcal{M}(L_e, H, R_e, P)$$

where $P = [p_{a,b}]$ is a $R_e \times L_e$ matrix.

For $a \mathscr{R} e \mathscr{L} b$ we define

$$p_{a,b} = \lambda(a)^{-1}\lambda(ab)\lambda(b)^{-1}$$

Remark

Since be = b we have $p_{e,b} = 1_H$.

The multiplication between S and M is defined by:

$$s \cdot (a, h, b) = (sa, \lambda(sa)\lambda(a)^{-1}h, b) (a, h, b) \cdot s = (a, h\lambda(b)^{-1}\lambda(bs), bs)$$

Lemma Σ_S is a semigroup.

Lemma Σ_S is a semigroup.

Remark

In the particular case when S is a group, the associativity of Σ_S boils down to an elementary fact in geometric group theory: there is a balanced labelling of the Cayley graph of S by elements of H such that two given non-loop edges are labelled by γ_1 and γ_2 respectively.

Lemma Σ_S is a semigroup.

Remark

In the particular case when S is a group, the associativity of Σ_S boils down to an elementary fact in geometric group theory: there is a balanced labelling of the Cayley graph of S by elements of H such that two given non-loop edges are labelled by γ_1 and γ_2 respectively. (A spanning tree argument...)

Lemma Σ_S is a semigroup.

Remark

In the particular case when S is a group, the associativity of Σ_S boils down to an elementary fact in geometric group theory: there is a balanced labelling of the Cayley graph of S by elements of H such that two given non-loop edges are labelled by γ_1 and γ_2 respectively. (A spanning tree argument...)

The definitions of λ , P and \cdot between S and M are motivated by (and are one implementation of) this.

Let $h_0 \in H$ and $a \mathscr{R} e \mathscr{L} b$ be arbitrary.

Let $h_0 \in H$ and $a \mathscr{R} e \mathscr{L} b$ be arbitrary.

Goal: Prove $T \equiv \langle S, (a, h_0, b) \rangle = \Sigma_S$.

Let $h_0 \in H$ and $a \mathscr{R} e \mathscr{L} b$ be arbitrary.

Goal: Prove $T \equiv \langle S, (a, h_0, b) \rangle = \Sigma_S$.

There is no loss of generality in assuming that a = b = e, for otherwise $\exists s, t \in S$ such that sa = bt = e, and so

Let $h_0 \in H$ and $a \mathscr{R} e \mathscr{L} b$ be arbitrary.

Goal: Prove $T \equiv \langle S, (a, h_0, b) \rangle = \Sigma_S$.

There is no loss of generality in assuming that a = b = e, for otherwise $\exists s, t \in S$ such that sa = bt = e, and so

$$s(a, h_0, b)t = (e, \lambda(sa)\lambda(a)^{-1}h_0\lambda(b)^{-1}\lambda(bt), e) \in T,$$

Let $h_0 \in H$ and $a \mathscr{R} e \mathscr{L} b$ be arbitrary.

Goal: Prove $T \equiv \langle S, (a, h_0, b) \rangle = \Sigma_S$.

There is no loss of generality in assuming that a = b = e, for otherwise $\exists s, t \in S$ such that sa = bt = e, and so

$$s(a, h_0, b)t = (e, \lambda(sa)\lambda(a)^{-1}h_0\lambda(b)^{-1}\lambda(bt), e) \in T,$$

and we may continue working with

$$h_0' = \lambda(sa)\lambda(a)^{-1}h_0\lambda(b)^{-1}\lambda(bt)$$

instead of h_0 .

Revised goal: Prove $T \equiv \langle S, (e, h_0, e) \rangle = \Sigma_S$.

Revised goal: Prove $T \equiv \langle S, (e, h_0, e) \rangle = \Sigma_S$.

Recall that we have picked $c, d \in G_e \setminus \{e\}$ carrying λ -labels γ_1 and γ_2 , respectively.

Revised goal: Prove $T \equiv \langle S, (e, h_0, e) \rangle = \Sigma_S$.

Recall that we have picked $c, d \in G_e \setminus \{e\}$ carrying λ -labels γ_1 and γ_2 , respectively. Since H is periodic, $h_0^m = 1_H$ for some $m \in \mathbb{N}$.

Revised goal: Prove $T \equiv \langle S, (e, h_0, e) \rangle = \Sigma_S$.

Recall that we have picked $c, d \in G_e \setminus \{e\}$ carrying λ -labels γ_1 and γ_2 , respectively. Since H is periodic, $h_0^m = 1_H$ for some $m \in \mathbb{N}$. So, the following are elements of T:

Revised goal: Prove $T \equiv \langle S, (e, h_0, e) \rangle = \Sigma_S$.

Recall that we have picked $c, d \in G_e \setminus \{e\}$ carrying λ -labels γ_1 and γ_2 , respectively. Since H is periodic, $h_0^m = 1_H$ for some $m \in \mathbb{N}$. So, the following are elements of T:

$$(e, h_0, e)^m c(e, h_0, e)^m = (e, 1_H, e)(c, \lambda(c), e) = (e, p_{e,c}\lambda(c), e) = (e, \gamma_1, e),$$

Revised goal: Prove $T \equiv \langle S, (e, h_0, e) \rangle = \Sigma_S$.

Recall that we have picked $c, d \in G_e \setminus \{e\}$ carrying λ -labels γ_1 and γ_2 , respectively. Since H is periodic, $h_0^m = 1_H$ for some $m \in \mathbb{N}$. So, the following are elements of T:

$$(e, h_0, e)^m c(e, h_0, e)^m = (e, 1_H, e)(c, \lambda(c), e)$$

= $(e, p_{e,c}\lambda(c), e)$
= $(e, \gamma_1, e),$

$$(e, h_0, e)^m d(e, h_0, e)^m = (e, 1_H, e)(d, \lambda(d), e) = (e, p_{e,d}\lambda(d), e) = (e, \gamma_2, e).$$

Therefore, $H_e = \{e\} \times H \times \{e\} \subseteq T$.

Therefore,
$$H_e = \{e\} \times H \times \{e\} \subseteq T$$
.

However, then for any $a \mathscr{R} e \mathscr{L} b$ we have

$$aH_eb = \{a\} imes H imes \{b\} \subseteq T,$$

Therefore,
$$H_e = \{e\} \times H \times \{e\} \subseteq T$$
.

However, then for any $a \mathscr{R} e \mathscr{L} b$ we have

$$aH_eb = \{a\} \times H \times \{b\} \subseteq T,$$

because

$$a(e, h, e)b = (a, \lambda(a)h\lambda(b), b),$$

and $x \mapsto \lambda(a) \times \lambda(b)$ is a permutation of *H*.

Proof of the Main Theorem (3)

Therefore,
$$H_e = \{e\} \times H \times \{e\} \subseteq T$$
.

However, then for any $a \mathscr{R} e \mathscr{L} b$ we have

$$aH_eb = \{a\} \times H \times \{b\} \subseteq T,$$

because

$$a(e, h, e)b = (a, \lambda(a)h\lambda(b), b),$$

and $x \mapsto \lambda(a) x \lambda(b)$ is a permutation of *H*.

Hence, $L_e \times H \times R_e \subseteq T$, so $T = \Sigma_S$, Q.E.D.

Suppose, to the contrary, that S is a witness for $\{e\}$, $e \in E(S)$.

Suppose, to the contrary, that S is a witness for $\{e\}$, $e \in E(S)$.

Both Se and eS are subsemigroups of S containing e, so $Se, eS \in \{\{e\}, S\}$.

Suppose, to the contrary, that S is a witness for $\{e\}$, $e \in E(S)$.

Both Se and eS are subsemigroups of S containing e, so $Se, eS \in \{\{e\}, S\}$.

If Se = eS = S, then e is an identity element of S, and if $Se = eS = \{e\}$, then e is the zero of S.

Suppose, to the contrary, that S is a witness for $\{e\}$, $e \in E(S)$.

Both Se and eS are subsemigroups of S containing e, so $Se, eS \in \{\{e\}, S\}$.

If Se = eS = S, then e is an identity element of S, and if $Se = eS = \{e\}$, then e is the zero of S.

In either case, for any $s \in S \setminus \{e\}$ we have $S = \langle e, s \rangle = \{e, s, s^2, ...\}$, where s is not periodic (because S is infinite), so $\{e, s^2, s^4, ...\}$ is a proper subsemigroup of S containing e.

Suppose, to the contrary, that S is a witness for $\{e\}$, $e \in E(S)$.

Both Se and eS are subsemigroups of S containing e, so Se, $eS \in \{\{e\}, S\}$.

If Se = eS = S, then e is an identity element of S, and if $Se = eS = \{e\}$, then e is the zero of S.

In either case, for any $s \in S \setminus \{e\}$ we have $S = \langle e, s \rangle = \{e, s, s^2, ...\}$, where s is not periodic (because S is infinite), so $\{e, s^2, s^4, ...\}$ is a proper subsemigroup of S containing e.

If Se = S and $eS = \{e\}$ ($Se = \{e\}$ and eS = S) then S is a left (resp. right) zero semigroup \implies every subset of S is a subsemigroup.

York, November 21, 2012

Suppose, to the contrary, that S is a witness for $\{e\}$, $e \in E(S)$.

Both Se and eS are subsemigroups of S containing e, so Se, $eS \in \{\{e\}, S\}$.

If Se = eS = S, then e is an identity element of S, and if $Se = eS = \{e\}$, then e is the zero of S.

In either case, for any $s \in S \setminus \{e\}$ we have $S = \langle e, s \rangle = \{e, s, s^2, ...\}$, where s is not periodic (because S is infinite), so $\{e, s^2, s^4, ...\}$ is a proper subsemigroup of S containing e.

If Se = S and $eS = \{e\}$ ($Se = \{e\}$ and eS = S) then S is a left (resp. right) zero semigroup \implies every subset of S is a subsemigroup. Contradiction!

Lemma

Let S be a big semigroup, and let T be any witness for S. Let J be the unique \mathcal{J} -class of T containing $T \setminus S$. Then J contains a J-primitive idempotent, that is, a minimal element in the restriction of the Rees order of idempotents of T to $J \cap E(T)$.

Lemma

Let S be a big semigroup, and let T be any witness for S. Let J be the unique \mathscr{J} -class of T containing $T \setminus S$. Then J contains a J-primitive idempotent, that is, a minimal element in the restriction of the Rees order of idempotents of T to $J \cap E(T)$.

Steps:

(i) There exist $a, b \in J$ such that $ab \in J$.

Lemma

Let S be a big semigroup, and let T be any witness for S. Let J be the unique \mathscr{J} -class of T containing $T \setminus S$. Then J contains a J-primitive idempotent, that is, a minimal element in the restriction of the Rees order of idempotents of T to $J \cap E(T)$.

Steps:

- (i) There exist $a, b \in J$ such that $ab \in J$.
- (ii) There exists $t \in J$ such that $t^n \in J$ for all $n \in \mathbb{N}$.

Lemma

Let S be a big semigroup, and let T be any witness for S. Let J be the unique \mathscr{J} -class of T containing $T \setminus S$. Then J contains a J-primitive idempotent, that is, a minimal element in the restriction of the Rees order of idempotents of T to $J \cap E(T)$.

Steps:

- (i) There exist $a, b \in J$ such that $ab \in J$.
- (ii) There exists $t \in J$ such that $t^n \in J$ for all $n \in \mathbb{N}$.
- (iii) J contains an idempotent.

Lemma

Let S be a big semigroup, and let T be any witness for S. Let J be the unique \mathscr{J} -class of T containing $T \setminus S$. Then J contains a J-primitive idempotent, that is, a minimal element in the restriction of the Rees order of idempotents of T to $J \cap E(T)$.

Steps:

- (i) There exist $a, b \in J$ such that $ab \in J$.
- (ii) There exists $t \in J$ such that $t^n \in J$ for all $n \in \mathbb{N}$.
- (iii) J contains an idempotent.
- (iv) J contains a J-primitive idempotent.

Assume to the contrary, that T is a witness for $\mathbb{Z}_2 = \{e, a\}$.

Since $T \setminus \mathbb{Z}_2$ is contained in a single \mathscr{J} -class J of T, there are two possibilities:

Since $T \setminus \mathbb{Z}_2$ is contained in a single \mathscr{J} -class J of T, there are two possibilities:

1. T = J is simple,

Since $T \setminus \mathbb{Z}_2$ is contained in a single \mathscr{J} -class J of T, there are two possibilities:

- 1. T = J is simple, or
- 2. T has precisely two \mathscr{J} -classes: \mathbb{Z}_2 and J.

Since $T \setminus \mathbb{Z}_2$ is contained in a single \mathscr{J} -class J of T, there are two possibilities:

- 1. T = J is simple, or
- 2. T has precisely two \mathscr{J} -classes: \mathbb{Z}_2 and J.

In either case, J is the kernel of T and, since it contains a J-primitive idempotent that must also be T-primitive, it follows that J is completely simple.

Case 1: $T \cong \mathcal{M}(I, G, \Lambda, P)$, and G has a subgroup of order 2.

Case 1: $T \cong \mathcal{M}(I, G, \Lambda, P)$, and G has a subgroup of order 2.

Now \mathbb{Z}_2 is not big as a group (F+J+N — easy), so if *G* is infinite, there is a proper subgroup G_1 of *G* properly containing \mathbb{Z}_2 , destroying *T* as a witness.

Case 1: $T \cong \mathcal{M}(I, G, \Lambda, P)$, and G has a subgroup of order 2.

Now \mathbb{Z}_2 is not big as a group (F+J+N — easy), so if *G* is infinite, there is a proper subgroup G_1 of *G* properly containing \mathbb{Z}_2 , destroying *T* as a witness.

Thus G must be finite, so at least one of the index sets I, Λ are infinite.

Case 1: $T \cong \mathcal{M}(I, G, \Lambda, P)$, and G has a subgroup of order 2.

Now \mathbb{Z}_2 is not big as a group (F+J+N — easy), so if *G* is infinite, there is a proper subgroup G_1 of *G* properly containing \mathbb{Z}_2 , destroying *T* as a witness.

Thus G must be finite, so at least one of the index sets I, Λ are infinite.

At the same time, notice that we must have

 $T = \langle G_{i\mu}, (j, h, \nu) \rangle$

for some $i \in I$, $\mu \in \Lambda$, and any $(j, h, \nu) \in T \setminus G_{i\mu}$.

Case 1: $T \cong \mathcal{M}(I, G, \Lambda, P)$, and G has a subgroup of order 2.

Now \mathbb{Z}_2 is not big as a group (F+J+N — easy), so if *G* is infinite, there is a proper subgroup G_1 of *G* properly containing \mathbb{Z}_2 , destroying *T* as a witness.

Thus G must be finite, so at least one of the index sets I, Λ are infinite.

At the same time, notice that we must have

 $T = \langle G_{i\mu}, (j, h, \nu) \rangle$

for some $i \in I$, $\mu \in \Lambda$, and any $(j, h, \nu) \in T \setminus G_{i\mu}$. However, $\langle G_{i\mu}, (j, h, \nu) \rangle \subseteq G_{i\mu} \cup G_{j\mu} \cup G_{i\nu} \cup G_{j\nu} \subsetneq T$.

York, November 21, 2012

Case 1: $T \cong \mathcal{M}(I, G, \Lambda, P)$, and G has a subgroup of order 2.

Now \mathbb{Z}_2 is not big as a group (F+J+N — easy), so if *G* is infinite, there is a proper subgroup G_1 of *G* properly containing \mathbb{Z}_2 , destroying *T* as a witness.

Thus G must be finite, so at least one of the index sets I, Λ are infinite.

At the same time, notice that we must have

 $T = \langle G_{i\mu}, (j, h, \nu) \rangle$

for some $i \in I$, $\mu \in \Lambda$, and any $(j, h, \nu) \in T \setminus G_{i\mu}$. However, $\langle G_{i\mu}, (j, h, \nu) \rangle \subseteq G_{i\mu} \cup G_{j\mu} \cup G_{i\nu} \cup G_{j\nu} \subsetneq T$. Contradiction!

York, November 21, 2012

Case 2: T is an ideal extension of a completely simple semigroup J by \mathbb{Z}_2^0 .

Case 2: T is an ideal extension of a completely simple semigroup J by \mathbb{Z}_2^0 .

So, T has an idempotent $f \neq e$, whence $T = \langle a, f \rangle$.

Case 2: T is an ideal extension of a completely simple semigroup J by \mathbb{Z}_2^0 .

So, *T* has an idempotent $f \neq e$, whence $T = \langle a, f \rangle$. Furthermore, *e* can be assumed to be the identity of *T*, for otherwise $\{e, a\} \subsetneq eTe \subsetneq T$.

Case 2: T is an ideal extension of a completely simple semigroup J by \mathbb{Z}_2^0 .

So, T has an idempotent $f \neq e$, whence $T = \langle a, f \rangle$. Furthermore, *e* can be assumed to be the identity of T, for otherwise $\{e, a\} \subseteq eTe \subseteq T$.

Hence, each element of T is an alternating product of a and f.

Case 2: T is an ideal extension of a completely simple semigroup J by \mathbb{Z}_2^0 .

So, *T* has an idempotent $f \neq e$, whence $T = \langle a, f \rangle$. Furthermore, *e* can be assumed to be the identity of *T*, for otherwise $\{e, a\} \subsetneq eTe \subsetneq T$.

Hence, each element of T is an alternating product of a and f. We have faf $\mathscr{J} f$

Case 2: T is an ideal extension of a completely simple semigroup J by \mathbb{Z}_2^0 .

So, T has an idempotent $f \neq e$, whence $T = \langle a, f \rangle$. Furthermore, e can be assumed to be the identity of T, for otherwise $\{e, a\} \subsetneq eTe \subsetneq T$.

Hence, each element of T is an alternating product of a and f.

We have faf $\mathscr{J} f \Longrightarrow f = t_1(faf)t_2 = ft_1faft_2f$ for some $t_1, t_2 \in J^1$.

Case 2: T is an ideal extension of a completely simple semigroup J by \mathbb{Z}_2^0 .

So, T has an idempotent $f \neq e$, whence $T = \langle a, f \rangle$. Furthermore, e can be assumed to be the identity of T, for otherwise $\{e, a\} \subsetneq eTe \subsetneq T$.

Hence, each element of T is an alternating product of a and f.

We have faf $\mathscr{J} f \Longrightarrow f = t_1(faf)t_2 = ft_1faft_2f$ for some $t_1, t_2 \in J^1$.

Therefore, for some $k \ge 1$ we have

$$(faf)^k = faf \cdots faf = f$$

Case 2: T is an ideal extension of a completely simple semigroup J by \mathbb{Z}_2^0 .

So, T has an idempotent $f \neq e$, whence $T = \langle a, f \rangle$. Furthermore, e can be assumed to be the identity of T, for otherwise $\{e, a\} \subsetneq eTe \subsetneq T$.

Hence, each element of T is an alternating product of a and f.

We have faf $\mathscr{J} f \Longrightarrow f = t_1(faf)t_2 = ft_1faft_2f$ for some $t_1, t_2 \in J^1$.

Therefore, for some $k \ge 1$ we have

$$(faf)^k = faf \cdots faf = f$$

 $\implies |J| \le 4k + 1$ (i.e. *J* is finite).

Case 2: T is an ideal extension of a completely simple semigroup J by \mathbb{Z}_2^0 .

So, T has an idempotent $f \neq e$, whence $T = \langle a, f \rangle$. Furthermore, e can be assumed to be the identity of T, for otherwise $\{e, a\} \subsetneq eTe \subsetneq T$.

Hence, each element of T is an alternating product of a and f.

We have faf $\mathscr{J} f \Longrightarrow f = t_1(faf)t_2 = ft_1faft_2f$ for some $t_1, t_2 \in J^1$.

Therefore, for some $k \ge 1$ we have

$$(faf)^k = faf \cdots faf = f$$

 $\implies |J| \le 4k + 1$ (i.e. *J* is finite). Contradiction!

OK, girls & boys, the last slide of this talk is SOOOOO predictable...

OK, girls & boys, the last slide of this talk is SOOOOO predictable...

Open Problem

Characterise big semigroups.

OK, girls & boys, the last slide of this talk is SOOOOO predictable...

Open Problem

Characterise big semigroups.

Igor, now remember to make a sketch on the black-/white-board... (For what is a lecture without a nice drawing...?)

Also, don't forget some handwaving to finish it off nicely. \heartsuit

THANK YOU!

Questions and comments to: dockie@dmi.uns.ac.rs

Further information may be found at: http://sites.dmi.rs/personal/dolinkai