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Magna Carta (June 15, 1215, Runnymede, John I)

All these customs and liberties that we have granted shall be
observed in our kingdom in so far as concerns our own relations with
our subjects. Let all men of our kingdom, whether clergy or laymen,

observe them similarly in their relations with their own men.

Isn’t this a bit like homogeneity?
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One of the main motifs of this jolly get-together... ,

Let A be a (countable) first order structure. A is said to be
(ultra)homogeneous if any isomorphism

ι : B → B′

between its finitely generated substructures is a restriction of an
automorphism α of A: ι = α|B .

Remark
If we restrict to relational structures, ‘finitely generated’ becomes
simply ‘finite’.
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Classification programme for countable ultrahomogeneous
structures

I finite graphs (Gardiner, 1976)

I posets (Schmerl, 1979)

I undirected graphs (Lachlan & Woodrow, 1980)

I tournaments (Lachlan, 1984)

I directed graphs (Cherlin, 1998 – Memoirs of AMS, 160+ pp.)

I semilattices (Droste, Kuske, Truss, 1999)

I finite groups (Cherlin & Felgner, 2000)

I permutations (Cameron, 2002)

I multipartite graphs (Jenkinson, Truss, Seidel, 2012)

I coloured multipartite graphs (Lockett, Truss, 2014)

I lattices – ‘unclassifiable’ (Abogatma, Truss, 2015)

I . . .
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Fräıssé theory

Fact
For any countably infinite ultrahomogeneous structure A, its age
Age(A) (the class of its finitely generated substructures) has the
following properties:

I it has countably many isomorphism types;

I it is closed for taking (copies of) substructures;

I it has the joint embedding property (JEP);

I it has the amalgamation property (AP).

A class of finite(ly generated) structures with such properties is
called a Fräıssé class.

Theorem (Fräıssé)

Let C be a Fräıssé class. Then there exists a unique countably
infinite ultrahomogeneous structure F such that Age(F) = C.
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Let C be a Fräıssé class. Then there exists a unique countably
infinite ultrahomogeneous structure F such that Age(F) = C.

PGTS, Durham, July 25, 2015 Igor Dolinka: Semigroup embeddings3



Fräıssé theory
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Fräıssé theory (continued)

The structure F from the previous theorem is called the Fräıssé
limit of C.

Classical examples:

I finite chains −→ (Q, <)

I finite undirected graphs −→ the Rado (random) graph R

I finite posets −→ the random poset

I finite tournaments −→ the random tournament

I finite metric spaces with rational distances −→ the rational
Urysohn space UQ

I finite permutations −→ the random permutation

Fräıssé limits over finite relational languages are ω-categorical,
have quantifier elimination, oligomorphic automorphism groups,. . .

PGTS, Durham, July 25, 2015 Igor Dolinka: Semigroup embeddings4
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limit of C.

Classical examples:

I finite chains −→ (Q, <)

I finite undirected graphs −→ the Rado (random) graph R

I finite posets −→ the random poset

I finite tournaments −→ the random tournament

I finite metric spaces with rational distances −→ the rational
Urysohn space UQ

I finite permutations −→ the random permutation
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The objective of this mini-course...

...is to study the structure of End(F) for various Fräıssé limits F
using ‘only’ algebraic semigroup theory (and, of course, basic
model theory, combinatorics, categories, etc.), but not topology.

Our goal for today: Discuss whether the monoid/semigroup
End(F) is countably universal.

Chiefly, this is achieved by embedding Tℵ0 .
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using ‘only’ algebraic semigroup theory (and, of course, basic
model theory, combinatorics, categories, etc.), but not topology.

Our goal for today: Discuss whether the monoid/semigroup
End(F) is countably universal.

Chiefly, this is achieved by embedding Tℵ0 .

PGTS, Durham, July 25, 2015 Igor Dolinka: Semigroup embeddings5



The objective of this mini-course...

...is to study the structure of End(F) for various Fräıssé limits F
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Easy example: the case of the random graph R

Take any countable graph G .
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Easy example: the case of the random graph R

For any finite subset (and induced subgraph) S , invent
a new vertex vS that is adjacent to all vertices from S

and to no other vertex from G .
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Easy example: the case of the random graph R

Do this for all finite S ⊆ V (G ).
(i 6= j =⇒ vSi and vSj are not adjacent.)
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Easy example: the case of the random graph R

This way, we obtain G ∗.
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Easy example: the case of the random graph R

Now suppose we have given φ ∈ End(G ).

We can extend φ to G ∗ by sending, for each finite S ⊆ V (G ),

φ∗ : vS 7→ vSφ.

φ∗ is easily seen to be a graph endomorphism of G ∗.

Furthermore,
Ψ : φ 7→ φ∗

is an (injective) monoid homomorphism End(G )→ End(G ∗).
Hence, End(G ) embeds into End(G ∗).
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Easy example: the case of the random graph R

Now iterate the star construction:

G0 = G , Gn+1 = G ∗n (n ≥ 0),

and let RG be the direct limit of these graphs on vertices⋃
n≥0 V (Gn).

As is well known, RG is one of the standard ways to build the
random graph ‘around’ G , i.e. RG

∼= R. Hence, for any countable
graph G , End(G ) embeds into End(R).

By taking G to be the null graph on a countably infinite set of
vertices, we get

Theorem (Bonato, Delić, ID, 2006)

Tℵ0 – and thus any countable semigroup – embeds in End(R).
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How ’bout some generalisation?

I.D. D. Mašulović

‘A universality result for endomorphism monoids of some
ultrahomogeneous structures’,
Proc. Edinburgh Math. Soc. 55 (2012), 635–656.
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Spans and pushouts

A span is a following configuration of objects and morphisms in a
category C :

Y X
foo g // Z

The pushout of this span is an object P along with two morphisms
i1 : Y → P and i2 : Z → P with the following properties:

(1) The diagram

Y
i1 // P

X

f

OO

g
// Z

i2

OO

commutes;
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Spans and pushouts

(2) For any object Q and morphisms j1 : Y → Q and j2 : Z → Q
for which the part of diagram below involving X ,Y ,Z ,Q is
commutative, there exists a unique morphism u : P → Q
making the whole diagram

Q

Y
i1 //

j1
11

P

u
??

X

f

OO

g
// Z

i2

OO j2

MM

commutative.

Abstract nonsense =⇒ pushout (if it exists) is unique.
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Amalgams and AP

A span in a concrete category C (of structures and
homomorphisms) where f , g are embeddings is called an amalgam.

AP: For any amalgam (A,B,C , f , g) in C , ∃D ∈ C & embeddings
i1 : B ↪→ D and i2 : C ↪→ D such that

B �
� i1 // D

A �
� g //?�

f

OO

C
?�
i2

OO

commutes.
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Strict AP

For a Fräıssé class C let C denote the class (category) of all
countable structures A with Age(A) ⊆ C.

Loosely speaking, the strict AP for C asserts amalgamation by
pushouts, i.e. the existence of the pushout in C of any amalgam in
C. So, for any amalgam (A,B,C , f , g) in C there exists a structure
P ∈ C and embeddings i1 : B ↪→ P and i2 : C ↪→ P such that

B �
� i1 // P

A �
� g //?�

f

OO

C
?�
i2

OO

is a pushout square.

The strict AP can be shown to extend to the case when B,C ∈ C.
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Rooted multi-amalgams over C

I A ∈ C – the root,

I Bi ,Ci ∈ C,

I A ∩ Ci = Bi ,

I i 6= j ⇒
(Ci \ Bi ) ∩ (Cj \ Bj) = ∅.

Notation: (A, (Bi ,Ci )i∈I )
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Rooted multi-amalgams over C

Free C-sum:

(A, (Bi ,Ci )i∈I )  D =
∐∗(A, (Bi ,Ci )i∈I ) ∈ C

(a) There are embeddings f : A→ D and gi : Ci → D, i ∈ I , such
that f |Bi

= gi |Bi
for any i ∈ I ;

(b) for any structure D ′ ∈ C and any homomorphisms
ϕ : A→ D ′, ψi : Ci → D ′, i ∈ I , such that for any i ∈ I we
have ϕ|Bi

= ψi |Bi
, there exists a unique homomorphism

δ : D → D ′ extending all the given homomorphisms, that is,
such that we have f δ = ϕ and giδ = ψi for all i ∈ I .

Lemma
If C is a Fräıssé class with strict AP, then every rooted
multi-amalgam over C has the free C-sum in C.
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Strict AP examples

I Finite (simple) graphs: the free sum is just the amalgam itself;

I Finite posets: the free sum of (A, (Bi ,Ci )i∈I ) = take the
union of order relations on A and Ci ’s (a reflexive and
antisymmetric relation) and construct its transitive closure;

I Algebraic structures: If V is a variety of algebras, then strict
AP = ordinary AP for Vf .g ., and the free sum of a rooted
multi-amalgam is just the free algebra freely generated by the
partial algebra (A, (Bi ,Ci )i∈I ) (Grätzer) =⇒ finite semilattices
/ distributive lattices / Boolean algebras, ...
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The star construction

Let A ∈ C be an arbitrary countable structure.

Let {(Bi ,Ci ) : i ∈ I} be an enumeration of all pairs consisting of a
finitely generated substructure Bi of A and a one-point extension
Ci ∈ C of Bi such that if Bi = Bj = B then Ci and Cj are not
B-isomorphic. By renaming elements if necessary, (A, (Bi ,Ci )i∈I )
becomes a rooted multi-amalgam over C.

So, let A∗ =
∐∗(A, (Bi ,Ci )i∈I ) ∈ C.
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The star construction

Let A(0) = A and A(n+1) = (A(n))∗ for all n ≥ 0.

We can identify A(n) with its appropriate copy within A(n+1), so in
that sense we can form the structure

F (A) =
⋃
n≥0

A(n).

Proposition

Let C be a Fräıssé class with the strict AP and let A ∈ C be
arbitrary. Then F (A) is isomorphic to the Fräıssé limit of C.
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Homomorphism extensions

Our motivation: Given ϕ ∈ End(A), extend it to ϕ̂ ∈ End(A∗) in a
‘neat way’.

By the defining properties of free C-sums, for this it suffices to
define homomorphisms ψi : Ci → A∗ that agree with ϕ on Bi . This
emphasises the importance of spans of the following type:

C B? _
1Boo f // // B ′

where C is a one-point extension of B.
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One-point homomorphism extension property (1PHEP)

The class C enjoys the 1PHEP if for any B,B ′,C ∈ C such that C
is a one-point extension of B, and any surjective homomorphism
f : B → B ′ there exists an extension C ′ of B ′ and a surjective
homomorphism f ∗ : C → C ′ such that f ∗|B = f ;

in other words,
the following diagram commutes:

C
f ∗ // // C ′

B
f // //?�

1B

OO

B ′
?�
1B′

OO

(Here C ′ is either a one-point extension of B ′, or C ′ = B ′.)

Remark
1PHEP is in Fräıssé classes equvalent to homo-amalgamation
property (HAP), intimately related to homomorphism-homogeneity.
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Strict 1PHEP

We require that any span of the form

C B? _
ioo f // // B ′

where B,B ′,C ∈ C and C is a one-point extension of B, has a
pushout P ∈ C with respect to C as a concrete category,

and if

C
f ′ // P

B
f // //?�

i

OO

B ′

i ′

OO

is a pushout square in C, then i ′ is an embedding and the
homomorphism f ′ is surjective.
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The main result

Theorem (ID+DM, 2012)

Let C be a Fräıssé class satisfying the following three properties:

(i) C enjoys the strict AP.

(ii) C enjoys the strict 1PHEP.

(iii) For any B,C ∈ C such that C is a one-point extension of B,
the pointwise stabilizer AutB(C ) (of B in Aut(C )) is trivial.

Then for any A ∈ C there is an embedding of End(A) into
End(A∗). Consequently, if F is the Fräıssé limit of C then End(A)
embeds into End(F ).
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The main result

A one-point extension C of B is uniquely generated if x , x ′ ∈ C \B
and 〈B, x〉 = 〈B, x ′〉 = C implies x = x ′.

Notice that this
automatically holds in relational structures.

Corollary

Let C be a Fräıssé class satisfying the condition of uniquely
generated one-point extensions. If C satisfies the strict AP and the
strict 1PHEP, then for any A ∈ C, End(A) embeds into End(A∗)
and so into the endomorphism monoid of the Fräıssé limit of C.
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PGTS, Durham, July 25, 2015 Igor Dolinka: Semigroup embeddings26



The random graph (revisited)

Lemma
The class of finite simple graphs satisfies the strict 1PHEP.

Take A to be the null graph on ℵ0 vertices.

Corollary (Bonato, Delić, ID, 2006)

End(R) embeds Tℵ0 and thus any countable semigroup.
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The random poset

Lemma
The class of finite posets satisfies the strict 1PHEP.

Take A to be the antichain of size ℵ0.

Corollary (ID, 2007)

End(P) embeds Tℵ0 and thus any countable semigroup.
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The (rational) Urysohn space

Let Σ be an additive submonoid of R+
0 , and let MΣ be the class of

all finite metric spaces with distances in Σ.

Here are two charming
exercises in metric geometry:

Lemma
MΣ enjoys the strict 1PHEP.

Lemma
MΣ enjoys the strict AP (even though the category of metric
spaces has no coproducts!).

Take A to be the unit ℵ0-simplex.

Corollary

End(UQ) embeds Tℵ0 and thus any countable semigroup.

Lemma
End(UQ) embeds into End(U).
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The significance of CEP

An algebra A is said to have the congruence extension property
(CEP) if any congruence θ on any subalgebra B of A is a
restriction of a congruence of A.

Classical examples:

I semilattices

I distributive lattices

I Boolean algebras

I Abelian groups

I ... (a huge subject in universal algebra)

Lemma
Let C be a class of finitely generated algebras with the CEP and
closed under taking homomorphic images. Then C has the strict
1PHEP.
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The countable generic semilattice

Lemma
Any one-point extension of a semilattice is uniquely generated.

Take A to be the free semilattice of rank ℵ0.

Corollary (ID, 2007)

End(Ω) embeds Tℵ0 and thus any countable semigroup.
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The countable generic distributive lattice

ALAS!!!

Not every one-point extension of a (finite) distributive
lattice is uniquely generated.

This lattice is a one-point extension of its ‘red’ sublattice, but it is
generated both by the ‘green’ and the ‘blue’ element (for example).
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The countable generic distributive lattice

However...

Lemma (Noticed by ID on the night of June 18/19, 2015)

Finite one-point extensions of distributive lattices satisfy the
condition (iii) of the Main Theorem!

Corollary (Solution of Problem 4.16 of ID+DM)

The monoid End(D) embeds Tℵ0 and thus any countable
semigroup.
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The countable generic distributive lattice

Lemma
Let L be a finite distributive lattice that is a one-point extension of
its sublattice K , and let φ be an automorphism of L fixing K
pointwise. Then φ is the identity mapping.

Proof.
Let L = 〈K , x〉.

Since then any element of L is obtained as p(x), where p is a
unary distributive lattice polynomial with coefficients in K , the
lemma follows if φ(x) = x . So, assume that φ(x) 6= x .

Then, as already noted,

φ(x) = (x ∧ a) ∨ b

for some a, b ∈ K (we used the distributive laws for this).
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The countable generic distributive lattice

Hence,

φ(x ∨ b) = φ(x) ∨ φ(b) = φ(x) ∨ b = (x ∧ a) ∨ b ∨ b = φ(x).

Since φ is an automorphism of L, we must have x ∨ b = x .

Therefore,

φ(x) = (x ∧ a) ∨ b = (x ∨ b) ∧ (a ∨ b) = x ∧ (a ∨ b) ≤ x ,

so φ(x) < x .

But then
x > φ(x) > φ2(x) > . . .

contradicting the finiteness of L. 2
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THANK YOU!

Questions and comments to:

dockie@dmi.uns.ac.rs

Further information may be found at:

http://people.dmi.uns.ac.rs/∼dockie
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