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This talk is dedicated to...
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This talk is dedicated to...

...my very first encounter with alcohol — and beer in particular —
almost exactly 30 years ago (on the evening of 30 April 1986, to be
exact) in a certain pub/brewery in Prague.
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Representation is an important issue

RANDOMIGRAEH §'AYS...

s JIPRND

NOJTAXATIONWITHOUT{REERESENTATION!]
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SO, WHO!IS'THIS RANDOM GRAPH
CHARACTER?

maglayenaraiorgs
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Ready for take-off: Homogeneous structures

Let A be a (countable) first order structure. A is said to be
(ultra)homogeneous if any isomorphism

L:B—B

between its finitely generated substructures is a restriction of an
automorphism « of A: = ap.
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Ready for take-off: Homogeneous structures

Let A be a (countable) first order structure. A is said to be
(ultra)homogeneous if any isomorphism

1:B—=B
between its finitely generated substructures is a restriction of an
automorphism « of A: = ap.

Remark
If we restrict to relational structures, ‘finitely generated’ becomes
simply ‘finite’.
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Classification programme for countable ultrahomogeneous
structures
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Classification programme for countable ultrahomogeneous
structures

» finite graphs (Gardiner, 1976)
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Classification programme for countable ultrahomogeneous

structures

» finite graphs (Gardiner, 1976)
» posets (Schmerl, 1979)
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Classification programme for countable ultrahomogeneous
structures

» finite graphs (Gardiner, 1976)
» posets (Schmerl, 1979)
» undirected graphs (Lachlan & Woodrow, 1980)
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Classification programme for countable ultrahomogeneous
structures

» finite graphs (Gardiner, 1976)
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» undirected graphs (Lachlan & Woodrow, 1980)
» tournaments (Lachlan, 1984)
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Classification programme for countable ultrahomogeneous
structures

» finite graphs (Gardiner, 1976)

posets (Schmerl, 1979)

undirected graphs (Lachlan & Woodrow, 1980)

tournaments (Lachlan, 1984)

directed graphs (Cherlin, 1998 — Memoirs of AMS, 160+ pp.)

v

v

v

v
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Classification programme for countable ultrahomogeneous
structures
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Classification programme for countable ultrahomogeneous
structures

» finite graphs (Gardiner, 1976)

» posets (Schmerl, 1979)

» undirected graphs (Lachlan & Woodrow, 1980)

» tournaments (Lachlan, 1984)

» directed graphs (Cherlin, 1998 — Memoirs of AMS, 160+ pp.)
» semilattices (Droste, Kuske, Truss, 1999)

» finite groups (Cherlin & Felgner, 2000)
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Classification programme for countable ultrahomogeneous
structures
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Classification programme for countable ultrahomogeneous
structures
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Classification programme for countable ultrahomogeneous
structures
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Fraissé theory

Fact
For any countably infinite ultrahomogeneous structure A, its age

Age(A) (the class of its finitely generated substructures) has the
following properties:
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Fraissé theory

Fact
For any countably infinite ultrahomogeneous structure A, its age

Age(A) (the class of its finitely generated substructures) has the
following properties:
» it has countably many isomorphism types;
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Fraissé theory

Fact
For any countably infinite ultrahomogeneous structure A, its age

Age(A) (the class of its finitely generated substructures) has the
following properties:
» it has countably many isomorphism types;

» it is closed for taking (copies of) substructures;
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Fraissé theory

Fact
For any countably infinite ultrahomogeneous structure A, its age

Age(A) (the class of its finitely generated substructures) has the
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» it is closed for taking (copies of) substructures;
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Fraissé theory

Fact
For any countably infinite ultrahomogeneous structure A, its age

Age(A) (the class of its finitely generated substructures) has the
following properties:
» it has countably many isomorphism types;

» it is closed for taking (copies of) substructures;
» it has the joint embedding property (JEP);
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Fraissé theory

Fact

For any countably infinite ultrahomogeneous structure A, its age
Age(A) (the class of its finitely generated substructures) has the
following properties:

» it has countably many isomorphism types;

» it is closed for taking (copies of) substructures;
» it has the joint embedding property (JEP);

» it has the amalgamation property (AP).

A class of finite(ly generated) structures with such properties is
called a Fraissé class.
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Fraissé theory

Fact

For any countably infinite ultrahomogeneous structure A, its age
Age(A) (the class of its finitely generated substructures) has the
following properties:

» it has countably many isomorphism types;

» it is closed for taking (copies of) substructures;
» it has the joint embedding property (JEP);

» it has the amalgamation property (AP).

A class of finite(ly generated) structures with such properties is
called a Fraissé class.
Theorem (Fraissé)

Let C be a Fraissé class. Then there exists a unique countably
infinite ultrahomogeneous structure F such that Age(F) = C.
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Fraissé theory (continued)

The structure F from the previous theorem is called the Fraissé
limit of C.
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Fraissé theory (continued)

The structure F from the previous theorem is called the Fraissé
limit of C.

Classical examples:
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Fraissé theory (continued)

The structure F from the previous theorem is called the Fraissé
limit of C.

Classical examples:

» finite chains — (Q, <)
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Fraissé theory (continued)

The structure F from the previous theorem is called the Fraissé
limit of C.
Classical examples:

» finite chains — (Q, <)

» finite undirected graphs — the random graph R
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Fraissé theory (continued)

The structure F from the previous theorem is called the Fraissé
limit of C.
Classical examples:

» finite chains — (Q, <)

» finite undirected graphs — the random graph R

» finite posets — the random poset
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Fraissé theory (continued)

The structure F from the previous theorem is called the Fraissé
limit of C.

Classical examples:

» finite chains — (Q, <)

v

finite undirected graphs — the random graph R

v

finite posets — the random poset

finite tournaments — the random tournament

v
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Fraissé theory (continued)

The structure F from the previous theorem is called the Fraissé
limit of C.

Classical examples:

» finite chains — (Q, <)

v

finite undirected graphs — the random graph R

v

finite posets — the random poset

finite tournaments — the random tournament

v

v

finite metric spaces with rational distances — the rational
Urysohn space Ug
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Fraissé theory (continued)

The structure F from the previous theorem is called the Fraissé
limit of C.

Classical examples:

>

>

>

finite chains — (Q, <)

finite undirected graphs — the random graph R
finite posets — the random poset

finite tournaments — the random tournament

finite metric spaces with rational distances — the rational
Urysohn space Ug

finite permutations — the random permutation
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Fraissé theory (continued)

The structure F from the previous theorem is called the Fraissé
limit of C.

Classical examples:

>

>

>

>

finite chains — (Q, <)

finite undirected graphs — the random graph R
finite posets — the random poset

finite tournaments — the random tournament

finite metric spaces with rational distances — the rational
Urysohn space Ug

finite permutations — the random permutation

Fraissé limits over finite relational languages are w-categorical,
have quantifier elimination, oligomorphic automorphism groups,. ..
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The random graph R

R = the unique countable existentially closed graph
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The random graph R

R = the unique countable existentially closed graph

You can get anything you want
at Alice’s Restaurant

Arlo Guthrie: Alice’s Restaurant Massacre (1967)
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The random graph R

R = the unique countable existentially closed graph

You can get anything you want
at Alice’s Restaurant

Arlo Guthrie: Alice’s Restaurant Massacre (1967)

= for any disjoint finite sets of vertices A and B there is a vertex
v € AU B adjacent to all vertices from A and to none of B
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The random graph R

R = the unique countable existentially closed graph
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® ENDOMORPHISM MONOIDS?

mamsaganaraior.nsi
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Endomorphism monoids

Endomorphism of a first-order structure A = (A, RA, FA, CA) =
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Endomorphism monoids

Endomorphism of a first-order structure A = (A, RA, FA, CA) = a
transformation f : A — A preserving all relations from R4, all
operations from FA and all constants from CA.
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Endomorphism monoids

Endomorphism of a first-order structure A = (A, RA, FA, CA) = a
transformation f : A — A preserving all relations from R4, all
operations from FA and all constants from CA.

All endomorphisms of A for a monoid (semigroup with 1) under
composition of functions: End(.A).
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Endomorphism monoids

Endomorphism of a first-order structure A = (A, RA, FA, CA) = a
transformation f : A — A preserving all relations from R4, all
operations from FA and all constants from CA.

All endomorphisms of A for a monoid (semigroup with 1) under
composition of functions: End(.A).

There are two ways in which groups can appear within a semigroup

S:
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Endomorphism monoids

Endomorphism of a first-order structure A = (A, RA, FA, CA) = a
transformation f : A — A preserving all relations from R4, all
operations from FA and all constants from CA.

All endomorphisms of A for a monoid (semigroup with 1) under
composition of functions: End(.A).

There are two ways in which groups can appear within a semigroup
S:

» overt: as maximal subgroups of S;
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Endomorphism monoids

Endomorphism of a first-order structure A = (A, RA, FA, CA) = a
transformation f : A — A preserving all relations from R4, all
operations from FA and all constants from CA.

All endomorphisms of A for a monoid (semigroup with 1) under
composition of functions: End(.A).

There are two ways in which groups can appear within a semigroup
S:
» overt: as maximal subgroups of S;

» covert: as Schiitzenberger groups (of Z-classes of S)
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Sometimes, there is a very fine line between overt and
covert... ©
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Sometimes, there is a very fine line between overt and
covert... ®©
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YU NO SEMIGROUP THEORY?

memegenerator.net
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Green's relations

The most fundamental tool in studying the structure of
semigroups.
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Green's relations

The most fundamental tool in studying the structure of
semigroups. (Named after J. Alexander “Sandy” Green
(1926-2014).)
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Green's relations

The most fundamental tool in studying the structure of
semigroups. (Named after J. Alexander “Sandy” Green
(1926-2014).)

a#b <= aS'l=bS! <— (Ix,yecSYHax=b&by=a
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Green's relations

The most fundamental tool in studying the structure of
semigroups. (Named after J. Alexander “Sandy” Green
(1926-2014).)
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Green's relations

The most fundamental tool in studying the structure of
semigroups. (Named after J. Alexander “Sandy” Green
(1926-2014).)

aZb <= aS'=bS'! <— (Ax,ycSYax=b&by=a
a¥lb < Sla=Sb < ([Hu,veSY)uva=b&vb=a2

D=HoYL =L oX
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Green's relations

The most fundamental tool in studying the structure of
semigroups. (Named after J. Alexander “Sandy” Green
(1926-2014).)

aZb <= aS'=bS'! <— (Ax,ycSYax=b&by=a
a¥lb < Sla=Sb < ([Hu,veSY)uva=b&vb=a2
D=HoL =L oK

H=HANYL
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Green's relations

The most fundamental tool in studying the structure of
semigroups. (Named after J. Alexander “Sandy” Green
(1926-2014).)

aZb <= aS'=bS'! <— (Ax,ycSYax=b&by=a
a¥lb < Sla=Sb < ([Hu,veSY)uva=b&vb=a2
D=RRoL =LR

H =RHNYL

a b SaS'=5bS' & (3x,y,u,v e S)uax=b&vby =a
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The eggbox picture of a Y-class
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The eggbox picture of a Y-class

Groups (overt): J¢-classes shaded red (these are all isomorphic)
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The eggbox picture of a Y-class

Groups (overt): J¢-classes shaded red (these are all isomorphic)

maximal subgroups of a semigroup = #-classes containing idempotents

AAA92, Prague, 28 May 2016 8 Igor Dolinka: Groups in End(R)



Regularity

a €S is regular if
a= axa

for some x € S.
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Regularity

a €S is regular if

a=axa
for some x € S.
Fact
For any Z-class D, either all elements of D are regular or none of
them.
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Regularity

a €S is regular if

a= axa

for some x € §S.

Fact

For any Z-class D, either all elements of D are regular or none of
them.

Hence, a is regular <= a ¥ e for and idempotent e.
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A regular Z-class
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A regular eggbox
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A non-regular Z-class
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A non-regular eggbox
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Schitzenberger groups — groups the never were

There is a ‘hidden’ / covert group capturing the structure of a
(non-regular) Z-class D, called the Schiitzenberger group of D.
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Schitzenberger groups — groups the never were

There is a ‘hidden’ / covert group capturing the structure of a
(non-regular) Z-class D, called the Schiitzenberger group of D.

Namely, let H be an 7 -class within a Z-class D,
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Schitzenberger groups — groups the never were

There is a ‘hidden’ / covert group capturing the structure of a
(non-regular) Z-class D, called the Schiitzenberger group of D.

Namely, let H be an J#Z-class within a Z-class D, and consider
Th={teSl: HtCH}.
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Schitzenberger groups — groups the never were

There is a ‘hidden’ / covert group capturing the structure of a
(non-regular) Z-class D, called the Schiitzenberger group of D.

Namely, let H be an J#Z-class within a Z-class D, and consider
Th={teSl: HtCH}.

Basic results of semigroup theory (Green’s Lemma) show that each
pt - H— H (t € Ty) defined by

hpt = ht

is a permutation of H.
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Schitzenberger groups — groups the never were

There is a ‘hidden’ / covert group capturing the structure of a
(non-regular) Z-class D, called the Schiitzenberger group of D.

Namely, let H be an J#Z-class within a Z-class D, and consider
Th={teSl: HtCH}.

Basic results of semigroup theory (Green’s Lemma) show that each
pt - H— H (t € Ty) defined by

hpt = ht
is a permutation of H.

Hence, Sy = {p:: t € Ty} is a permutation group on H.

AAA92, Prague, 28 May 2016 14 Igor Dolinka: Groups in End(R)



Schitzenberger groups — groups the never were

There is a ‘hidden’ / covert group capturing the structure of a
(non-regular) Z-class D, called the Schiitzenberger group of D.

Namely, let H be an J#Z-class within a Z-class D, and consider
Th={teSl: HtCH}.

Basic results of semigroup theory (Green’s Lemma) show that each
pt - H— H (t € Ty) defined by

hpt = ht
is a permutation of H.

Hence, Sy = {p:: t € Ty} is a permutation group on H. This is
the (right) Schiitzenberger group of H.
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Schitzenberger groups — groups the never were

Fact
If both Hq, Hy belong to D, then Sy, = Sy,.
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Schitzenberger groups — groups the never were

Fact
If both Hq, Hy belong to D, then Sy, = Spy,. Hence the

Schiitzenberger group is really an invariant of a Z-class of a
semigroup.
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Schitzenberger groups — groups the never were

Fact

If both Hq, Hy belong to D, then Sy, = Spy,. Hence the
Schiitzenberger group is really an invariant of a Z-class of a
semigroup.

Fact
If H is a group (so that D is regular), then Sy = H.
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A classical example: Tx

Fact
In Tx we have:
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A classical example: Tx

Fact
In Tx we have:

(1) f Zg <= ker(f)=ker(g);
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A classical example: Tx

Fact
In Tx we have:

(1) f Zg <= ker(f)=ker(g);
(2) f £ g < im(f)=im(g);
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A classical example: Tx

Fact
In Tx we have:

(1) f Zg <= ker(f)=ker(g);
(2) f Zg < im(f)=im(g);
(3) f 2 g < rank(f)=|im(f)| = |im(g)| = rank(g);
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A classical example: Tx

Fact
In Tx we have:

(1) f Zg <= ker(f)=ker(g);
(2) f L g < im(f)=im(g);

(3) f 2 g <= rank(f)=|im(f)| = |im(g)| = rank(g);
4) S =2
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A classical example: Tx

Fact
In Tx we have:

(1) fZ g <= ker(f)=ker(g);

(2) f g < im(f)=im(g);

(3) f 2 g < rank(f)=|im(f)| = |im(g)| = rank(g);
4) 7 =9

(5) if e = €? and rank(e) = k, then He = S;
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A classical example: Tx

Fact
In Tx we have:

(1) fZ g <= ker(f)=ker(g);
(2) f g < im(f)=im(g);
(3) f 2 g < rank(f)=|im(f)| = |im(g)| = rank(g);
4) 7 =9

(5) if e = €? and rank(e) = k, then He = S;

(6) Tx is regular.
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BACK{TO[ENDOMORPHISM MONOIDS!PLEASE?
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End(A)

Let A be a first-order structure.
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End(A)

Let A be a first-order structure. Since End(A) < Ty, if
f,g € End(A) are %-/.£-related in End(.A) they are certainly
K-]L-related in Tp. Hence,
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End(A)

Let A be a first-order structure. Since End(A) < Ty, if
f,g € End(A) are %-/.£-related in End(.A) they are certainly
K-]L-related in Tp. Hence,

(i) fZg = ker(f)=ker(g);
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End(A)

Let A be a first-order structure. Since End(A) < Ty, if
f,g € End(A) are %-/.£-related in End(.A) they are certainly
K-]L-related in Tp. Hence,

(i) fZg = ker(f)=ker(g);
(i) f L g = im(f)=im(g).
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End(A)

Let A be a first-order structure. Since End(A) < Ty, if
f,g € End(A) are %-/.£-related in End(.A) they are certainly
K-]L-related in Tp. Hence,

(i) fZg = ker(f)=ker(g);
(i) f L g = im(f)=im(g).

Remark

We must be careful with the notion of an ‘image’ of an
endomorphism if our language contains relational symbols, because
besides im(f) we also have (Af), the induced substructure of A on
Af.
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End(A)

Let A be a first-order structure. Since End(A) < Ty, if
f,g € End(A) are %-/.£-related in End(.A) they are certainly
K-]L-related in Tp. Hence,

(i) fZg = ker(f)=ker(g);
(i) f L g = im(f)=im(g).

Remark

We must be careful with the notion of an ‘image’ of an
endomorphism if our language contains relational symbols, because
besides im(f) we also have (Af), the induced substructure of A on
Af.

Lemma
f92g = (Af) = (Ag).
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Regular elements in End(.A)

Proposition (Magill, Subbiah, 1974)
If f € End(A) is regular, then im(f) = (Af).
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Regular elements in End(.A)

Proposition (Magill, Subbiah, 1974)
If f € End(A) is regular, then im(f) = (Af).

Lemma (Magill, Subbiah, 1974)
Let f,g € End(A) be regular. Then:
(i) fZg <= ker(f)=ker(g),
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Regular elements in End(.A)

Proposition (Magill, Subbiah, 1974)
If f € End(A) is regular, then im(f) = (Af).

Lemma (Magill, Subbiah, 1974)

Let f,g € End(A) be regular. Then:
(i) f Z g <= ker(f)=ker(g),
(i) f L g <= im(f)=im(g),
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Regular elements in End(.A)

Proposition (Magill, Subbiah, 1974)
If f € End(A) is regular, then im(f) = (Af).

Lemma (Magill, Subbiah, 1974)
Let f,g € End(A) be regular. Then:
(i) f Z g <= ker(f)=ker(g),
(i) f Lg < im(f)=im(g),
(i) f 2 g < im(f)=im(g),

12
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Regular elements in End(.A)

Proposition (Magill, Subbiah, 1974)
If f € End(A) is regular, then im(f) = (Af).

Lemma (Magill, Subbiah, 1974)

Let f,g € End(A) be regular. Then:

(i) f Z g <= ker(f)=ker(g),

(i) f Lg < im(f)=im(g),

(i) f 2 g <= im(f)=im(g);

(iv) if e is idempotent, then He = Aut(im(e))
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Regular elements in End(.A)

Proposition (Magill, Subbiah, 1974)
If f € End(A) is regular, then im(f) = (Af).

Lemma (Magill, Subbiah, 1974)

Let f,g € End(A) be regular. Then:

(i) f Z g <= ker(f)=ker(g),

(i) f Lg < im(f)=im(g),

(i) f 2 g <= im(f)=im(g);

(iv) if e is idempotent, then He = Aut(im(e)) = Aut(im(f)) for
any f € D..
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Schiitzenberger groups in End(.A)

Proposition
Let f € End(A) and H = H.

AAA92, Prague, 28 May 2016 19 Igor Dolinka: Groups in End(R)



Schiitzenberger groups in End(.A)

Proposition
Let f € End(A) and H = H.

(i) If t € Ty, then t|ar is an automorphism of both (Af) and
im(f);
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Schiitzenberger groups in End(.A)

Proposition
Let f € End(A) and H = H.
(i) If t € Ty, then t|ar is an automorphism of both (Af) and
im(f);
(ii) the mapping ¢ : pt — t|ar is an embedding of Sy into
Aut((Af)) N Aut(im(f)).
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So, what the heck are the images of (idempotent)
endomorphisms of Fraissé limits?

Call a Fraissé class C neat if it consists of finite structures, and for
each n > 1 the number of isomorphism types of n-generated
structures in C is finite.
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So, what the heck are the images of (idempotent)
endomorphisms of Fraissé limits?

Call a Fraissé class C neat if it consists of finite structures, and for
each n > 1 the number of isomorphism types of n-generated
structures in C is finite.

Examples:
> relational structures
» Fraissé classes of algebras contained in locally finite varieties
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So, what the heck are the images of (idempotent)
endomorphisms of Fraissé limits?

Call a Fraissé class C neat if it consists of finite structures, and for
each n > 1 the number of isomorphism types of n-generated
structures in C is finite.

Examples:
» relational structures

» Fraissé classes of algebras contained in locally finite varieties

Theorem (ID, 2012)

Let C be a neat Fraissé class enjoying the strict AP and the
IPHEP. Then there exists and (idempotent) endomorphism f of F,
the Fraissé limit of C, such that A = im(f) if and only if A is
algebraically closed in C.
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ALGEBRAICALLY.CLO

WAIT WHAT?

memegenerator.net
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Algebraically closed stuff
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Algebraically closed stuff

An L-formula ®(x) is primitive if it is of the form

Gy) A\ Vilx.y)

i<k

where each V; is a literal: an atomic formula or its negation.
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Algebraically closed stuff

An L-formula ®(x) is primitive if it is of the form
(Ely) /\ \U,'(X, y)
i<k

where each W; is a literal: an atomic formula or its negation. No
negation — primitive positive formula.
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Algebraically closed stuff

An L-formula ®(x) is primitive if it is of the form

Gy) A\ Vilx.y)

i<k

where each W; is a literal: an atomic formula or its negation. No
negation — primitive positive formula.

Let K be a class of L-structures. An L-structure A is existentially
(algebraically) closed (in K) if for any primitive (positive) formula
®(x) and any tuple a from A we have already A = ®(a) whenever
there is an extension A’ € K of A such that A’ = ®(a).
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Graphs

Countable e.c. graphs: R (Alice's Restaurant property)
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Graphs

Countable e.c. graphs: R (Alice's Restaurant property)
Countable a.c. graphs: any finite set of vertices has a common
neighbour (= infinitely many of them)
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Graphs

Countable e.c. graphs: R (Alice’s Restaurant property)
Countable a.c. graphs: any finite set of vertices has a common
neighbour (= infinitely many of them)

In the rest of this talk we will be concerned with simple graphs and
End(R).
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Graphs

Countable e.c. graphs: R (Alice’s Restaurant property)
Countable a.c. graphs: any finite set of vertices has a common
neighbour (= infinitely many of them)

In the rest of this talk we will be concerned with simple graphs and
End(R). However, all these results can be adapted for:

» the random digraph,

v

the random bipartite graph,

v

the random (non-strict) poset,
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Graphs

Countable e.c. graphs: R (Alice’s Restaurant property)
Countable a.c. graphs: any finite set of vertices has a common
neighbour (= infinitely many of them)

In the rest of this talk we will be concerned with simple graphs and
End(R). However, all these results can be adapted for:

» the random digraph,
> the random bipartite graph,
> the random (non-strict) poset,

> ...

Proposition

A countable graph (V, E) is a.c. if and only if there exists E' C E
such that (V,E') = R (that is, it is e.c.).

AAA92, Prague, 28 May 2016 22 Igor Dolinka: Groups in End(R)



Graphs

Countable e.c. graphs: R (Alice’s Restaurant property)
Countable a.c. graphs: any finite set of vertices has a common
neighbour (= infinitely many of them)

In the rest of this talk we will be concerned with simple graphs and
End(R). However, all these results can be adapted for:

» the random digraph,
> the random bipartite graph,
> the random (non-strict) poset,

> ...

Proposition

A countable graph (V, E) is a.c. if and only if there exists E' C E
such that (V,E') = R (that is, it is e.c.). Consequently, for any
a.c. graph I there is a bijective homomorphism R — T.
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Frucht's Theorem (1939)

Any finite group is = Aut(I") for a finite graph T.
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Frucht's Theorem (1939)

Any finite group is = Aut(I") for a finite graph T.

de Groot / Sabidussi (1959/60) = automorphism groups of
countable graphs include all countable groups.
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Frucht's Theorem (1939)

Any finite group is = Aut(I") for a finite graph T.

de Groot / Sabidussi (1959/60) = automorphism groups of
countable graphs include all countable groups.

Name of the game: Strengthen this for countable a.c. graphs.
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The team

-

Shooting Guard:
Robert “Bob” Gray

Point Guard:
Martyn Quick

Center:
Jillian “Jay” McPhee

Forward: Power Forward:
“Baby” James Mitchell Dr. D
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Automorphism groups of countable a.c. graphs

Theorem
Let T be a countable graph. Then there exist 2X° pairwise

non-isomorphic countable a.c. graphs whose automorphism group
is = Aut(l).
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Automorphism groups of countable a.c. graphs

Theorem
Let T be a countable graph. Then there exist 2X° pairwise

non-isomorphic countable a.c. graphs whose automorphism group
is = Aut(l).

Proof. For a (simple) graph A, let Af denote its complement.
» Aut(AT) = Aut(A).
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Automorphism groups of countable a.c. graphs

Theorem
Let T be a countable graph. Then there exist 2X° pairwise

non-isomorphic countable a.c. graphs whose automorphism group
is = Aut(l).

Proof. For a (simple) graph A, let Af denote its complement.
» Aut(AT) = Aut(A).
» A any graph, A infinite locally finite graph = (AW A)f is a.c.
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Automorphism groups of countable a.c. graphs

Theorem
Let T be a countable graph. Then there exist 2X° pairwise

non-isomorphic countable a.c. graphs whose automorphism group
is = Aut(l).

Proof. For a (simple) graph A, let Af denote its complement.
» Aut(AT) = Aut(A).
» A any graph, A infinite locally finite graph = (AW A)f is a.c.
» The central idea — consider |.f. graphs Ls for S C N'\ {0, 1}:

alr
L-fz,lo.s“.‘.} 2 T ] o Us
—L—J
1
= - o — 2
4% Uy l, G ¢, %3
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Automorphism groups of countable a.c. graphs

Proof (cont'd).
> Properties of Ls (S, T C N\ {0,1}):
» Each Ls is rigid (Aut(Ls) =1).
> ls=2l7 <= S=T.
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Automorphism groups of countable a.c. graphs

Proof (cont'd).
» Properties of Ls (S, T C N\ {0,1}):
» Each Ls is rigid (Aut(Ls) = 1).
b Loy &= S=T.
» If Ls is isomorphic to no connected component of ' (and this
excludes only countably many choices of S), then

Aut(Tw Ls)T = Aut(T W Ls) = Aut(T") x Aut(Ls) = Aut(I).
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Automorphism groups of countable a.c. graphs

Proof (cont'd).
» Properties of Ls (S, T C N\ {0,1}):
» Each Ls is rigid (Aut(Ls) =1).
> sl < S=T.

» If Ls is isomorphic to no connected component of ' (and this
excludes only countably many choices of S), then

Aut(Tw Ls)" = Aut(l w Ls) = Aut(I) x Aut(Ls) = Aut(T).

» 51 # S, yield non-isomorphic a.c. graphs.
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Images of idempotent endomorphisms

Theorem (Bonato, Deli¢, 2000; ID, 2012)

Let I be a countable graph. There exists an idempotent
f € End(R) such that im(f) = T if and only ifT is a.c.
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Images of idempotent endomorphisms

Theorem (Bonato, Deli¢, 2000; ID, 2012)

Let I be a countable graph. There exists an idempotent
f € End(R) such that im(f) = T if and only ifT is a.c.

Theorem

If T is a countable a.c. graph, then there exists an (induced)
subgraph " 22T of R such that there are 2%° jdempotent
endomorphisms f of R such that im(f) =1T".
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The number of regular Z-classes with a given group

J-class

Theorem

(i) Let T be a countable graph. Then there exist 2% distinct
regular 9-classes of End(R) whose group ¢ -classes are
=~ Aut(l).
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The number of regular Z-classes with a given group

J-class

Theorem

(i) Let T be a countable graph. Then there exist 2% distinct
regular 9-classes of End(R) whose group ¢ -classes are
= Aut(IN).

(i) Every regular 9-class contains 2% distinct group ¢ -classes.
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The number of regular Z-classes with a given group

J-class

Theorem

(i) Let T be a countable graph. Then there exist 2% distinct
regular 9-classes of End(R) whose group ¢ -classes are
= Aut(IN).

(i) Every regular 9-class contains 2% distinct group ¢ -classes.

Corollary
End(R) has 2%° regular Z-classes.
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The number of regular Z-classes with a given group

J-class

Theorem

(i) Let T be a countable graph. Then there exist 2% distinct
regular 9-classes of End(R) whose group ¢ -classes are
= Aut(IN).

(i) Every regular 9-class contains 2% distinct group ¢ -classes.

Corollary
End(R) has 2%° regular 9-classes. (You know, the ones with
eggs...)
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The size of a regular eggbox

Theorem
Every regular Z-class of End(R) contains 280 many %- and
Z-classes.
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The size of a regular eggbox

Theorem
Every regular 2-class of End(R) contains 280 many %- and
Z-classes.

Proof. Let e be an idempotent endomorphism of R, and let
=im(e) (a.c.).
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The size of a regular eggbox

Theorem

Every regular 2-class of End(R) contains 280 many %- and
Z-classes.

Proof. Let e be an idempotent endomorphism of R, and let
=im(e) (a.c.).

Z-classes: Assume R is constructed as Rr.
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The size of a regular eggbox

Theorem

Every regular 2-class of End(R) contains 280 many %- and
Z-classes.

Proof. Let e be an idempotent endomorphism of R, and let
=im(e) (a.c.).

J-classes: Assume R is constructed as Rr. (Start with T;
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The size of a regular eggbox

Theorem
Every regular 2-class of End(R) contains 280 many %- and
Z-classes.

Proof. Let e be an idempotent endomorphism of R, and let
=im(e) (a.c.).

J-classes: Assume R is constructed as Rr. (Start with I'; at each
stage, for any finite subset S of vertices of the existing graph, add
a new vertex adjacent to S and nothing else;
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The size of a regular eggbox

Theorem
Every regular 2-class of End(R) contains 280 many %- and
Z-classes.

Proof. Let e be an idempotent endomorphism of R, and let
=im(e) (a.c.).

J-classes: Assume R is constructed as Rr. (Start with I'; at each
stage, for any finite subset S of vertices of the existing graph, add
a new vertex adjacent to S and nothing else; iterate this Yo times.)
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The size of a regular eggbox

Theorem
Every regular 2-class of End(R) contains 280 many %- and
Z-classes.

Proof. Let e be an idempotent endomorphism of R, and let
=im(e) (a.c.).

J-classes: Assume R is constructed as Rr. (Start with I'; at each
stage, for any finite subset S of vertices of the existing graph, add
a new vertex adjacent to S and nothing else; iterate this Yo times.)

We already know that the identity mapping on [ can be extended
to f € End(R) in 2% ways such that im(f) = im(e).
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The size of a regular eggbox

Theorem
Every regular 2-class of End(R) contains 280 many %- and
Z-classes.

Proof. Let e be an idempotent endomorphism of R, and let
=im(e) (a.c.).

J-classes: Assume R is constructed as Rr. (Start with I'; at each
stage, for any finite subset S of vertices of the existing graph, add
a new vertex adjacent to S and nothing else; iterate this Yo times.)

We already know that the identity mapping on [ can be extended
to f € End(R) in 2% ways such that im(f) = im(e).

All such f are idempotents, and f Z e,
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The size of a regular eggbox

Theorem
Every regular 2-class of End(R) contains 280 many %- and
Z-classes.

Proof. Let e be an idempotent endomorphism of R, and let
=im(e) (a.c.).

J-classes: Assume R is constructed as Rr. (Start with I'; at each
stage, for any finite subset S of vertices of the existing graph, add
a new vertex adjacent to S and nothing else; iterate this Yo times.)

We already know that the identity mapping on [ can be extended
to f € End(R) in 2% ways such that im(f) = im(e).

All such f are idempotents, and f & e, moreover, f £ e.
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The size of a regular eggbox

Theorem
Every regular 2-class of End(R) contains 280 many %- and
Z-classes.

Proof. Let e be an idempotent endomorphism of R, and let
=im(e) (a.c.).

J-classes: Assume R is constructed as Rr. (Start with I'; at each
stage, for any finite subset S of vertices of the existing graph, add
a new vertex adjacent to S and nothing else; iterate this Yo times.)

We already know that the identity mapping on [ can be extended
to f € End(R) in 2% ways such that im(f) = im(e).

All such f are idempotents, and f & e, moreover, f £ e.

However, all these idempotents are not Z-related.
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The size of a regular eggbox

Z-classes: Key idea — construct the graph I'* from I by replacing
each edge by the following gadget:
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The size of a regular eggbox

Z-classes: Key idea — construct the graph I'* from ' by replacing
each edge by the following gadget:

]

I

AAA92, Prague, 28 May 2016 29 Igor Dolinka: Groups in End(R)



The size of a regular eggbox

Z-classes: Key idea — construct the graph ' from T by replacing
each edge by the following gadget:

I

Construct R around ¥, so that R = Rrs.
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The size of a regular eggbox

Z-classes: Key idea — construct the graph ' from T by replacing
each edge by the following gadget:

I

Construct R around ¥, so that R = Rrs.

MNac — Mac
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The size of a regular eggbox

Z-classes: Key idea — construct the graph I'* from I by replacing
each edge by the following gadget:

’-1

Construct R around I'*, so that R = Rrs.

I a.c. = I a.c. Hence, the identity map on ' can be extended
to an endomorphism g : R — %,
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The size of a regular eggbox

For each binary sequence b = (b;);en define a map v on ' by
Virthp = Vi b,

for all i € N and r € {0,1}.
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The size of a regular eggbox

For each binary sequence b = (b;);en define a map v on ' by
Vi rthp = Vi b,

for all i € N and r € {0,1}. Easy: ¢p € End(I*) and im(vp) =T
is induced by {vjp, : i € N}.

AAA92, Prague, 28 May 2016 30 Igor Dolinka: Groups in End(R)



The size of a regular eggbox

For each binary sequence b = (b;);en define a map v on ' by
Vi rthp = Vi b,

for all i € N and r € {0,1}. Easy: ¢p € End(I*) and im(vp) =T
is induced by {vjp, : i € N}.

gip € End(R) are idempotents,
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The size of a regular eggbox

For each binary sequence b = (b;);en define a map v on ' by
Vi rthp = Vi b,

for all i € N and r € {0,1}. Easy: ¢p € End(I*) and im(vp) =T
is induced by {vjp, : i € N}.

g¥p € End(R) are idempotents, im(gip) = I = all these
idempotents are Z-related to e.

AAA92, Prague, 28 May 2016 30 Igor Dolinka: Groups in End(R)



The size of a regular eggbox

For each binary sequence b = (b;);en define a map v on ' by
Vi rthp = Vi b,

for all i € N and r € {0,1}. Easy: ¢p € End(I*) and im(vp) =T
is induced by {vjp, : i € N}.

g¥p € End(R) are idempotents, im(gip) = I = all these
idempotents are Z-related to e.

Different images = they are not .Z-related.
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Non-regular eggboxes

Theorem

Let ' 22 R be a countable a.c. graph. Then there exists a
non-regular endomorphism of R such that im(f) = T and D¢
contains 280 many Z- and £-classes.
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Non-regular eggboxes

Theorem

Let ' 22 R be a countable a.c. graph. Then there exists a
non-regular endomorphism of R such that im(f) = T and D¢
contains 280 many Z- and £-classes.

The proof is a variation of the idea of I'* and binary sequences.

AAA92, Prague, 28 May 2016 31 Igor Dolinka: Groups in End(R)



Non-regular eggboxes

Theorem

Let ' 22 R be a countable a.c. graph. Then there exists a
non-regular endomorphism of R such that im(f) = T and D¢
contains 280 many Z- and £-classes.

The proof is a variation of the idea of I'* and binary sequences.

Theorem
There are 280 non-regular 9-classes in End(R).
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Non-regular eggboxes

Theorem

Let ' 22 R be a countable a.c. graph. Then there exists a
non-regular endomorphism of R such that im(f) = T and D¢
contains 280 many Z- and £-classes.

The proof is a variation of the idea of I'* and binary sequences.
Theorem
There are 280 non-regular 9-classes in End(R).

Open Problem
Are there any non-regular eggboxes of some other size?
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Schiitzenberger groups in End(R)

Let ' = (Wo, Eo) be a countable a.c. graph.
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Schiitzenberger groups in End(R)

Let ' = (Wo, Eo) be a countable a.c. graph. Then, as we already
know, there is a subset F C Ep such that (Vo, F) = R.
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Schiitzenberger groups in End(R)

Let ' = (Wo, Eo) be a countable a.c. graph. Then, as we already
know, there is a subset F C Eg such that (Vo, F) = R. Now build
Rr = R around I, and let f : Rr — (Vp, F) be an isomorphism.
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Let ' = (Wo, Eo) be a countable a.c. graph. Then, as we already
know, there is a subset F C Eg such that (Vo, F) = R. Now build
Rr = R around I, and let f : Rr — (Vp, F) be an isomorphism.
Then f is an injective endomorphism of R; if F # Eg then f is
non-regular.
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Schiitzenberger groups in End(R)

Let ' = (Wo, Eo) be a countable a.c. graph. Then, as we already
know, there is a subset F C Eg such that (Vo, F) = R. Now build
Rr = R around I, and let f : Rr — (Vp, F) be an isomorphism.
Then f is an injective endomorphism of R; if F # Eg then f is
non-regular.

Proposition

Let f be an injective endomorphism of R = (V, E) as described
above, with Vf = V. Then

Sk, = Aut({ Vo)) N Aut(im(f))
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Schiitzenberger groups in End(R)

So, to show a universality result for Schiitzenberger groups in
End(R), one needs to extend the Frucht-de Groot-Sabidussi
Theorem to countable a.c. graphs with 2-coloured edges (blue and
red, say) where the ‘red graph’ is = R.
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End(R), one needs to extend the Frucht-de Groot-Sabidussi
Theorem to countable a.c. graphs with 2-coloured edges (blue and
red, say) where the ‘red graph’ is = R.

This is what we did via an involved construction that again uses
the rigid graphs Ls (for a particular countable family of sets S).
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Schiitzenberger groups in End(R)

So, to show a universality result for Schiitzenberger groups in
End(R), one needs to extend the Frucht-de Groot-Sabidussi
Theorem to countable a.c. graphs with 2-coloured edges (blue and
red, say) where the ‘red graph’ is = R.

This is what we did via an involved construction that again uses
the rigid graphs Ls (for a particular countable family of sets S).

Theorem

Let T be any countable graph. There are 2%° non-regular Z-classes
of End(R) such that the Schiitzenberger groups of the 7 -classes
within them are = Aut(I').
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THANK YOQOU!

Questions and comments to:
dockie@dmi.uns.ac.rs

Further information may be found at:
http://people.dmi.uns.ac.rs/~dockie
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