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This talk is dedicated to...

...my very first encounter with alcohol – and beer in particular –
almost exactly 30 years ago (on the evening of 30 April 1986, to be
exact) in a certain pub/brewery in Prague.
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Representation is an important issue
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Ready for take-off: Homogeneous structures

Let A be a (countable) first order structure. A is said to be
(ultra)homogeneous if any isomorphism

ι : B → B′

between its finitely generated substructures is a restriction of an
automorphism α of A: ι = α|B .

Remark
If we restrict to relational structures, ‘finitely generated’ becomes
simply ‘finite’.
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Classification programme for countable ultrahomogeneous
structures

I finite graphs (Gardiner, 1976)

I posets (Schmerl, 1979)

I undirected graphs (Lachlan & Woodrow, 1980)

I tournaments (Lachlan, 1984)

I directed graphs (Cherlin, 1998 – Memoirs of AMS, 160+ pp.)

I semilattices (Droste, Kuske, Truss, 1999)

I finite groups (Cherlin & Felgner, 2000)

I permutations (Cameron, 2002)

I multipartite graphs (Jenkinson, Truss, Seidel, 2012)

I coloured multipartite graphs (Lockett, Truss, 2014)

I lattices – ‘unclassifiable’ (Abogatma, Truss, 2015)

I . . .
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Fräıssé theory

Fact
For any countably infinite ultrahomogeneous structure A, its age
Age(A) (the class of its finitely generated substructures) has the
following properties:

I it has countably many isomorphism types;

I it is closed for taking (copies of) substructures;

I it has the joint embedding property (JEP);

I it has the amalgamation property (AP).

A class of finite(ly generated) structures with such properties is
called a Fräıssé class.

Theorem (Fräıssé)

Let C be a Fräıssé class. Then there exists a unique countably
infinite ultrahomogeneous structure F such that Age(F) = C.
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Let C be a Fräıssé class. Then there exists a unique countably
infinite ultrahomogeneous structure F such that Age(F) = C.

AAA92, Prague, 28 May 2016 Igor Dolinka: Groups in End(R)3
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Fräıssé theory (continued)

The structure F from the previous theorem is called the Fräıssé
limit of C.

Classical examples:

I finite chains −→ (Q, <)

I finite undirected graphs −→ the random graph R

I finite posets −→ the random poset

I finite tournaments −→ the random tournament

I finite metric spaces with rational distances −→ the rational
Urysohn space UQ

I finite permutations −→ the random permutation

Fräıssé limits over finite relational languages are ω-categorical,
have quantifier elimination, oligomorphic automorphism groups,. . .
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Fräıssé limits over finite relational languages are ω-categorical,
have quantifier elimination, oligomorphic automorphism groups,. . .

AAA92, Prague, 28 May 2016 Igor Dolinka: Groups in End(R)4
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Fräıssé theory (continued)

The structure F from the previous theorem is called the Fräıssé
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limit of C.

Classical examples:

I finite chains −→ (Q, <)

I finite undirected graphs −→ the random graph R

I finite posets −→ the random poset

I finite tournaments −→ the random tournament

I finite metric spaces with rational distances −→ the rational
Urysohn space UQ

I finite permutations −→ the random permutation
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limit of C.

Classical examples:

I finite chains −→ (Q, <)

I finite undirected graphs −→ the random graph R

I finite posets −→ the random poset

I finite tournaments −→ the random tournament

I finite metric spaces with rational distances −→ the rational
Urysohn space UQ

I finite permutations −→ the random permutation
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The random graph R

R = the unique countable existentially closed graph

You can get anything you want
at Alice’s Restaurant

Arlo Guthrie: Alice’s Restaurant Massacre (1967)

= for any disjoint finite sets of vertices A and B there is a vertex
v 6∈ A ∪ B adjacent to all vertices from A and to none of B
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Endomorphism monoids

Endomorphism of a first-order structure A = (A,RA,FA,CA) =

a
transformation f : A→ A preserving all relations from RA, all
operations from FA, and all constants from CA.

All endomorphisms of A for a monoid (semigroup with 1) under
composition of functions: End(A).

There are two ways in which groups can appear within a semigroup
S :

I overt: as maximal subgroups of S ;

I covert: as Schützenberger groups (of D-classes of S)
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All endomorphisms of A for a monoid (semigroup with 1) under
composition of functions: End(A).

There are two ways in which groups can appear within a semigroup
S :

I overt: as maximal subgroups of S ;

I covert: as Schützenberger groups (of D-classes of S)
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Sometimes, there is a very fine line between overt and
covert... ,
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Green’s relations

The most fundamental tool in studying the structure of
semigroups.

(Named after J. Alexander “Sandy” Green
(1926–2014).)

a R b ⇐⇒ aS1 = bS1 ⇐⇒ (∃x , y ∈ S1) ax = b & by = a

a L b ⇐⇒ S1a = S1b ⇐⇒ (∃u, v ∈ S1) ua = b & vb = a

D = R ◦L = L ◦R

H = R ∩L

a J b ⇔ S1aS1 = S1bS1 ⇔ (∃x , y , u, v ∈ S1) uax = b & vby = a
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The eggbox picture of a D-class

Groups (overt): H -classes shaded red (these are all isomorphic)

maximal subgroups of a semigroup = H -classes containing idempotents
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Regularity

a ∈ S is regular if
a = axa

for some x ∈ S .

Fact
For any D-class D, either all elements of D are regular or none of
them.

Hence, a is regular ⇐⇒ a D e for and idempotent e.
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A regular D-class

AAA92, Prague, 28 May 2016 Igor Dolinka: Groups in End(R)10



A regular eggbox
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A non-regular D-class
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A non-regular eggbox
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Schützenberger groups – groups the never were

There is a ‘hidden’ / covert group capturing the structure of a
(non-regular) D-class D, called the Schützenberger group of D.

Namely, let H be an H -class within a D-class D, and consider
TH = {t ∈ S1 : Ht ⊆ H}.

Basic results of semigroup theory (Green’s Lemma) show that each
ρt : H → H (t ∈ TH) defined by

hρt = ht

is a permutation of H.

Hence, SH = {ρt : t ∈ TH} is a permutation group on H. This is
the (right) Schützenberger group of H.
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Schützenberger groups – groups the never were

Fact
If both H1,H2 belong to D, then SH1

∼= SH2 .

Hence the
Schützenberger group is really an invariant of a D-class of a
semigroup.

Fact
If H is a group (so that D is regular), then SH ∼= H.
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A classical example: TX

Fact
In TX we have:

(1) f R g ⇐⇒ ker(f ) = ker(g);

(2) f L g ⇐⇒ im(f ) = im(g);

(3) f D g ⇐⇒ rank(f ) = |im(f )| = |im(g)| = rank(g);

(4) J = D ;

(5) if e = e2 and rank(e) = k , then He
∼= Sk ;

(6) TX is regular.
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End(A)

Let A be a first-order structure.

Since End(A) ≤ TA, if
f , g ∈ End(A) are R-/L -related in End(A) they are certainly
R-/L -related in TA. Hence,

(i) f R g =⇒ ker(f ) = ker(g);

(ii) f L g =⇒ im(f ) = im(g).

Remark
We must be careful with the notion of an ‘image’ of an
endomorphism if our language contains relational symbols, because
besides im(f ) we also have 〈Af 〉, the induced substructure of A on
Af .

Lemma
f D g =⇒ 〈Af 〉 ∼= 〈Ag〉.
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Regular elements in End(A)

Proposition (Magill, Subbiah, 1974)

If f ∈ End(A) is regular, then im(f ) = 〈Af 〉.

Lemma (Magill, Subbiah, 1974)

Let f , g ∈ End(A) be regular. Then:

(i) f R g ⇐⇒ ker(f ) = ker(g);

(ii) f L g ⇐⇒ im(f ) = im(g);

(iii) f D g ⇐⇒ im(f ) ∼= im(g);

(iv) if e is idempotent, then He
∼= Aut(im(e)) ∼= Aut(im(f )) for

any f ∈ De .
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Schützenberger groups in End(A)

Proposition

Let f ∈ End(A) and H = Hf .

(i) If t ∈ TH , then t|Af is an automorphism of both 〈Af 〉 and
im(f );

(ii) the mapping φ : ρt 7→ t|Af is an embedding of SH into
Aut(〈Af 〉) ∩ Aut(im(f )).
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So, what the heck are the images of (idempotent)
endomorphisms of Fräıssé limits?

Call a Fräıssé class C neat if it consists of finite structures, and for
each n ≥ 1 the number of isomorphism types of n-generated
structures in C is finite.

Examples:

I relational structures

I Fräıssé classes of algebras contained in locally finite varieties

Theorem (ID, 2012)

Let C be a neat Fräıssé class enjoying the strict AP and the
1PHEP. Then there exists and (idempotent) endomorphism f of F ,
the Fräıssé limit of C, such that A ∼= im(f ) if and only if A is
algebraically closed in C.
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Call a Fräıssé class C neat if it consists of finite structures, and for
each n ≥ 1 the number of isomorphism types of n-generated
structures in C is finite.

Examples:

I relational structures
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Call a Fräıssé class C neat if it consists of finite structures, and for
each n ≥ 1 the number of isomorphism types of n-generated
structures in C is finite.

Examples:

I relational structures
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Algebraically closed stuff

An L-formula Φ(x) is primitive if it is of the form

(∃y)
∧
i<k

Ψi (x, y)

where each Ψi is a literal: an atomic formula or its negation. No
negation −→ primitive positive formula.

Let K be a class of L-structures. An L-structure A is existentially
(algebraically) closed (in K) if for any primitive (positive) formula
Φ(x) and any tuple a from A we have already A |= Φ(a) whenever
there is an extension A′ ∈ K of A such that A′ |= Φ(a).
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Graphs

Countable e.c. graphs: R (Alice’s Restaurant property)

Countable a.c. graphs: any finite set of vertices has a common
neighbour (⇒ infinitely many of them)

In the rest of this talk we will be concerned with simple graphs and
End(R). However, all these results can be adapted for:

I the random digraph,

I the random bipartite graph,

I the random (non-strict) poset,

I ...

Proposition

A countable graph (V ,E ) is a.c. if and only if there exists E ′ ⊆ E
such that (V ,E ′) ∼= R (that is, it is e.c.). Consequently, for any
a.c. graph Γ there is a bijective homomorphism R → Γ.
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Frucht’s Theorem (1939)

Any finite group is ∼= Aut(Γ) for a finite graph Γ.

de Groot / Sabidussi (1959/60) ⇒ automorphism groups of
countable graphs include all countable groups.

Name of the game: Strengthen this for countable a.c. graphs.
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The team

Point Guard:
Martyn Quick

Forward:
“Baby” James Mitchell

Center:
Jillian “Jay” McPhee

Shooting Guard:
Robert “Bob” Gray

Power Forward:
Dr. D
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Automorphism groups of countable a.c. graphs

Theorem
Let Γ be a countable graph. Then there exist 2ℵ0 pairwise
non-isomorphic countable a.c. graphs whose automorphism group
is ∼= Aut(Γ).

Proof. For a (simple) graph ∆, let ∆† denote its complement.

I Aut(∆†) = Aut(∆).

I ∆ any graph, Λ infinite locally finite graph ⇒ (∆ ] Λ)† is a.c.

I The central idea – consider l.f. graphs LS for S ⊆ N \ {0, 1}:
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Automorphism groups of countable a.c. graphs

Proof (cont’d).
I Properties of LS (S ,T ⊆ N \ {0, 1}):

I Each LS is rigid (Aut(LS) = 1).
I LS ∼= LT ⇐⇒ S = T .

I If LS is isomorphic to no connected component of Γ (and this
excludes only countably many choices of S), then

Aut(Γ ] LS)† = Aut(Γ ] LS) ∼= Aut(Γ)× Aut(LS) ∼= Aut(Γ).

I S1 6= S2 yield non-isomorphic a.c. graphs.
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Images of idempotent endomorphisms

Theorem (Bonato, Delić, 2000; ID, 2012)

Let Γ be a countable graph. There exists an idempotent
f ∈ End(R) such that im(f ) ∼= Γ if and only if Γ is a.c.

Theorem
If Γ is a countable a.c. graph, then there exists an (induced)
subgraph Γ′ ∼= Γ of R such that there are 2ℵ0 idempotent
endomorphisms f of R such that im(f ) = Γ′.
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The number of regular D-classes with a given group
H -class

Theorem

(i) Let Γ be a countable graph. Then there exist 2ℵ0 distinct
regular D-classes of End(R) whose group H -classes are
∼= Aut(Γ).

(ii) Every regular D-class contains 2ℵ0 distinct group H -classes.

Corollary

End(R) has 2ℵ0 regular D-classes. (You know, the ones with
eggs...)
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The size of a regular eggbox

Theorem
Every regular D-class of End(R) contains 2ℵ0 many R- and
L -classes.

Proof. Let e be an idempotent endomorphism of R, and let
Γ = im(e) (a.c.).

R-classes: Assume R is constructed as RΓ. (Start with Γ; at each
stage, for any finite subset S of vertices of the existing graph, add
a new vertex adjacent to S and nothing else; iterate this ℵ0 times.)

We already know that the identity mapping on Γ can be extended
to f ∈ End(R) in 2ℵ0 ways such that im(f ) = im(e).

All such f are idempotents, and f D e, moreover, f L e.

However, all these idempotents are not R-related.
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The size of a regular eggbox

L -classes: Key idea – construct the graph Γ] from Γ by replacing
each edge by the following gadget:

Construct R around Γ], so that R = RΓ] .

Γ a.c. =⇒ Γ] a.c. Hence, the identity map on Γ] can be extended
to an endomorphism g : R → Γ].
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The size of a regular eggbox

For each binary sequence b = (bi )i∈N define a map ψb on Γ] by

vi ,rψb = vi ,bi

for all i ∈ N and r ∈ {0, 1}.

Easy: ψb ∈ End(Γ]) and im(ψb) ∼= Γ
is induced by {vi ,bi : i ∈ N}.

gψb ∈ End(R) are idempotents, im(gψb) ∼= Γ ⇒ all these
idempotents are D-related to e.

Different images ⇒ they are not L -related.
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Non-regular eggboxes

Theorem
Let Γ 6∼= R be a countable a.c. graph. Then there exists a
non-regular endomorphism of R such that im(f ) ∼= Γ and Df

contains 2ℵ0 many R- and L -classes.

The proof is a variation of the idea of Γ] and binary sequences.

Theorem
There are 2ℵ0 non-regular D-classes in End(R).

Open Problem

Are there any non-regular eggboxes of some other size?
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Schützenberger groups in End(R)

Let Γ = (V0,E0) be a countable a.c. graph.

Then, as we already
know, there is a subset F ⊆ E0 such that (V0,F ) ∼= R. Now build
RΓ
∼= R around Γ, and let f : RΓ → (V0,F ) be an isomorphism.

Then f is an injective endomorphism of R; if F 6= E0 then f is
non-regular.

Proposition

Let f be an injective endomorphism of R = (V ,E ) as described
above, with Vf = V0. Then

SHf
∼= Aut(〈V0〉) ∩ Aut(im(f ))
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Schützenberger groups in End(R)

So, to show a universality result for Schützenberger groups in
End(R), one needs to extend the Frucht-de Groot-Sabidussi
Theorem to countable a.c. graphs with 2-coloured edges (blue and
red, say) where the ‘red graph’ is ∼= R.

This is what we did via an involved construction that again uses
the rigid graphs LS (for a particular countable family of sets S).

Theorem
Let Γ be any countable graph. There are 2ℵ0 non-regular D-classes
of End(R) such that the Schützenberger groups of the H -classes
within them are ∼= Aut(Γ).
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THANK YOU!

Questions and comments to:

dockie@dmi.uns.ac.rs

Further information may be found at:

http://people.dmi.uns.ac.rs/∼dockie
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