Representing semigroups and groups by endomorphisms of Fraïssé limits

Part II. Groups: overt \& covert

Igor Dolinka
dockie@dmi.uns.ac.rs

Department of Mathematics and Informatics, University of Novi Sad
LMS - EPSRC Symposium
"Permutation Groups and Transformation Semigroups"
Durham, UK, July 28, 2015

Sherlock Holmes: A Game of Shadows (2011)

It's so overt, it's covert - a more brutal version

Green's relations

The most fundamental tool in studying the structure of semigroups.

Green's relations

The most fundamental tool in studying the structure of semigroups. (Named after J. Alexander "Sandy" Green (1926-2014).)

Green's relations

The most fundamental tool in studying the structure of semigroups. (Named after J. Alexander "Sandy" Green (1926-2014).)
$a \mathscr{R} b \Longleftrightarrow a S^{1}=b S^{1} \Longleftrightarrow\left(\exists x, y \in S^{1}\right) a x=b \& b y=a$

Green's relations

The most fundamental tool in studying the structure of semigroups. (Named after J. Alexander "Sandy" Green (1926-2014).)
$a \mathscr{R} b \Longleftrightarrow a S^{1}=b S^{1} \Longleftrightarrow\left(\exists x, y \in S^{1}\right) a x=b \& b y=a$
$a \mathscr{L} b \Longleftrightarrow S^{1} a=S^{1} b \Longleftrightarrow\left(\exists u, v \in S^{1}\right) u a=b \& v b=a$

Green's relations

The most fundamental tool in studying the structure of semigroups. (Named after J. Alexander "Sandy" Green (1926-2014).)
$a \mathscr{R} b \Longleftrightarrow a S^{1}=b S^{1} \Longleftrightarrow\left(\exists x, y \in S^{1}\right) a x=b \& b y=a$ $a \mathscr{L} b \Longleftrightarrow S^{1} a=S^{1} b \Longleftrightarrow\left(\exists u, v \in S^{1}\right) u a=b \& v b=a$
$\mathscr{D}=\mathscr{R} \circ \mathscr{L}=\mathscr{L} \circ \mathscr{R}$

Green's relations

The most fundamental tool in studying the structure of semigroups. (Named after J. Alexander "Sandy" Green (1926-2014).)
$a \mathscr{R} b \Longleftrightarrow a S^{1}=b S^{1} \Longleftrightarrow\left(\exists x, y \in S^{1}\right) a x=b \& b y=a$ $a \mathscr{L} b \Longleftrightarrow S^{1} a=S^{1} b \Longleftrightarrow\left(\exists u, v \in S^{1}\right) u a=b \& v b=a$
$\mathscr{D}=\mathscr{R} \circ \mathscr{L}=\mathscr{L} \circ \mathscr{R}$
$\mathscr{H}=\mathscr{R} \cap \mathscr{L}$

Green's relations

The most fundamental tool in studying the structure of semigroups. (Named after J. Alexander "Sandy" Green (1926-2014).)
$a \mathscr{R} b \Longleftrightarrow a S^{1}=b S^{1} \Longleftrightarrow\left(\exists x, y \in S^{1}\right) a x=b \& b y=a$ $a \mathscr{L} b \Longleftrightarrow S^{1} a=S^{1} b \Longleftrightarrow\left(\exists u, v \in S^{1}\right) u a=b \& v b=a$
$\mathscr{D}=\mathscr{R} \circ \mathscr{L}=\mathscr{L} \circ \mathscr{R}$
$\mathscr{H}=\mathscr{R} \cap \mathscr{L}$
$a \mathscr{J} b \Leftrightarrow S^{1} a S^{1}=S^{1} b S^{1} \Leftrightarrow\left(\exists x, y, u, v \in S^{1}\right) u a x=b \& v b y=a$

The eggbox picture of a \mathscr{D}-class

The eggbox picture of a \mathscr{D}-class

Groups (overt): \mathscr{H}-classes shaded red (these are all isomorphic)

The eggbox picture of a \mathscr{D}-class

Groups (overt): \mathscr{H}-classes shaded red (these are all isomorphic)
maximal subgroups of a semigroup $=\mathscr{H}$-classes containing idempotents

Regularity

$a \in S$ is regular if

$$
a=a x a
$$

for some $x \in S$.

Regularity

$a \in S$ is regular if

$$
a=a x a
$$

for some $x \in S$.
Fact
For any \mathscr{D}-class D, either all elements of D are regular or none of them.

Regularity

$a \in S$ is regular if

$$
a=a x a
$$

for some $x \in S$.
Fact
For any \mathscr{D}-class D, either all elements of D are regular or none of them.

Hence, a is regular $\Longleftrightarrow a \mathscr{D} e$ for and idempotent e.

A regular \mathscr{D}-class

A regular eggbox

A non-regular \mathscr{D}-class

A non-regular eggbox

Schützenberger groups - groups the never were

There is a 'hidden' / covert group capturing the structure of a (non-regular) \mathscr{D}-class D, called the Schützenberger group of D.

Schützenberger groups - groups the never were

There is a 'hidden' / covert group capturing the structure of a (non-regular) \mathscr{D}-class D, called the Schützenberger group of D.

Namely, let H be an \mathscr{H}-class within a \mathscr{D}-class D,

Schützenberger groups - groups the never were

There is a 'hidden' / covert group capturing the structure of a (non-regular) \mathscr{D}-class D, called the Schützenberger group of D.

Namely, let H be an \mathscr{H}-class within a \mathscr{D}-class D, and consider $T_{H}=\left\{t \in S^{1}: H t \subseteq H\right\}$.

Schützenberger groups - groups the never were

There is a 'hidden' / covert group capturing the structure of a (non-regular) \mathscr{D}-class D, called the Schützenberger group of D.

Namely, let H be an \mathscr{H}-class within a \mathscr{D}-class D, and consider $T_{H}=\left\{t \in S^{1}: H t \subseteq H\right\}$.

Basic results of semigroup theory (Green's Lemma) show that each $\rho_{t}: H \rightarrow H\left(t \in T_{H}\right)$ defined by

$$
h \rho_{t}=h t
$$

is a permutation of H.

Schützenberger groups - groups the never were

There is a 'hidden' / covert group capturing the structure of a (non-regular) \mathscr{D}-class D, called the Schützenberger group of D.

Namely, let H be an \mathscr{H}-class within a \mathscr{D}-class D, and consider $T_{H}=\left\{t \in S^{1}: H t \subseteq H\right\}$.

Basic results of semigroup theory (Green's Lemma) show that each $\rho_{t}: H \rightarrow H\left(t \in T_{H}\right)$ defined by

$$
h \rho_{t}=h t
$$

is a permutation of H.
Hence, $S_{H}=\left\{\rho_{t}: t \in T_{H}\right\}$ is a permutation group on H.

Schützenberger groups - groups the never were

There is a 'hidden' / covert group capturing the structure of a (non-regular) \mathscr{D}-class D, called the Schützenberger group of D.

Namely, let H be an \mathscr{H}-class within a \mathscr{D}-class D, and consider $T_{H}=\left\{t \in S^{1}: H t \subseteq H\right\}$.

Basic results of semigroup theory (Green's Lemma) show that each $\rho_{t}: H \rightarrow H\left(t \in T_{H}\right)$ defined by

$$
h \rho_{t}=h t
$$

is a permutation of H.
Hence, $S_{H}=\left\{\rho_{t}: t \in T_{H}\right\}$ is a permutation group on H. This is the (right) Schützenberger group of H.

Schützenberger groups - groups the never were

Fact
If both H_{1}, H_{2} belong to D, then $S_{H_{1}} \cong S_{H_{2}}$.

Schützenberger groups - groups the never were

Fact
If both H_{1}, H_{2} belong to D, then $S_{H_{1}} \cong S_{H_{2}}$. Hence the Schützenberger group is really an invariant of a \mathscr{D}-class of a semigroup.

Schützenberger groups - groups the never were

Fact
If both H_{1}, H_{2} belong to D, then $S_{H_{1}} \cong S_{H_{2}}$. Hence the Schützenberger group is really an invariant of a \mathscr{D}-class of a semigroup.

Fact
If H is a group (so that D is regular), then $S_{H} \cong H$.

A classical example: \mathcal{T}_{X}

Fact
In \mathcal{T}_{X} we have:

A classical example: \mathcal{T}_{X}

Fact
In \mathcal{T}_{X} we have:
(1) $f \mathscr{R} g \Longleftrightarrow \operatorname{ker}(f)=\operatorname{ker}(g)$;

A classical example: \mathcal{T}_{X}

Fact
In \mathcal{T}_{X} we have:
(1) $f \mathscr{R} g \Longleftrightarrow \operatorname{ker}(f)=\operatorname{ker}(g)$;
(2) $f \mathscr{L} g \Longleftrightarrow \operatorname{im}(f)=\operatorname{im}(g)$;

A classical example: \mathcal{T}_{X}

Fact
In \mathcal{T}_{X} we have:
(1) $f \mathscr{R} g \Longleftrightarrow \operatorname{ker}(f)=\operatorname{ker}(g)$;
(2) $f \mathscr{L} g \Longleftrightarrow \operatorname{im}(f)=\operatorname{im}(g)$;
(3) $f \mathscr{D} g \Longleftrightarrow \operatorname{rank}(f)=|i m(f)|=|\operatorname{im}(g)|=\operatorname{rank}(g)$;

A classical example: \mathcal{T}_{X}

Fact
In \mathcal{T}_{X} we have:
(1) $f \mathscr{R} g \Longleftrightarrow \operatorname{ker}(f)=\operatorname{ker}(g)$;
(2) $f \mathscr{L} g \Longleftrightarrow \operatorname{im}(f)=\operatorname{im}(g)$;
(3) $f \mathscr{D} g \Longleftrightarrow \operatorname{rank}(f)=|i m(f)|=|i m(g)|=\operatorname{rank}(g)$;
(4) $\mathscr{J}=\mathscr{D}$;

A classical example: \mathcal{T}_{X}

Fact
In \mathcal{T}_{X} we have:
(1) $f \mathscr{R} g \Longleftrightarrow \operatorname{ker}(f)=\operatorname{ker}(g)$;
(2) $f \mathscr{L} g \Longleftrightarrow \operatorname{im}(f)=\operatorname{im}(g)$;
(3) $f \mathscr{D} g \Longleftrightarrow \operatorname{rank}(f)=|i m(f)|=|i m(g)|=\operatorname{rank}(g)$;
(4) $\mathscr{J}=\mathscr{D}$;
(5) if $e=e^{2}$ and $\operatorname{rank}(e)=k$, then $H_{e} \cong \mathbb{S}_{k}$;

A classical example: \mathcal{T}_{X}

Fact

In \mathcal{T}_{X} we have:
(1) $f \mathscr{R} g \Longleftrightarrow \operatorname{ker}(f)=\operatorname{ker}(g)$;
(2) $f \mathscr{L} g \Longleftrightarrow \operatorname{im}(f)=\operatorname{im}(g)$;
(3) $f \mathscr{D} g \Longleftrightarrow \operatorname{rank}(f)=|i m(f)|=|\operatorname{im}(g)|=\operatorname{rank}(g)$;
(4) $\mathscr{J}=\mathscr{D}$;
(5) if $e=e^{2}$ and $\operatorname{rank}(e)=k$, then $H_{e} \cong \mathbb{S}_{k}$;
(6) \mathcal{T}_{X} is regular.

$\operatorname{End}(A)$

Let A be a first-order structure.

$\operatorname{End}(A)$

Let A be a first-order structure. Since $\operatorname{End}(A) \leq \mathcal{T}_{A}$, if $f, g \in \operatorname{End}(A)$ are \mathscr{R} - $/ \mathscr{L}$-related in $\operatorname{End}(A)$ they are certainly
\mathscr{R} - $/ \mathscr{L}$-related in \mathcal{T}_{A}. Hence,

$\operatorname{End}(A)$

Let A be a first-order structure. Since $\operatorname{End}(A) \leq \mathcal{T}_{A}$, if
$f, g \in \operatorname{End}(A)$ are \mathscr{R} - $/ \mathscr{L}$-related in $\operatorname{End}(A)$ they are certainly
\mathscr{R} - $/ \mathscr{L}$-related in \mathcal{T}_{A}. Hence,
(i) $f \mathscr{R} g \Longrightarrow \operatorname{ker}(f)=\operatorname{ker}(g)$;

$\operatorname{End}(A)$

Let A be a first-order structure. Since $\operatorname{End}(A) \leq \mathcal{T}_{A}$, if $f, g \in \operatorname{End}(A)$ are \mathscr{R} - $/ \mathscr{L}$-related in $\operatorname{End}(A)$ they are certainly
\mathscr{R} - $/ \mathscr{L}$-related in \mathcal{T}_{A}. Hence,
(i) $f \mathscr{R} g \Longrightarrow \operatorname{ker}(f)=\operatorname{ker}(g)$;
(ii) $f \mathscr{L} g \Longrightarrow \quad \operatorname{im}(f)=\operatorname{im}(g)$.

$\operatorname{End}(A)$

Let A be a first-order structure. Since $\operatorname{End}(A) \leq \mathcal{T}_{A}$, if $f, g \in \operatorname{End}(A)$ are \mathscr{R} - $/ \mathscr{L}$-related in $\operatorname{End}(A)$ they are certainly
\mathscr{R} - $/ \mathscr{L}$-related in \mathcal{T}_{A}. Hence,
(i) $f \mathscr{R} g \Longrightarrow \operatorname{ker}(f)=\operatorname{ker}(g)$;
(ii) $f \mathscr{L} g \Longrightarrow \quad \operatorname{im}(f)=\operatorname{im}(g)$.

Remark
We must be careful with the notion of an 'image' of an endomorphism if our language contains relational symbols, because besides $\operatorname{im}(f)$ we also have $\langle A f\rangle$, the induced substructure of A on Af.

$\operatorname{End}(A)$

Let A be a first-order structure. Since $\operatorname{End}(A) \leq \mathcal{T}_{A}$, if $f, g \in \operatorname{End}(A)$ are \mathscr{R} - $/ \mathscr{L}$-related in $\operatorname{End}(A)$ they are certainly
\mathscr{R} - $/ \mathscr{L}$-related in \mathcal{T}_{A}. Hence,
(i) $f \mathscr{R} g \Longrightarrow \operatorname{ker}(f)=\operatorname{ker}(g)$;
(ii) $f \mathscr{L} g \Longrightarrow \quad \operatorname{im}(f)=\operatorname{im}(g)$.

Remark
We must be careful with the notion of an 'image' of an endomorphism if our language contains relational symbols, because besides $\operatorname{im}(f)$ we also have $\langle A f\rangle$, the induced substructure of A on Af.

Lemma

$$
f \mathscr{D} g \Longrightarrow\langle A f\rangle \cong\langle A g\rangle
$$

Regular elements in $\operatorname{End}(A)$

Proposition (Magill, Subbiah, 1974)
If $f \in \operatorname{End}(A)$ is regular, then $\operatorname{im}(f)=\langle A f\rangle$.

Regular elements in $\operatorname{End}(A)$

Proposition (Magill, Subbiah, 1974)
If $f \in \operatorname{End}(A)$ is regular, then $\operatorname{im}(f)=\langle A f\rangle$.
Lemma (Magill, Subbiah, 1974)
Let $f, g \in \operatorname{End}(A)$ be regular. Then:
(i) $f \mathscr{R} g \Longleftrightarrow \operatorname{ker}(f)=\operatorname{ker}(g)$;

Regular elements in $\operatorname{End}(A)$

Proposition (Magill, Subbiah, 1974)
If $f \in \operatorname{End}(A)$ is regular, then $\operatorname{im}(f)=\langle A f\rangle$.
Lemma (Magill, Subbiah, 1974)
Let $f, g \in \operatorname{End}(A)$ be regular. Then:
(i) $f \mathscr{R} g \Longleftrightarrow \operatorname{ker}(f)=\operatorname{ker}(g)$;
(ii) $f \mathscr{L} g \Longleftrightarrow \operatorname{im}(f)=\mathrm{im}(g)$;

Regular elements in $\operatorname{End}(A)$

Proposition (Magill, Subbiah, 1974)
If $f \in \operatorname{End}(A)$ is regular, then $\operatorname{im}(f)=\langle A f\rangle$.
Lemma (Magill, Subbiah, 1974)
Let $f, g \in \operatorname{End}(A)$ be regular. Then:
(i) $f \mathscr{R} g \Longleftrightarrow \operatorname{ker}(f)=\operatorname{ker}(g)$;
(ii) $f \mathscr{L} g \Longleftrightarrow \operatorname{im}(f)=\mathrm{im}(g)$;
(iii) $f \mathscr{D} g \Longleftrightarrow \operatorname{im}(f) \cong \operatorname{im}(g)$;

Regular elements in $\operatorname{End}(A)$

Proposition (Magill, Subbiah, 1974)
If $f \in \operatorname{End}(A)$ is regular, then $\operatorname{im}(f)=\langle A f\rangle$.
Lemma (Magill, Subbiah, 1974)
Let $f, g \in \operatorname{End}(A)$ be regular. Then:
(i) $f \mathscr{R} g \Longleftrightarrow \operatorname{ker}(f)=\operatorname{ker}(g)$;
(ii) $f \mathscr{L} g \Longleftrightarrow \operatorname{im}(f)=\mathrm{im}(g)$;
(iii) $f \mathscr{D} g \Longleftrightarrow \operatorname{im}(f) \cong \operatorname{im}(g)$;
(iv) if e is idempotent, then $H_{e} \cong \operatorname{Aut}(\operatorname{im}(e))$

Regular elements in $\operatorname{End}(A)$

Proposition (Magill, Subbiah, 1974)
If $f \in \operatorname{End}(A)$ is regular, then $\operatorname{im}(f)=\langle A f\rangle$.
Lemma (Magill, Subbiah, 1974)
Let $f, g \in \operatorname{End}(A)$ be regular. Then:
(i) $f \mathscr{R} g \Longleftrightarrow \operatorname{ker}(f)=\operatorname{ker}(g)$;
(ii) $f \mathscr{L} g \Longleftrightarrow \operatorname{im}(f)=\mathrm{im}(g)$;
(iii) $f \mathscr{D} g \Longleftrightarrow \operatorname{im}(f) \cong \operatorname{im}(g)$;
(iv) if e is idempotent, then $H_{e} \cong \operatorname{Aut}(i m(e)) \cong \operatorname{Aut}(\mathrm{im}(f))$ for any $f \in D_{e}$.

Schützenberger groups in $\operatorname{End}(A)$

Proposition
Let $f \in \operatorname{End}(A)$ and $H=H_{f}$.

Schützenberger groups in $\operatorname{End}(A)$

Proposition

Let $f \in \operatorname{End}(A)$ and $H=H_{f}$.
(i) If $t \in T_{H}$, then $\left.t\right|_{A f}$ is an automorphism of both $\langle A f\rangle$ and $\operatorname{im}(f)$;

Schützenberger groups in $\operatorname{End}(A)$

Proposition
Let $f \in \operatorname{End}(A)$ and $H=H_{f}$.
(i) If $t \in T_{H}$, then $\left.t\right|_{A f}$ is an automorphism of both $\langle A f\rangle$ and $\operatorname{im}(f)$;
(ii) the mapping $\phi:\left.\rho_{t} \mapsto t\right|_{A f}$ is an embedding of S_{H} into $\operatorname{Aut}(\langle A f\rangle) \cap \operatorname{Aut}(\operatorname{im}(f))$.

So, what the heck are the images of (idempotent) endomorphisms of Fraïssé limits?

Call a Fraïssé class \mathbf{C} neat if it consists of finite structures, and for each $n \geq 1$ the number of isomorphism types of n-generated structures in \mathbf{C} is finite.

So, what the heck are the images of (idempotent) endomorphisms of Fraïssé limits?

Call a Fraïssé class \mathbf{C} neat if it consists of finite structures, and for each $n \geq 1$ the number of isomorphism types of n-generated structures in C is finite.

Examples:

- relational structures
- Fraïssé classes of algebras contained in locally finite varieties

So, what the heck are the images of (idempotent) endomorphisms of Fraïssé limits?

Call a Fraïssé class \mathbf{C} neat if it consists of finite structures, and for each $n \geq 1$ the number of isomorphism types of n-generated structures in \mathbf{C} is finite.

Examples:

- relational structures
- Fraïssé classes of algebras contained in locally finite varieties Theorem (ID, 2012)
Let \mathbf{C} be a neat Fraïssé class enjoying the strict $A P$ and the 1 PHEP. Then there exists and (idempotent) endomorphism f of F, the Fraïssé limit of \mathbf{C}, such that $A \cong \operatorname{im}(f)$ if and only if A is algebraically closed in $\overline{\mathbf{C}}$.

Algebraically clo... wait, what?

Algebraically clo... wait, what?

An L-formula $\Phi(\mathbf{x})$ is primitive if it is of the form

$$
(\exists \mathbf{y}) \bigwedge_{i<k} \Psi_{i}(\mathbf{x}, \mathbf{y})
$$

where each Ψ_{i} is a literal: an atomic formula or its negation.

Algebraically clo... wait, what?

An L-formula $\Phi(\mathbf{x})$ is primitive if it is of the form

$$
(\exists \mathbf{y}) \bigwedge_{i<k} \Psi_{i}(\mathbf{x}, \mathbf{y})
$$

where each Ψ_{i} is a literal: an atomic formula or its negation. No negation \longrightarrow primitive positive formula.

Algebraically clo... wait, what?

An L-formula $\Phi(\mathbf{x})$ is primitive if it is of the form

$$
(\exists \mathbf{y}) \bigwedge_{i<k} \Psi_{i}(\mathbf{x}, \mathbf{y})
$$

where each Ψ_{i} is a literal: an atomic formula or its negation. No negation \longrightarrow primitive positive formula.

Let \mathbf{K} be a class of L-structures. An L-structure A is existentially (algebraically) closed (in \mathbf{K}) if for any primitive (positive) formula $\Phi(\mathbf{x})$ and any tuple a from A we have already $A \models \Phi(\mathbf{a})$ whenever there is an extension $A^{\prime} \in \mathbf{K}$ of A such that $A^{\prime} \models \Phi(\mathbf{a})$.

Graphs

Countable e.c. graphs: R (Alice's Restaurant property)

Graphs

Countable e.c. graphs: R (Alice's Restaurant property) Countable a.c. graphs: any finite set of vertices has a common neighbour (\Rightarrow infinitely many of them)

Graphs

Countable e.c. graphs: R (Alice's Restaurant property) Countable a.c. graphs: any finite set of vertices has a common neighbour (\Rightarrow infinitely many of them)

In the rest of this talk we will be concerned with simple graphs and study $\operatorname{End}(R)$.

Graphs

Countable e.c. graphs: R (Alice's Restaurant property) Countable a.c. graphs: any finite set of vertices has a common neighbour (\Rightarrow infinitely many of them)

In the rest of this talk we will be concerned with simple graphs and study $\operatorname{End}(R)$. However, all these results can be adapted for

- the random digraph,
- the random bipartite graph,
- the random (non-strict) poset,
- ...

Graphs

Countable e.c. graphs: R (Alice's Restaurant property) Countable a.c. graphs: any finite set of vertices has a common neighbour (\Rightarrow infinitely many of them)

In the rest of this talk we will be concerned with simple graphs and study $\operatorname{End}(R)$. However, all these results can be adapted for

- the random digraph,
- the random bipartite graph,
- the random (non-strict) poset,
- ...

Proposition

A countable graph (V, E) is a.c. if and only if there exists $E^{\prime} \subseteq E$ such that $\left(V, E^{\prime}\right) \cong R$ (that is, it is e.c.).

Graphs

Countable e.c. graphs: R (Alice's Restaurant property) Countable a.c. graphs: any finite set of vertices has a common neighbour (\Rightarrow infinitely many of them)

In the rest of this talk we will be concerned with simple graphs and study $\operatorname{End}(R)$. However, all these results can be adapted for

- the random digraph,
- the random bipartite graph,
- the random (non-strict) poset,
- ...

Proposition

A countable graph (V, E) is a.c. if and only if there exists $E^{\prime} \subseteq E$ such that $\left(V, E^{\prime}\right) \cong R$ (that is, it is e.c.). Consequently, for any a.c. graph Γ there is a bijective homomorphism $R \rightarrow \Gamma$.

Frucht's Theorem (1939)

Any finite group is $\cong \operatorname{Aut}(\Gamma)$ for a finite graph Γ.

Frucht's Theorem (1939)

Any finite group is $\cong \operatorname{Aut}(\Gamma)$ for a finite graph Γ.
de Groot / Sabidussi $(1959 / 60) \Rightarrow$ automorphism groups of countable graphs include all countable groups.

Frucht's Theorem (1939)

Any finite group is $\cong \operatorname{Aut}(\Gamma)$ for a finite graph Γ.
de Groot / Sabidussi (1959/60) \Rightarrow automorphism groups of countable graphs include all countable groups.

Name of the game: Strengthen this for countable a.c. graphs.

The team

Point Guard:
Martyn Quick

Forward:
"Baby" James Mitchell

Shooting Guard: Robert "Bob" Gray

Power Forward: Dr. D

Happy 30th birthday, Jay !!! (July 28)

Automorphism groups of countable a.c. graphs

Theorem
Let Γ be a countable graph. Then there exist $2^{\aleph_{0}}$ pairwise non-isomorphic countable a.c. graphs whose automorphism group $i s \cong \operatorname{Aut}(\Gamma)$.

Automorphism groups of countable a.c. graphs

Theorem
Let Γ be a countable graph. Then there exist $2^{\aleph_{0}}$ pairwise non-isomorphic countable a.c. graphs whose automorphism group $i s \cong \operatorname{Aut}(\Gamma)$.

Proof. For a (simple) graph Δ, let Δ^{\dagger} denote its complement.

- $\operatorname{Aut}\left(\Delta^{\dagger}\right)=\operatorname{Aut}(\Delta)$.

Automorphism groups of countable a.c. graphs

Theorem
Let Γ be a countable graph. Then there exist $2^{\aleph_{0}}$ pairwise non-isomorphic countable a.c. graphs whose automorphism group $i s \cong \operatorname{Aut}(\Gamma)$.

Proof. For a (simple) graph Δ, let Δ^{\dagger} denote its complement.

- $\operatorname{Aut}\left(\Delta^{\dagger}\right)=\operatorname{Aut}(\Delta)$.
- Δ any graph, Λ infinite locally finite graph $\Rightarrow(\Delta \uplus \Lambda)^{\dagger}$ is a.c.

Automorphism groups of countable a.c. graphs

Theorem

Let Γ be a countable graph. Then there exist $2^{\aleph_{0}}$ pairwise non-isomorphic countable a.c. graphs whose automorphism group $i s \cong \operatorname{Aut}(\Gamma)$.

Proof. For a (simple) graph Δ, let Δ^{\dagger} denote its complement.

- $\operatorname{Aut}\left(\Delta^{\dagger}\right)=\operatorname{Aut}(\Delta)$.
- Δ any graph, Λ infinite locally finite graph $\Rightarrow(\Delta \uplus \Lambda)^{\dagger}$ is a.c.
- The central idea - consider I.f. graphs L_{S} for $S \subseteq \mathbb{N} \backslash\{0,1\}$:

Automorphism groups of countable a.c. graphs

Proof (cont'd).

- Properties of $L_{S}(S, T \subseteq \mathbb{N} \backslash\{0,1\})$:
- Each L_{S} is rigid $\left(\operatorname{Aut}\left(L_{S}\right)=1\right)$.
- $L_{S} \cong L_{T} \Longleftrightarrow S=T$.

Automorphism groups of countable a.c. graphs

Proof (cont'd).

- Properties of $L_{S}(S, T \subseteq \mathbb{N} \backslash\{0,1\})$:
- Each L_{S} is rigid $\left(\operatorname{Aut}\left(L_{S}\right)=\mathbf{1}\right)$.
- $L_{S} \cong L_{T} \Longleftrightarrow S=T$.
- If L_{S} is isomorphic to no connected component of Γ (and this excludes only countably many choices of S), then

$$
\operatorname{Aut}\left(\Gamma \uplus L_{S}\right)^{\dagger}=\operatorname{Aut}\left(\Gamma \uplus L_{S}\right) \cong \operatorname{Aut}(\Gamma) \times \operatorname{Aut}\left(L_{S}\right) \cong \operatorname{Aut}(\Gamma)
$$

Automorphism groups of countable a.c. graphs

Proof (cont'd).

- Properties of $L_{S}(S, T \subseteq \mathbb{N} \backslash\{0,1\})$:
- Each L_{S} is rigid $\left(\operatorname{Aut}\left(L_{S}\right)=1\right)$.
- $L_{S} \cong L_{T} \Longleftrightarrow S=T$.
- If L_{S} is isomorphic to no connected component of Γ (and this excludes only countably many choices of S), then

$$
\operatorname{Aut}\left(\Gamma \uplus L_{S}\right)^{\dagger}=\operatorname{Aut}\left(\Gamma \uplus L_{S}\right) \cong \operatorname{Aut}(\Gamma) \times \operatorname{Aut}\left(L_{S}\right) \cong \operatorname{Aut}(\Gamma)
$$

- $S_{1} \neq S_{2}$ yield non-isomorphic a.c. graphs.

Images of idempotent endomorphisms

Theorem (Bonato, Delić, 2000; ID, 2012)
Let Γ be a countable graph. There exists an idempotent $f \in \operatorname{End}(R)$ such that $\operatorname{im}(f) \cong \Gamma$ if and only if Γ is a.c.

Images of idempotent endomorphisms

Theorem (Bonato, Delić, 2000; ID, 2012)
Let Γ be a countable graph. There exists an idempotent $f \in \operatorname{End}(R)$ such that $\operatorname{im}(f) \cong \Gamma$ if and only if Γ is a.c.

Theorem
If Γ is a countable a.c. graph, then there exists an (induced) subgraph $\Gamma^{\prime} \cong \Gamma$ of R such that there are $2^{\aleph_{0}}$ idempotent endomorphisms f of R such that $\operatorname{im}(f)=\Gamma^{\prime}$.

Images of idempotent endomorphisms

Proof.

At each stage of extending a homomorphism $\phi: \Gamma \rightarrow R_{\Gamma}$ to an endomorphism $\hat{\phi}$ of $R=R_{\Gamma}$, instead of mapping $v_{S} \mapsto v_{S \phi}$, if $\operatorname{im}(\phi)$ is a.c. one can find a common neighbour w for $S \phi$ within $\operatorname{im}(\phi)$.

Images of idempotent endomorphisms

Proof.

At each stage of extending a homomorphism $\phi: \Gamma \rightarrow R_{\Gamma}$ to an endomorphism $\hat{\phi}$ of $R=R_{\Gamma}$, instead of mapping $v_{S} \mapsto v_{S \phi}$, if $\operatorname{im}(\phi)$ is a.c. one can find a common neighbour w for $S \phi$ within $\operatorname{im}(\phi)$.

In this way, we achieve

$$
\operatorname{im}(\hat{\phi})=\operatorname{im}(\phi) .
$$

Images of idempotent endomorphisms

Proof.

At each stage of extending a homomorphism $\phi: \Gamma \rightarrow R_{\Gamma}$ to an endomorphism $\hat{\phi}$ of $R=R_{\Gamma}$, instead of mapping $v_{S} \mapsto v_{S \phi}$, if $\operatorname{im}(\phi)$ is a.c. one can find a common neighbour w for $S \phi$ within $\operatorname{im}(\phi)$.

In this way, we achieve

$$
\operatorname{im}(\hat{\phi})=\operatorname{im}(\phi) .
$$

In fact, at each stage there are infinitely many choices for w, which results in $\aleph_{0}^{\aleph_{0}}=2^{\aleph_{0}}$ extensions.

The number of regular \mathscr{D}-classes with a given group

 \mathscr{H}-classTheorem
(i) Let Γ be a countable graph. Then there exist $2^{\aleph_{0}}$ distinct regular \mathscr{D}-classes of $\operatorname{End}(R)$ whose group \mathscr{H}-classes are $\cong \operatorname{Aut}(\Gamma)$.

The number of regular \mathscr{D}-classes with a given group

 \mathscr{H}-classTheorem
(i) Let Γ be a countable graph. Then there exist $2^{\aleph_{0}}$ distinct regular \mathscr{D}-classes of $\operatorname{End}(R)$ whose group \mathscr{H}-classes are $\cong \operatorname{Aut}(\Gamma)$.
(ii) Every regular \mathscr{D}-class contains $2^{\aleph_{0}}$ distinct group \mathscr{H}-classes.

The number of regular \mathscr{D}-classes with a given group

 \mathscr{H}-classTheorem
(i) Let Γ be a countable graph. Then there exist $2^{\aleph_{0}}$ distinct regular \mathscr{D}-classes of $\operatorname{End}(R)$ whose group \mathscr{H}-classes are $\cong \operatorname{Aut}(\Gamma)$.
(ii) Every regular \mathscr{D}-class contains $2^{\aleph_{0}}$ distinct group \mathscr{H}-classes.

Corollary
$\operatorname{End}(R)$ has $2^{\aleph_{0}}$ regular \mathscr{D}-classes.

The number of regular \mathscr{D}-classes with a given group

 \mathscr{H}-classTheorem
(i) Let Γ be a countable graph. Then there exist $2^{\aleph_{0}}$ distinct regular \mathscr{D}-classes of $\operatorname{End}(R)$ whose group \mathscr{H}-classes are $\cong \operatorname{Aut}(\Gamma)$.
(ii) Every regular \mathscr{D}-class contains $2^{\aleph_{0}}$ distinct group \mathscr{H}-classes.

Corollary
$\operatorname{End}(R)$ has $2^{\aleph_{0}}$ regular \mathscr{D}-classes. (You know, the ones with eggs...)

The size of a regular eggbox

Theorem
Every regular \mathscr{D}-class of $\operatorname{End}(R)$ contains $2^{\aleph_{0}}$ many \mathscr{R} - and \mathscr{L}-classes.

The size of a regular eggbox

Theorem
Every regular \mathscr{D}-class of $\operatorname{End}(R)$ contains $2^{\aleph_{0}}$ many \mathscr{R} - and \mathscr{L}-classes.

Proof. Let e be an idempotent endomorphism of R, and let $\Gamma=\operatorname{im}(e)($ a.c. $)$.

The size of a regular eggbox

Theorem
Every regular \mathscr{D}-class of $\operatorname{End}(R)$ contains $2^{\aleph_{0}}$ many \mathscr{R} - and \mathscr{L}-classes.

Proof. Let e be an idempotent endomorphism of R, and let $\Gamma=\operatorname{im}(e)($ a.c. $)$.
\mathscr{R}-classes: Assume R is constructed as R_{Γ}.

The size of a regular eggbox

Theorem
Every regular \mathscr{D}-class of $\operatorname{End}(R)$ contains $2^{\aleph_{0}}$ many \mathscr{R} - and \mathscr{L}-classes.

Proof. Let e be an idempotent endomorphism of R, and let $\Gamma=\operatorname{im}(e)($ a.c. $)$.
\mathscr{R}-classes: Assume R is constructed as R_{Γ}.
We already know that the identity mapping on Γ can be extended to $f \in \operatorname{End}(R)$ in $2^{\aleph_{0}}$ ways such that $\operatorname{im}(f)=\operatorname{im}(e)$.

The size of a regular eggbox

Theorem
Every regular \mathscr{D}-class of $\operatorname{End}(R)$ contains $2^{\aleph_{0}}$ many \mathscr{R} - and \mathscr{L}-classes.

Proof. Let e be an idempotent endomorphism of R, and let $\Gamma=\operatorname{im}(e)($ a.c. $)$.
\mathscr{R}-classes: Assume R is constructed as R_{Γ}.
We already know that the identity mapping on Γ can be extended to $f \in \operatorname{End}(R)$ in $2^{\aleph_{0}}$ ways such that $\operatorname{im}(f)=\operatorname{im}(e)$.

All such f are idempotents, and $f \mathscr{D} e$,

The size of a regular eggbox

Theorem
Every regular \mathscr{D}-class of $\operatorname{End}(R)$ contains $2^{\aleph_{0}}$ many \mathscr{R} - and \mathscr{L}-classes.

Proof. Let e be an idempotent endomorphism of R, and let $\Gamma=\operatorname{im}(e)($ a.c. $)$.
\mathscr{R}-classes: Assume R is constructed as R_{Γ}.
We already know that the identity mapping on Γ can be extended to $f \in \operatorname{End}(R)$ in $2^{\aleph_{0}}$ ways such that $\operatorname{im}(f)=\operatorname{im}(e)$.

All such f are idempotents, and $f \mathscr{D}$ e, moreover, $f \mathscr{L}$ e.

The size of a regular eggbox

Theorem
Every regular \mathscr{D}-class of $\operatorname{End}(R)$ contains $2^{\aleph_{0}}$ many \mathscr{R} - and \mathscr{L}-classes.

Proof. Let e be an idempotent endomorphism of R, and let $\Gamma=\operatorname{im}(e)($ a.c. $)$.
\mathscr{R}-classes: Assume R is constructed as R_{Γ}.
We already know that the identity mapping on Γ can be extended to $f \in \operatorname{End}(R)$ in $2^{\aleph_{0}}$ ways such that $\operatorname{im}(f)=\operatorname{im}(e)$.

All such f are idempotents, and $f \mathscr{D} e$, moreover, $f \mathscr{L}$ e.
However, all these idempotents are not \mathscr{R}-related.

The size of a regular eggbox

\mathscr{L}-classes: Key idea - construct the graph Γ^{\sharp} from 「 by replacing each edge by the following gadget:

The size of a regular eggbox

\mathscr{L}-classes: Key idea - construct the graph Γ^{\sharp} from 「 by replacing each edge by the following gadget:

The size of a regular eggbox

\mathscr{L}-classes: Key idea - construct the graph Γ^{\sharp} from Γ by replacing each edge by the following gadget:

Construct R around Γ^{\sharp}, so that $R=R_{\Gamma \sharp}$.

The size of a regular eggbox

\mathscr{L}-classes: Key idea - construct the graph Γ^{\sharp} from Γ by replacing each edge by the following gadget:

Construct R around Γ^{\sharp}, so that $R=R_{\Gamma \sharp}$.
Γ а.с. $\Longrightarrow \Gamma^{\sharp}$ a.c.

The size of a regular eggbox

\mathscr{L}-classes: Key idea - construct the graph Γ^{\sharp} from Γ by replacing each edge by the following gadget:

Construct R around Γ^{\sharp}, so that $R=R_{\Gamma^{\sharp}}$.
Γ a.c. $\Longrightarrow \Gamma^{\sharp}$ a.c. Hence, the identity map on Γ^{\sharp} can be extended to an endomorphism $g: R \rightarrow \Gamma^{\sharp}$.

The size of a regular eggbox

For each binary sequence $\mathbf{b}=\left(b_{i}\right)_{i \in \mathbb{N}}$ define a map $\psi_{\mathbf{b}}$ on Γ^{\sharp} by

$$
v_{i, r} \psi_{\mathbf{b}}=v_{i, b_{i}}
$$

for all $i \in \mathbb{N}$ and $r \in\{0,1\}$.

The size of a regular eggbox

For each binary sequence $\mathbf{b}=\left(b_{i}\right)_{i \in \mathbb{N}}$ define a map $\psi_{\mathbf{b}}$ on Γ^{\sharp} by

$$
v_{i, r} \psi_{\mathbf{b}}=v_{i, b_{i}}
$$

for all $i \in \mathbb{N}$ and $r \in\{0,1\}$. Easy: $\psi_{\mathbf{b}} \in \operatorname{End}\left(\Gamma^{\sharp}\right)$ and $\operatorname{im}\left(\psi_{\mathbf{b}}\right) \cong \Gamma$ is induced by $\left\{v_{i, b_{i}}: i \in \mathbb{N}\right\}$.

The size of a regular eggbox

For each binary sequence $\mathbf{b}=\left(b_{i}\right)_{i \in \mathbb{N}}$ define a map $\psi_{\mathbf{b}}$ on Γ^{\sharp} by

$$
v_{i, r} \psi_{\mathbf{b}}=v_{i, b_{i}}
$$

for all $i \in \mathbb{N}$ and $r \in\{0,1\}$. Easy: $\psi_{\mathbf{b}} \in \operatorname{End}\left(\Gamma^{\sharp}\right)$ and $\operatorname{im}\left(\psi_{\mathbf{b}}\right) \cong \Gamma$ is induced by $\left\{v_{i, b_{i}}: i \in \mathbb{N}\right\}$.
$g \psi_{\mathbf{b}} \in \operatorname{End}(R)$ are idempotents,

The size of a regular eggbox

For each binary sequence $\mathbf{b}=\left(b_{i}\right)_{i \in \mathbb{N}}$ define a map $\psi_{\mathbf{b}}$ on Γ^{\sharp} by

$$
v_{i, r} \psi_{\mathbf{b}}=v_{i, b_{i}}
$$

for all $i \in \mathbb{N}$ and $r \in\{0,1\}$. Easy: $\psi_{\mathbf{b}} \in \operatorname{End}\left(\Gamma^{\sharp}\right)$ and $\operatorname{im}\left(\psi_{\mathbf{b}}\right) \cong \Gamma$ is induced by $\left\{v_{i, b_{i}}: i \in \mathbb{N}\right\}$.
$g \psi_{\mathbf{b}} \in \operatorname{End}(R)$ are idempotents, $\operatorname{im}\left(g \psi_{\mathbf{b}}\right) \cong \Gamma \Rightarrow$ all these idempotents are \mathscr{D}-related to e.

The size of a regular eggbox

For each binary sequence $\mathbf{b}=\left(b_{i}\right)_{i \in \mathbb{N}}$ define a map $\psi_{\mathbf{b}}$ on Γ^{\sharp} by

$$
v_{i, r} \psi_{\mathbf{b}}=v_{i, b_{i}}
$$

for all $i \in \mathbb{N}$ and $r \in\{0,1\}$. Easy: $\psi_{\mathbf{b}} \in \operatorname{End}\left(\Gamma^{\sharp}\right)$ and $\operatorname{im}\left(\psi_{\mathbf{b}}\right) \cong \Gamma$ is induced by $\left\{v_{i, b_{i}}: i \in \mathbb{N}\right\}$.
$g \psi_{\mathbf{b}} \in \operatorname{End}(R)$ are idempotents, $\operatorname{im}\left(g \psi_{\mathbf{b}}\right) \cong \Gamma \Rightarrow$ all these idempotents are \mathscr{D}-related to e.

Different images \Rightarrow they are not \mathscr{L}-related.

Non-regular eggboxes

Theorem
Let $\Gamma \not \equiv R$ be a countable a.c. graph. Then there exists a non-regular endomorphism of R such that $\operatorname{im}(f) \cong \Gamma$ and D_{f} contains $2^{\aleph_{0}}$ many \mathscr{R} - and \mathscr{L}-classes.

Non-regular eggboxes

Theorem
Let $\Gamma \not \approx R$ be a countable a.c. graph. Then there exists a non-regular endomorphism of R such that $\operatorname{im}(f) \cong \Gamma$ and D_{f} contains $2^{\aleph_{0}}$ many \mathscr{R} - and \mathscr{L}-classes.

The proof is a variation of the idea of Γ^{\sharp} and binary sequences.

Non-regular eggboxes

Theorem
Let $\Gamma \not \approx R$ be a countable a.c. graph. Then there exists a non-regular endomorphism of R such that $\operatorname{im}(f) \cong \Gamma$ and D_{f} contains $2^{\aleph_{0}}$ many \mathscr{R} - and \mathscr{L}-classes.

The proof is a variation of the idea of Γ^{\sharp} and binary sequences.

Theorem
There are $2^{\aleph_{0}}$ non-regular \mathscr{D}-classes in $\operatorname{End}(R)$.

Non-regular eggboxes

Theorem
Let $\Gamma \not \approx R$ be a countable a.c. graph. Then there exists a non-regular endomorphism of R such that $\operatorname{im}(f) \cong \Gamma$ and D_{f} contains $2^{\aleph_{0}}$ many \mathscr{R} - and \mathscr{L}-classes.

The proof is a variation of the idea of Γ^{\sharp} and binary sequences.

Theorem
There are $2^{\aleph_{0}}$ non-regular \mathscr{D}-classes in $\operatorname{End}(R)$.
Open Problem
Are there any non-regular eggboxes of some other size?

Schützenberger groups in $\operatorname{End}(R)$

Let $\Gamma=\left(V_{0}, E_{0}\right)$ be a countable a.c. graph.

Schützenberger groups in $\operatorname{End}(R)$

Let $\Gamma=\left(V_{0}, E_{0}\right)$ be a countable a.c. graph. Then, as we already know, there is a subset $F \subseteq E_{0}$ such that $\left(V_{0}, F\right) \cong R$.

Schützenberger groups in $\operatorname{End}(R)$

Let $\Gamma=\left(V_{0}, E_{0}\right)$ be a countable a.c. graph. Then, as we already know, there is a subset $F \subseteq E_{0}$ such that $\left(V_{0}, F\right) \cong R$. Now build $R_{\Gamma} \cong R$ around Γ, and let $f: R_{\Gamma} \rightarrow\left(V_{0}, F\right)$ be an isomorphism.

Schützenberger groups in $\operatorname{End}(R)$

Let $\Gamma=\left(V_{0}, E_{0}\right)$ be a countable a.c. graph. Then, as we already know, there is a subset $F \subseteq E_{0}$ such that $\left(V_{0}, F\right) \cong R$. Now build $R_{\Gamma} \cong R$ around Γ, and let $f: R_{\Gamma} \rightarrow\left(V_{0}, F\right)$ be an isomorphism. Then f is an injective endomorphism of R; if $F \neq E_{0}$ then f is non-regular.

Schützenberger groups in $\operatorname{End}(R)$

Let $\Gamma=\left(V_{0}, E_{0}\right)$ be a countable a.c. graph. Then, as we already know, there is a subset $F \subseteq E_{0}$ such that $\left(V_{0}, F\right) \cong R$. Now build $R_{\Gamma} \cong R$ around Γ, and let $f: R_{\Gamma} \rightarrow\left(V_{0}, F\right)$ be an isomorphism. Then f is an injective endomorphism of R; if $F \neq E_{0}$ then f is non-regular.

Proposition

Let f be an injective endomorphism of $R=(V, E)$ as described above, with $V f=V_{0}$. Then

$$
S_{H_{f}} \cong \operatorname{Aut}\left(\left\langle V_{0}\right\rangle\right) \cap \operatorname{Aut}(\operatorname{im}(f))
$$

Schützenberger groups in $\operatorname{End}(R)$

So, to show a universality result for Schützenberger groups in $\operatorname{End}(R)$, one needs to extend the Frucht-de Groot-Sabidussi Theorem to countable a.c. graphs with 2-coloured edges (blue and red, say) where the 'red graph' is $\cong R$.

Schützenberger groups in $\operatorname{End}(R)$

So, to show a universality result for Schützenberger groups in End (R), one needs to extend the Frucht-de Groot-Sabidussi Theorem to countable a.c. graphs with 2-coloured edges (blue and red, say) where the 'red graph' is $\cong R$.

This is what we did via an involved construction that again uses the rigid graphs L_{S} (for a particular countable family of sets S).

Schützenberger groups in $\operatorname{End}(R)$

So, to show a universality result for Schützenberger groups in End (R), one needs to extend the Frucht-de Groot-Sabidussi Theorem to countable a.c. graphs with 2-coloured edges (blue and red, say) where the 'red graph' is $\cong R$.

This is what we did via an involved construction that again uses the rigid graphs L_{S} (for a particular countable family of sets S).

Theorem

Let Γ be any countable graph. There are $2^{\aleph_{0}}$ non-regular \mathscr{D}-classes of $\operatorname{End}(R)$ such that the Schützenberger groups of the \mathscr{H}-classes within them are $\cong \operatorname{Aut}(\Gamma)$.

Schützenberger groups in $\operatorname{End}(R)$

So, to show a universality result for Schützenberger groups in End (R), one needs to extend the Frucht-de Groot-Sabidussi Theorem to countable a.c. graphs with 2-coloured edges (blue and red, say) where the 'red graph' is $\cong R$.

This is what we did via an involved construction that again uses the rigid graphs L_{S} (for a particular countable family of sets S).

Theorem

Let Γ be any countable graph. There are $2^{\aleph_{0}}$ non-regular \mathscr{D}-classes of $\operatorname{End}(R)$ such that the Schützenberger groups of the \mathscr{H}-classes within them are $\cong \operatorname{Aut}(\Gamma)$.

See arXiv:1408.4107 for details.

A few words on posets

A poset (P, \leq) is a.c. if for any finite $A, B \subseteq P$ such that $A \leq B$ there exists $x \in P$ such that

$$
A \leq x \leq B
$$

A few words on posets

A poset (P, \leq) is a.c. if for any finite $A, B \subseteq P$ such that $A \leq B$ there exists $x \in P$ such that

$$
A \leq x \leq B
$$

Hence, any lattice is a.c. when considered as a poset (but not as an algebra!).

A few words on posets

A poset (P, \leq) is a.c. if for any finite $A, B \subseteq P$ such that $A \leq B$ there exists $x \in P$ such that

$$
A \leq x \leq B
$$

Hence, any lattice is a.c. when considered as a poset (but not as an algebra!).

Now by the Birkhoff's Representation Theorem any automorphism group of a countable/finite graph can be represented as the automorphism group of a countable/finite distributive lattice.

A few words on posets

A poset (P, \leq) is a.c. if for any finite $A, B \subseteq P$ such that $A \leq B$ there exists $x \in P$ such that

$$
A \leq x \leq B
$$

Hence, any lattice is a.c. when considered as a poset (but not as an algebra!).

Now by the Birkhoff's Representation Theorem any automorphism group of a countable/finite graph can be represented as the automorphism group of a countable/finite distributive lattice.

It follows all countable/finite groups arise as automorphism groups of countable/finite a.c. posets.

A few words on posets

However, for strict posets $(P,<)$ the notion of being a.c. changes: here we require that for all finite $A<B$ we have $x \in P$ such that

$$
A<x<B .
$$

A few words on posets

However, for strict posets $(P,<)$ the notion of being a.c. changes: here we require that for all finite $A<B$ we have $x \in P$ such that

$$
A<x<B
$$

Open Problem

What are the automorphism groups of countable a.c. strict posets?
(I.e. what are the maximal subgroups of $\operatorname{End}(\mathbb{P},<)$?)

A few words on posets

However, for strict posets $(P,<)$ the notion of being a.c. changes: here we require that for all finite $A<B$ we have $x \in P$ such that

$$
A<x<B
$$

Open Problem
What are the automorphism groups of countable a.c. strict posets?
(I.e. what are the maximal subgroups of $\operatorname{End}(\mathbb{P},<)$?)

Related work: G. Behrendt (PEMS, 1992)

THANK YOU!

Questions and comments to: dockie@dmi.uns.ac.rs

Further information may be found at: http://people.dmi.uns.ac.rs/~dockie

