The word problem for
 free idempotent generated semigroups:
 An Italian symphony in $\operatorname{IG}(\mathcal{E})$ major

Igor Dolinka
dockie@dmi.uns.ac.rs

Department of Mathematics and Informatics, University of Novi Sad

Semigroups and Groups, Automata, Logics - SandGAL 2019
Cremona, Italy, 11 June 2019

Joint work with...

Victoria Gould (York)

Dandan Yang (Xi'an)

Robert D. Gray
(UEA Norwich)

Nik Ruškuc (St Andrews)

Robert D. Gray
(UEA Norwich)
Happy Birthday, my friend!

Nik Ruškuc (St Andrews)

Introduzione

Idempotent generated semigroups

Many natural semigroups are idempotent generated $(S=\langle E(S)\rangle)$:

Idempotent generated semigroups

Many natural semigroups are idempotent generated $(S=\langle E(S)\rangle)$:

- The semigroup $\mathcal{T}_{n} \backslash \mathcal{S}_{n}$ of singular (non-invertible) transformations on a finite set (Howie, 1966);

Idempotent generated semigroups

Many natural semigroups are idempotent generated $(S=\langle E(S)\rangle)$:

- The semigroup $\mathcal{T}_{n} \backslash \mathcal{S}_{n}$ of singular (non-invertible) transformations on a finite set (Howie, 1966);
- The singular part of $\mathcal{M}_{n}(\mathbb{F})$, the semigroup of all $n \times n$ matrices over a field \mathbb{F} (Erdos (not Paul!), 1967);

Idempotent generated semigroups

Many natural semigroups are idempotent generated $(S=\langle E(S)\rangle)$:

- The semigroup $\mathcal{T}_{n} \backslash \mathcal{S}_{n}$ of singular (non-invertible) transformations on a finite set (Howie, 1966);
- The singular part of $\mathcal{M}_{n}(\mathbb{F})$, the semigroup of all $n \times n$ matrices over a field \mathbb{F} (Erdos (not Paul!), 1967);
- In 2006, Putcha completed the classification of linear algebraic monoids that are idempotent-generated;

Idempotent generated semigroups

Many natural semigroups are idempotent generated $(S=\langle E(S)\rangle)$:

- The semigroup $\mathcal{T}_{n} \backslash \mathcal{S}_{n}$ of singular (non-invertible) transformations on a finite set (Howie, 1966);
- The singular part of $\mathcal{M}_{n}(\mathbb{F})$, the semigroup of all $n \times n$ matrices over a field \mathbb{F} (Erdos (not Paul!), 1967);
- In 2006, Putcha completed the classification of linear algebraic monoids that are idempotent-generated;
- The singular part of \mathcal{P}_{n}, the partition monoid on a finite set (East, FitzGerald, 2012);

Idempotent generated semigroups

Many natural semigroups are idempotent generated $(S=\langle E(S)\rangle)$:

- The semigroup $\mathcal{T}_{n} \backslash \mathcal{S}_{n}$ of singular (non-invertible) transformations on a finite set (Howie, 1966);
- The singular part of $\mathcal{M}_{n}(\mathbb{F})$, the semigroup of all $n \times n$ matrices over a field \mathbb{F} (Erdos (not Paul!), 1967);
- In 2006, Putcha completed the classification of linear algebraic monoids that are idempotent-generated;
- The singular part of \mathcal{P}_{n}, the partition monoid on a finite set (East, FitzGerald, 2012);
Hence:
What can we say about the structure of the free-est idempotent-generated (IG) semigroup with a fixed structure/configuration of idempotents ???

Errr,... 'structure of idempotents'???

Biordered sets!

Errr,... 'structure of idempotents' ???

Biordered sets!

Basic pair $\{e, f\}$ of idempotents:

$$
\{e, f\} \cap\{e f, f e\} \neq \varnothing
$$

Errr,... 'structure of idempotents' ???

Biordered sets!
Basic pair $\{e, f\}$ of idempotents:

$$
\{e, f\} \cap\{e f, f e\} \neq \varnothing
$$

that is, ef $=e$ or $e f=f$ or $f e=e$ or $f e=f$.

Errr,... 'structure of idempotents' ???

Biordered sets!
Basic pair $\{e, f\}$ of idempotents:

$$
\{e, f\} \cap\{e f, f e\} \neq \varnothing
$$

that is, ef $=e$ or $e f=f$ or $f e=e$ or $f e=f$.
(Note: if, for example, ef $\in\{e, f\}$, then $(f e)^{2}=f e$.)

Errr,... 'structure of idempotents'???

Biordered sets!
Basic pair $\{e, f\}$ of idempotents:

$$
\{e, f\} \cap\{e f, f e\} \neq \varnothing
$$

that is, ef $=e$ or $e f=f$ or $f e=e$ or $f e=f$.
(Note: if, for example, ef $\in\{e, f\}$, then $(f e)^{2}=f e$.)
Biordered set of a semigroup $S=$ the partial algebra

$$
\mathcal{E}_{S}=(E(S), *)
$$

obtained by retaining the products of basic pairs (in S).

Biordered sets

Nambooripad, Easdown ('80s): Biordered sets of semigroups can be finitely axiomatised (as a class of partial algebras)

Biordered sets

Nambooripad, Easdown ('80s): Biordered sets of semigroups can be finitely axiomatised (as a class of partial algebras)
\longrightarrow abstract biordered sets $\mathcal{E}=(E, *)$

Biordered sets

Nambooripad, Easdown ('80s): Biordered sets of semigroups can be finitely axiomatised (as a class of partial algebras)
\longrightarrow abstract biordered sets $\mathcal{E}=(E, *)$
Remark
A big chunk of the axioms are expressed in terms of the quasi-orders

$$
e \leq^{(I)} f \Leftrightarrow e=e f, \quad e \leq^{(r)} f \Leftrightarrow e=f e .
$$

(hence the name, "bi-ordered set").

Biordered sets

Nambooripad, Easdown ('80s): Biordered sets of semigroups can be finitely axiomatised (as a class of partial algebras)
\longrightarrow abstract biordered sets $\mathcal{E}=(E, *)$
Remark
A big chunk of the axioms are expressed in terms of the quasi-orders

$$
e \leq^{(I)} f \Leftrightarrow e=e f, \quad e \leq^{(r)} f \Leftrightarrow e=f e .
$$

(hence the name, "bi-ordered set"). From these, we can read off many relevant semigroup-theoretical relationships:

$$
\begin{gathered}
\leq=\leq^{(I)} \cap \leq^{(r)}, \quad \mathscr{L}=\leq^{(I)} \cap\left(\leq^{(I)}\right)^{-1}, \quad \mathscr{R}=\leq^{(r)} \cap\left(\leq^{(r)}\right)^{-1}, \\
\mathscr{D}=\mathscr{L} \vee \mathscr{R} .
\end{gathered}
$$

$\operatorname{IG}(\mathcal{E})$

Let \mathcal{E} be a biordered set.

$\operatorname{IG}(\mathcal{E})$

Let \mathcal{E} be a biordered set. Consider the following category.
Objects: Pairs (S, ϕ) where S is a semigroup and $\phi: \mathcal{E} \rightarrow \mathcal{E}_{S}$ is an isomorphism of biordered sets;
Morphisms: $\theta:(S, \phi) \rightarrow(T, \psi)$ - semigroup homomorphisms $\theta: S \rightarrow T$ such that $\phi \theta=\psi$.

Let \mathcal{E} be a biordered set. Consider the following category.
Objects: Pairs (S, ϕ) where S is a semigroup and $\phi: \mathcal{E} \rightarrow \mathcal{E}_{S}$ is an isomorphism of biordered sets;
Morphisms: $\theta:(S, \phi) \rightarrow(T, \psi)$ - semigroup homomorphisms $\theta: S \rightarrow T$ such that $\phi \theta=\psi$.

It can be shown that this category has an initial object $\left(\operatorname{IG}(\mathcal{E}), \iota_{E}\right)$. Here $\operatorname{IG}(\mathcal{E})$ is the free idempotent generated semigroup on \mathcal{E}.

Let \mathcal{E} be a biordered set. Consider the following category.
Objects: Pairs (S, ϕ) where S is a semigroup and $\phi: \mathcal{E} \rightarrow \mathcal{E}_{S}$ is an isomorphism of biordered sets;
Morphisms: $\theta:(S, \phi) \rightarrow(T, \psi)$ - semigroup homomorphisms $\theta: S \rightarrow T$ such that $\phi \theta=\psi$.

It can be shown that this category has an initial object $\left(\operatorname{IG}(\mathcal{E}), \iota_{E}\right)$. Here $\operatorname{IG}(\mathcal{E})$ is the free idempotent generated semigroup on \mathcal{E}.

A more accessible definition:

$$
\operatorname{IG}(\mathcal{E})=\langle\bar{E}: \bar{e} \bar{f}=\overline{e * f} \text { whenever }\{e, f\} \text { is a basic pair }\rangle .
$$

Key properties of $\operatorname{IG}(\mathcal{E})$ (Easdown, 1985)

Let $\theta: \operatorname{IG}(\mathcal{E}) \rightarrow S$ (where $S=\langle E\rangle$) be the natural surjective homomorphism.

Key properties of $\operatorname{IG}(\mathcal{E})$ (Easdown, 1985)

Let $\theta: \operatorname{IG}(\mathcal{E}) \rightarrow S$ (where $S=\langle E\rangle$) be the natural surjective homomorphism.

- The restriction of θ to E is an isomorphism of biordered sets $\mathcal{E} \rightarrow \mathcal{E}_{S}$.

Key properties of $\operatorname{IG}(\mathcal{E})$ (Easdown, 1985)

Let $\theta: \operatorname{IG}(\mathcal{E}) \rightarrow S$ (where $S=\langle E\rangle$) be the natural surjective homomorphism.

- The restriction of θ to E is an isomorphism of biordered sets $\mathcal{E} \rightarrow \mathcal{E}_{S}$.
- Hence, the 'eggbox pictures' of $D_{\bar{e}}$ (in $\operatorname{IG}(\mathcal{E})$) and D_{e} (in S) have the 'same shape' (same dimensions, same distribution of idempotents,...).

Key properties of $\operatorname{IG}(\mathcal{E})$ (Easdown, 1985)

Let $\theta: \operatorname{IG}(\mathcal{E}) \rightarrow S$ (where $S=\langle E\rangle$) be the natural surjective homomorphism.

- The restriction of θ to E is an isomorphism of biordered sets $\mathcal{E} \rightarrow \mathcal{E}_{S}$.
- Hence, the 'eggbox pictures' of $D_{\bar{e}}$ (in $\operatorname{IG}(\mathcal{E})$) and D_{e} (in S) have the 'same shape' (same dimensions, same distribution of idempotents,...).
- The maximal subgroup H_{e} (in S) is the image (under θ) of the maximal subgroup $H_{\bar{e}}$ (in $\operatorname{IG}(\mathcal{E})$).

Key properties of $\operatorname{IG}(\mathcal{E})$ (Easdown, 1985)

Let $\theta: \operatorname{IG}(\mathcal{E}) \rightarrow S$ (where $S=\langle E\rangle$) be the natural surjective homomorphism.

- The restriction of θ to E is an isomorphism of biordered sets $\mathcal{E} \rightarrow \mathcal{E}_{S}$.
- Hence, the 'eggbox pictures' of $D_{\bar{e}}$ (in $\operatorname{IG}(\mathcal{E})$) and D_{e} (in S) have the 'same shape' (same dimensions, same distribution of idempotents,...).
- The maximal subgroup H_{e} (in S) is the image (under θ) of the maximal subgroup $H_{\bar{e}}$ (in $\operatorname{IG}(\mathcal{E})$).
- IG(E) may contain other, non-regular \mathcal{D}-classes.

Key properties of $\operatorname{IG}(\mathcal{E})$ (Easdown, 1985)

Let $\theta: \operatorname{IG}(\mathcal{E}) \rightarrow S$ (where $S=\langle E\rangle$) be the natural surjective homomorphism.

- The restriction of θ to E is an isomorphism of biordered sets $\mathcal{E} \rightarrow \mathcal{E}_{S}$.
- Hence, the 'eggbox pictures' of $D_{\bar{e}}$ (in $\operatorname{IG}(\mathcal{E})$) and D_{e} (in S) have the 'same shape' (same dimensions, same distribution of idempotents,...).
- The maximal subgroup H_{e} (in S) is the image (under θ) of the maximal subgroup $H_{\bar{e}}$ (in $\operatorname{IG}(\mathcal{E})$).
- IG(E) may contain other, non-regular \mathcal{D}-classes.

So, understanding $\mathrm{IG}(\mathcal{E})$ is essential in understanding the structure of arbitrary IG semigroups.

I. Allegro vivace A joyous quest for maximal subgroups

The (breakdown of the) freeness conjecture

Question
Which groups arise as maximal subgroups of $\operatorname{IG}(\mathcal{E})$?

The (breakdown of the) freeness conjecture

Question

Which groups arise as maximal subgroups of $\operatorname{IG}(\mathcal{E})$?

- Work of Pastijn and Nambooripad ('70s and '80s) and McElwee (2002) led to the belief/conjecture that these maximal subgroups must always be free groups.

The (breakdown of the) freeness conjecture

Question

Which groups arise as maximal subgroups of $\operatorname{IG}(\mathcal{E})$?

- Work of Pastijn and Nambooripad ('70s and '80s) and McElwee (2002) led to the belief/conjecture that these maximal subgroups must always be free groups.
- This conjecture was proved false by Brittenham, Margolis, and Meakin in 2009 who obtained the groups $\mathbb{Z} \oplus \mathbb{Z}$ (from a particular 73-element semigroup arising from a combinatorial design), and \mathbb{F}^{*} for an arbitrary field \mathbb{F}.

The (breakdown of the) freeness conjecture

Question

Which groups arise as maximal subgroups of $\operatorname{IG}(\mathcal{E})$?

- Work of Pastijn and Nambooripad ('70s and '80s) and McElwee (2002) led to the belief/conjecture that these maximal subgroups must always be free groups.
- This conjecture was proved false by Brittenham, Margolis, and Meakin in 2009 who obtained the groups $\mathbb{Z} \oplus \mathbb{Z}$ (from a particular 73-element semigroup arising from a combinatorial design), and \mathbb{F}^{*} for an arbitrary field \mathbb{F}.
- Finally, Gray and Ruškuc (2012) proved that every group arises as a maximal subgroup of some free idempotent generated semigroup (!!!).

The (breakdown of the) freeness conjecture

Question

Which groups arise as maximal subgroups of $\operatorname{IG}(\mathcal{E})$?

- Work of Pastijn and Nambooripad ('70s and '80s) and McElwee (2002) led to the belief/conjecture that these maximal subgroups must always be free groups.
- This conjecture was proved false by Brittenham, Margolis, and Meakin in 2009 who obtained the groups $\mathbb{Z} \oplus \mathbb{Z}$ (from a particular 73-element semigroup arising from a combinatorial design), and \mathbb{F}^{*} for an arbitrary field \mathbb{F}.
- Finally, Gray and Ruškuc (2012) proved that every group arises as a maximal subgroup of some free idempotent generated semigroup (!!!). If the group in question is finitely generated, the biordered set may be assumed to arise from a finite semigroup.

Presentation for the maximal subgroups (1)

Obtained by Gray \& Ruškuc from the Reidemeister-Schreier rewriting process for subgroups of semigroups.

Presentation for the maximal subgroups (1)

Obtained by Gray \& Ruškuc from the Reidemeister-Schreier rewriting process for subgroups of semigroups.

- The generators $f_{i \lambda}$ for $H_{\bar{e}}$ are in a bijective correspondence with idempotents $e_{i \lambda}$ that are \mathscr{D}-related to e.

Presentation for the maximal subgroups (1)

Obtained by Gray \& Ruškuc from the Reidemeister-Schreier rewriting process for subgroups of semigroups.

- The generators $f_{i \lambda}$ for $H_{\bar{e}}$ are in a bijective correspondence with idempotents $e_{i \lambda}$ that are \mathscr{D}-related to e.
- Three types of relations:

Presentation for the maximal subgroups (1)

Obtained by Gray \& Ruškuc from the Reidemeister-Schreier rewriting process for subgroups of semigroups.

- The generators $f_{i \lambda}$ for $H_{\bar{e}}$ are in a bijective correspondence with idempotents $e_{i \lambda}$ that are \mathscr{D}-related to e.
- Three types of relations:
- Some generators are $=1\left(f_{i, \pi(i)}=1\right)$;

Presentation for the maximal subgroups (1)

Obtained by Gray \& Ruškuc from the Reidemeister-Schreier rewriting process for subgroups of semigroups.

- The generators $f_{i \lambda}$ for $H_{\bar{e}}$ are in a bijective correspondence with idempotents $e_{i \lambda}$ that are \mathscr{D}-related to e.
- Three types of relations:
- Some generators are $=1\left(f_{i, \pi(i)}=1\right)$;
- Some generators are equal $\left(f_{i \lambda}=f_{i \mu}\right)$;

Presentation for the maximal subgroups (1)

Obtained by Gray \& Ruškuc from the Reidemeister-Schreier rewriting process for subgroups of semigroups.

- The generators $f_{i \lambda}$ for $H_{\bar{e}}$ are in a bijective correspondence with idempotents $e_{i \lambda}$ that are \mathscr{D}-related to e.
- Three types of relations:
- Some generators are $=1\left(f_{i, \pi(i)}=1\right)$;
- Some generators are equal ($f_{i \lambda}=f_{i \mu}$);
- $f_{i \lambda}^{-1} f_{i \mu}=f_{j \lambda}^{-1} f_{j \mu}$ whenever $(i, j ; \lambda, \mu)$ is a singular square.

Singular squares

Presentation for the maximal subgroups (2)

Alternatively, if the undelying biordered set \mathcal{E} comes from an idempotent generated regular semigroup, Brittenham, Margolis \& Meakin (2009) showed that the maximal subgroups of $\operatorname{IG}(\mathcal{E})$ are precisely the fundamental groups of connected components (= \mathscr{D}-classes) of the Graham-Houghton complex of \mathcal{E} :

Presentation for the maximal subgroups (2)

Alternatively, if the undelying biordered set \mathcal{E} comes from an idempotent generated regular semigroup, Brittenham, Margolis \& Meakin (2009) showed that the maximal subgroups of $\operatorname{IG}(\mathcal{E})$ are precisely the fundamental groups of connected components (= \mathscr{D}-classes) of the Graham-Houghton complex of \mathcal{E} :

- Vertices: \mathscr{R}-classes R_{i} and \mathscr{L}-classes L_{λ}

Presentation for the maximal subgroups (2)

Alternatively, if the undelying biordered set \mathcal{E} comes from an idempotent generated regular semigroup, Brittenham, Margolis \& Meakin (2009) showed that the maximal subgroups of IG (\mathcal{E}) are precisely the fundamental groups of connected components (= \mathscr{D}-classes) of the Graham-Houghton complex of \mathcal{E} :

- Vertices: \mathscr{R}-classes R_{i} and \mathscr{L}-classes L_{λ}
- Edges: correspond to idempotents $e_{i \lambda} \in R_{i} \cap L_{\lambda}$

Presentation for the maximal subgroups (2)

Alternatively, if the undelying biordered set \mathcal{E} comes from an idempotent generated regular semigroup, Brittenham, Margolis \& Meakin (2009) showed that the maximal subgroups of $\operatorname{IG}(\mathcal{E})$ are precisely the fundamental groups of connected components (= \mathscr{D}-classes) of the Graham-Houghton complex of \mathcal{E} :

- Vertices: \mathscr{R}-classes R_{i} and \mathscr{L}-classes L_{λ}
- Edges: correspond to idempotents $e_{i \lambda} \in R_{i} \cap L_{\lambda}$
- 2-cells: correspond to singular squares

Presentation for the maximal subgroups (2)

Alternatively, if the undelying biordered set \mathcal{E} comes from an idempotent generated regular semigroup, Brittenham, Margolis \& Meakin (2009) showed that the maximal subgroups of $\operatorname{IG}(\mathcal{E})$ are precisely the fundamental groups of connected components (= \mathscr{D}-classes) of the Graham-Houghton complex of \mathcal{E} :

- Vertices: \mathscr{R}-classes R_{i} and \mathscr{L}-classes L_{λ}
- Edges: correspond to idempotents $e_{i \lambda} \in R_{i} \cap L_{\lambda}$
- 2-cells: correspond to singular squares

This provides an alternative presentation for these groups; a clever choice of a spanning tree may speed up computations.

Refinements of the Gray-Ruškuc universality result

- $\lg D$ \& Ruškuc, 2013: Every (finitely generated) group arises as a maximal subgroup of $\operatorname{IG}\left(\mathcal{E}_{B}\right)$, where B is a (finite) band.

Refinements of the Gray-Ruškuc universality result

- $\lg D$ \& Ruškuc, 2013: Every (finitely generated) group arises as a maximal subgroup of $\operatorname{IG}\left(\mathcal{E}_{B}\right)$, where B is a (finite) band.
- Gould \& Yang, 2014: G arises as a maximal subgroup of $\operatorname{IG}\left(\mathcal{E}_{S}\right)$, where S is the endomorphism monoid of a free G-act.

Computing some natural examples

Goal

Determine the maximal subgroups of $\mathrm{IG}\left(\mathcal{E}_{S}\right)$ for some natural examples of S. In particular, are they the same as the corresponding subgroups of S ?

Computing some natural examples

Goal

Determine the maximal subgroups of $\mathrm{IG}\left(\mathcal{E}_{S}\right)$ for some natural examples of S. In particular, are they the same as the corresponding subgroups of S ?

- Full transformation monoids: Gray \& Ruškuc, 2012 (symmetric groups, provided rank $\leq n-2$);

Computing some natural examples

Goal

Determine the maximal subgroups of $\operatorname{IG}\left(\mathcal{E}_{S}\right)$ for some natural examples of S. In particular, are they the same as the corresponding subgroups of S ?

- Full transformation monoids: Gray \& Ruškuc, 2012 (symmetric groups, provided rank $\leq n-2$);
- Partial transformation monoids: IgD, 2013 (symmetric groups again);

Computing some natural examples

Goal

Determine the maximal subgroups of $\operatorname{IG}\left(\mathcal{E}_{S}\right)$ for some natural examples of S. In particular, are they the same as the corresponding subgroups of S ?

- Full transformation monoids: Gray \& Ruškuc, 2012 (symmetric groups, provided rank $\leq n-2$);
- Partial transformation monoids: IgD, 2013 (symmetric groups again);
- Full matrix monoid over a skew field: IgD \& Gray, 2014 (general linear groups, if rank $<n / 3$, otherwise...);

Computing some natural examples

Goal

Determine the maximal subgroups of $\operatorname{IG}\left(\mathcal{E}_{S}\right)$ for some natural examples of S. In particular, are they the same as the corresponding subgroups of S ?

- Full transformation monoids: Gray \& Ruškuc, 2012 (symmetric groups, provided rank $\leq n-2$);
- Partial transformation monoids: IgD, 2013 (symmetric groups again);
- Full matrix monoid over a skew field: IgD \& Gray, 2014 (general linear groups, if rank $<n / 3$, otherwise...);
- Endomorphism monoid of a free G-act: IgD, Gould \& Yang, 2015 (wreath products of G by symmetric groups).

II. Andante con moto
 A taste of the word problem: the good and the 'bad'

Recognising regular elements

From now on, \mathcal{E} is always finite.

Recognising regular elements

From now on, \mathcal{E} is always finite.
Theorem (IgD, Gray, Ruškuc, 2017)
There exists an algorithm which, given $w \in E^{+}$, decides whether \bar{w} is a regular element of $\operatorname{IG}(\mathcal{E})$, and if so, returns $f, g \in E$ such that $\bar{f} \mathscr{R} \bar{w} \mathscr{L} \bar{g}$.

Recognising regular elements

From now on, \mathcal{E} is always finite.
Theorem (lgD, Gray, Ruškuc, 2017)
There exists an algorithm which, given $w \in E^{+}$, decides whether \bar{w} is a regular element of $\operatorname{IG}(\mathcal{E})$, and if so, returns $f, g \in E$ such that $\bar{f} \mathscr{R} \bar{w} \mathscr{L} \bar{g}$.

Namely, \bar{w} is regular if and only if there is a factorisation

$$
w=u e v
$$

such that $\overline{u e} \mathscr{L} \bar{e} \mathscr{R} \overline{e v}$.

Recognising regular elements

From now on, \mathcal{E} is always finite.
Theorem (lgD, Gray, Ruškuc, 2017)
There exists an algorithm which, given $w \in E^{+}$, decides whether \bar{w} is a regular element of $\operatorname{IG}(\mathcal{E})$, and if so, returns $f, g \in E$ such that $\bar{f} \mathscr{R} \bar{w} \mathscr{L} \bar{g}$.

Namely, \bar{w} is regular if and only if there is a factorisation

$$
w=u e v
$$

such that $\overline{u e} \mathscr{L} \bar{e} \mathscr{R} \overline{e v}$. In such a case, $\bar{e} \mathscr{D} \bar{w}$, and e is called the seed of w.

Recognising regular elements

From now on, \mathcal{E} is always finite.
Theorem (IgD, Gray, Ruškuc, 2017)
There exists an algorithm which, given $w \in E^{+}$, decides whether \bar{w} is a regular element of $\operatorname{IG}(\mathcal{E})$, and if so, returns $f, g \in E$ such that $\bar{f} \mathscr{R} \bar{w} \mathscr{L} \bar{g}$.

Namely, \bar{w} is regular if and only if there is a factorisation

$$
w=u e v
$$

such that $\overline{u e} \mathscr{L} \bar{e} \mathscr{R} \overline{e v}$. In such a case, $\bar{e} \mathscr{D} \bar{w}$, and e is called the seed of w. (The decidability of this condition ultimately harks back to the Howie-Lallement Lemma.)

The word problem for regular elements of $\operatorname{IG}(\mathcal{E})$

Theorem (DGR, 2017)
(i) There exists an algorithm which, given a finite biorder \mathcal{E}, computes the presentations of all maximal subgroups of $\operatorname{IG}(\mathcal{E})$.

The word problem for regular elements of $\operatorname{IG}(\mathcal{E})$

Theorem (DGR, 2017)
(i) There exists an algorithm which, given a finite biorder \mathcal{E}, computes the presentations of all maximal subgroups of $\operatorname{IG}(\mathcal{E})$.
(ii) If all these presentations have soluble word problems, then there exists an algorithm which, for $u, v \in E^{+}$representing regular elements of $\operatorname{IG}(\mathcal{E})$, decides whether $\bar{u}=\bar{v}$.

The word problem for regular elements of $\operatorname{IG}(\mathcal{E})$

Theorem (DGR, 2017)
(i) There exists an algorithm which, given a finite biorder \mathcal{E}, computes the presentations of all maximal subgroups of $\operatorname{IG}(\mathcal{E})$.
(ii) If all these presentations have soluble word problems, then there exists an algorithm which, for $u, v \in E^{+}$representing regular elements of $\mathrm{IG}(\mathcal{E})$, decides whether $\bar{u}=\bar{v}$.

Method I (DGR, 2017):
Decide if $\bar{u} \mathscr{H} \bar{v}$, and then Reidemeister-Schreier.

The word problem for regular elements of $\operatorname{IG}(\mathcal{E})$

Theorem (DGR, 2017)

(i) There exists an algorithm which, given a finite biorder \mathcal{E}, computes the presentations of all maximal subgroups of $\operatorname{IG}(\mathcal{E})$.
(ii) If all these presentations have soluble word problems, then there exists an algorithm which, for $u, v \in E^{+}$representing regular elements of $\operatorname{IG}(\mathcal{E})$, decides whether $\bar{u}=\bar{v}$.

Method I (DGR, 2017):
Decide if $\bar{u} \mathscr{H} \bar{v}$, and then Reidemeister-Schreier.
Method II (IgD, Gould, Yang, 2019):
Rees matrix 'coordinatisation' (via an effective version of an old result of FitzGerald) - wait for Mov. 3

However... the 'bad' news

Theorem (DGR, 2017)
For any finitely presented group G and any finitely generated subgroup H there exists a band $B_{G, H}$ (with $\mathcal{B}_{G, H}$ denoting the corresponding biorder) with the following two properties:

However... the 'bad' news

Theorem (DGR, 2017)
For any finitely presented group G and any finitely generated subgroup H there exists a band $B_{G, H}$ (with $\mathcal{B}_{G, H}$ denoting the corresponding biorder) with the following two properties:
(i) Every maximal subgroup of $\operatorname{IG}\left(\mathcal{B}_{G, H}\right)$ is either trivial or isomorphic to G;

However... the 'bad' news

Theorem (DGR, 2017)
For any finitely presented group G and any finitely generated subgroup H there exists a band $B_{G, H}$ (with $\mathcal{B}_{G, H}$ denoting the corresponding biorder) with the following two properties:
(i) Every maximal subgroup of $\operatorname{IG}\left(\mathcal{B}_{G, H}\right)$ is either trivial or isomorphic to G;
(ii) The solubility of the word problem of $\operatorname{IG}\left(\mathcal{B}_{G, H}\right)$ implies the decidability of the membership problem of H in G.

However... the 'bad' news

Theorem (DGR, 2017)

For any finitely presented group G and any finitely generated subgroup H there exists a band $B_{G, H}$ (with $\mathcal{B}_{G, H}$ denoting the corresponding biorder) with the following two properties:
(i) Every maximal subgroup of $\operatorname{IG}\left(\mathcal{B}_{G, H}\right)$ is either trivial or isomorphic to G;
(ii) The solubility of the word problem of $\operatorname{IG}\left(\mathcal{B}_{G, H}\right)$ implies the decidability of the membership problem of H in G.
Therefore, there exists a finite band B such that $\operatorname{IG}\left(\mathcal{E}_{B}\right)$ has undecidable word problem even though the word problems of all of its maximal subgroups are decidable.

However... the 'bad' news

Theorem (DGR, 2017)

For any finitely presented group G and any finitely generated subgroup H there exists a band $B_{G, H}$ (with $\mathcal{B}_{G, H}$ denoting the corresponding biorder) with the following two properties:
(i) Every maximal subgroup of $\operatorname{IG}\left(\mathcal{B}_{G, H}\right)$ is either trivial or isomorphic to G;
(ii) The solubility of the word problem of $\operatorname{IG}\left(\mathcal{B}_{G, H}\right)$ implies the decidability of the membership problem of H in G.
Therefore, there exists a finite band B such that $\operatorname{IG}\left(\mathcal{E}_{B}\right)$ has undecidable word problem even though the word problems of all of its maximal subgroups are decidable. (Because $G=F_{2} \times F_{2}$ and the Mihailova construction.)

However... the 'bad' news (synopsis)

- The construction of $B_{G, H}$ is an adaptation of the $\lg D+$ Ruškuc construction from 2013.

However... the 'bad' news (synopsis)

- The construction of $B_{G, H}$ is an adaptation of the $\lg D+$ Ruškuc construction from 2013.
- It allows for encoding the membership problem of H in G into equalities of products of certain pairs of regular elements $a(g), b(g), g \in G$.

However... the 'bad' news (synopsis)

- The construction of $B_{G, H}$ is an adaptation of the $\lg D+$ Ruškuc construction from 2013.
- It allows for encoding the membership problem of H in G into equalities of products of certain pairs of regular elements $a(g), b(g), g \in G$. In fact, we get

$$
a(1) b(1)=a\left(g^{-1}\right) b(g)
$$

if and only if $g \in H$.

III. Con moto moderato Working the way:

 factorisations, fingerprints, coordinates

(Minimal) r-factorisations

r-factorisation $=$ a factorisation $w=p_{1} \ldots p_{m}$ such that all of $\overline{p_{1}}, \ldots, \overline{p_{m}}$ are regular elements of $\operatorname{IG}(\mathcal{E})$

(Minimal) r-factorisations

r-factorisation $=$ a factorisation $w=p_{1} \ldots p_{m}$ such that all of $\overline{p_{1}}, \ldots, \overline{p_{m}}$ are regular elements of $\operatorname{IG}(\mathcal{E})$

Factorisations (and so r-factorisations) of a word w can be naturally ordered: $\left(p_{1}, \ldots, p_{m}\right) \preceq\left(q_{1}, \ldots, q_{s}\right)$ means $q_{1} \ldots q_{s}$ is finer than $p_{1} \ldots p_{m}$.

(Minimal) r-factorisations

r-factorisation $=$ a factorisation $w=p_{1} \ldots p_{m}$ such that all of $\overline{p_{1}}, \ldots, \overline{p_{m}}$ are regular elements of IG(E)
Factorisations (and so r-factorisations) of a word w can be naturally ordered: $\left(p_{1}, \ldots, p_{m}\right) \preceq\left(q_{1}, \ldots, q_{s}\right)$ means $q_{1} \ldots q_{s}$ is finer than $p_{1} \ldots p_{m}$.

The unique maximal r-factorisation is the factorisation into (idempotent) letters.

(Minimal) r-factorisations

r-factorisation $=$ a factorisation $w=p_{1} \ldots p_{m}$ such that all of $\overline{p_{1}}, \ldots, \overline{p_{m}}$ are regular elements of IG(E)
Factorisations (and so r-factorisations) of a word w can be naturally ordered: $\left(p_{1}, \ldots, p_{m}\right) \preceq\left(q_{1}, \ldots, q_{s}\right)$ means $q_{1} \ldots q_{s}$ is finer than $p_{1} \ldots p_{m}$.

The unique maximal r-factorisation is the factorisation into (idempotent) letters.

We are, however, interested in the minimal r-factorisations $=$ coarsest factorisations into regular-element-inducing factors.

(Minimal) r-factorisations

r-factorisation $=$ a factorisation $w=p_{1} \ldots p_{m}$ such that all of $\overline{p_{1}}, \ldots, \overline{p_{m}}$ are regular elements of $\operatorname{IG}(\mathcal{E})$

Factorisations (and so r-factorisations) of a word w can be naturally ordered: $\left(p_{1}, \ldots, p_{m}\right) \preceq\left(q_{1}, \ldots, q_{s}\right)$ means $q_{1} \ldots q_{s}$ is finer than $p_{1} \ldots p_{m}$.

The unique maximal r-factorisation is the factorisation into (idempotent) letters.

We are, however, interested in the minimal r-factorisations $=$ coarsest factorisations into regular-element-inducing factors.

As it turns out, all minimal factorisations of a word are pretty 'similar' w.r.t. IG(E).

\approx and \sim

For two sequences of words over E^{+}we define

$$
\left(p_{1}, \ldots, p_{m}\right) \approx\left(q_{1}, \ldots, q_{s}\right)
$$

if and only if $m=s$ and one of the three following conditions hold:

\approx and \sim

For two sequences of words over E^{+}we define

$$
\left(p_{1}, \ldots, p_{m}\right) \approx\left(q_{1}, \ldots, q_{s}\right)
$$

if and only if $m=s$ and one of the three following conditions hold:
(i) $\overline{p_{i}}=\overline{q_{i}}$ for some $1 \leq i \leq m$ and $p_{j}=q_{j}$ for all $j \neq i$;

\approx and \sim

For two sequences of words over E^{+}we define

$$
\left(p_{1}, \ldots, p_{m}\right) \approx\left(q_{1}, \ldots, q_{s}\right)
$$

if and only if $m=s$ and one of the three following conditions hold:
(i) $\overline{p_{i}}=\overline{q_{i}}$ for some $1 \leq i \leq m$ and $p_{j}=q_{j}$ for all $j \neq i$;
(ii) $\overline{p_{i}}=\overline{q_{i} e}$ and $\overline{q_{i+1}}=\overline{e p_{i+1}}$ for some $1 \leq i<m$ and $e \in E$, and $p_{j}=q_{j}$ for all $j \notin\{i, i+1\}$;

\approx and \sim

For two sequences of words over E^{+}we define

$$
\left(p_{1}, \ldots, p_{m}\right) \approx\left(q_{1}, \ldots, q_{s}\right)
$$

if and only if $m=s$ and one of the three following conditions hold:
(i) $\overline{p_{i}}=\overline{q_{i}}$ for some $1 \leq i \leq m$ and $p_{j}=q_{j}$ for all $j \neq i$;
(ii) $\overline{p_{i}}=\overline{q_{i} e}$ and $\overline{q_{i+1}}=\overline{e p_{i+1}}$ for some $1 \leq i<m$ and $e \in E$, and $p_{j}=q_{j}$ for all $j \notin\{i, i+1\}$;
(iii) $\overline{q_{i}}=\overline{p_{i} e}$ and $\overline{p_{i+1}}=\overline{e q_{i+1}}$ for some $1 \leq i<m$ and $e \in E$, and $p_{j}=q_{j}$ for all $j \notin\{i, i+1\}$.

\approx and \sim

For two sequences of words over E^{+}we define

$$
\left(p_{1}, \ldots, p_{m}\right) \approx\left(q_{1}, \ldots, q_{s}\right)
$$

if and only if $m=s$ and one of the three following conditions hold:
(i) $\overline{p_{i}}=\overline{q_{i}}$ for some $1 \leq i \leq m$ and $p_{j}=q_{j}$ for all $j \neq i$;
(ii) $\overline{p_{i}}=\overline{q_{i} e}$ and $\overline{q_{i+1}}=\overline{e p_{i+1}}$ for some $1 \leq i<m$ and $e \in E$, and $p_{j}=q_{j}$ for all $j \notin\{i, i+1\}$;
(iii) $\overline{q_{i}}=\overline{p_{i} e}$ and $\overline{p_{i+1}}=\overline{e q_{i+1}}$ for some $1 \leq i<m$ and $e \in E$, and $p_{j}=q_{j}$ for all $j \notin\{i, i+1\}$.
\sim is the transitive closure of \approx.

The \mathscr{D}-fingerprint

Theorem
$u, v \in E^{+}$such that $\bar{u}=\bar{v}$. Also, let $u=p_{1} \ldots p_{m}$ and $v=q_{1} \ldots q_{s}$ be minimal r-factorisations. Then $m=s$ and $\overline{p_{i}} \mathscr{D} \overline{q_{i}}(1 \leq i \leq m)$.

The \mathscr{D}-fingerprint

Theorem
$u, v \in E^{+}$such that $\bar{u}=\bar{v}$. Also, let $u=p_{1} \ldots p_{m}$ and $v=q_{1} \ldots q_{s}$ be minimal r-factorisations. Then $m=s$ and
$\overline{p_{i}} \mathscr{D} \overline{q_{i}}(1 \leq i \leq m)$. (Furthermore, $\overline{p_{1}} \mathscr{R} \overline{q_{1}}$ and $\overline{p_{m}} \mathscr{L} \overline{q_{m}}$.)

The \mathscr{D}-fingerprint

Theorem
$u, v \in E^{+}$such that $\bar{u}=\bar{v}$. Also, let $u=p_{1} \ldots p_{m}$ and $v=q_{1} \ldots q_{s}$ be minimal r-factorisations. Then $m=s$ and
$\overline{p_{i}} \mathscr{D} \overline{q_{i}}(1 \leq i \leq m)$. (Furthermore, $\overline{p_{1}} \mathscr{R} \overline{q_{1}}$ and $\overline{p_{m}} \mathscr{L} \overline{q_{m}}$.)
So, given $w \in E^{+}$, the sequence of \mathscr{D}-classes

$$
\left(D_{\overline{p_{1}}}, \ldots, D_{\overline{p_{m}}}\right)
$$

is an invariant of w (where $w=p_{1} \ldots p_{m}$ is a minimal r-factorisation).

The \mathscr{D}-fingerprint

Theorem
$u, v \in E^{+}$such that $\bar{u}=\bar{v}$. Also, let $u=p_{1} \ldots p_{m}$ and $v=q_{1} \ldots q_{s}$ be minimal r-factorisations. Then $m=s$ and
$\overline{p_{i}} \mathscr{D} \overline{q_{i}}(1 \leq i \leq m)$. (Furthermore, $\overline{p_{1}} \mathscr{R} \overline{q_{1}}$ and $\overline{p_{m}} \mathscr{L} \overline{q_{m}}$.)
So, given $w \in E^{+}$, the sequence of \mathscr{D}-classes

$$
\left(D_{\overline{p_{1}}}, \ldots, D_{\overline{p_{m}}}\right)
$$

is an invariant of w (where $w=p_{1} \ldots p_{m}$ is a minimal r-factorisation). This is the \mathscr{D}-fingerprint of w.

The \mathscr{D}-fingerprint

Theorem
$u, v \in E^{+}$such that $\bar{u}=\bar{v}$. Also, let $u=p_{1} \ldots p_{m}$ and
$v=q_{1} \ldots q_{s}$ be minimal r-factorisations. Then $m=s$ and
$\overline{p_{i}} \mathscr{D} \overline{q_{i}}(1 \leq i \leq m)$. (Furthermore, $\overline{p_{1}} \mathscr{R} \overline{q_{1}}$ and $\overline{p_{m}} \mathscr{L} \overline{q_{m}}$.)
So, given $w \in E^{+}$, the sequence of \mathscr{D}-classes

$$
\left(D_{\overline{p_{1}}}, \ldots, D_{\overline{p_{m}}}\right)
$$

is an invariant of w (where $w=p_{1} \ldots p_{m}$ is a minimal r-factorisation). This is the \mathscr{D}-fingerprint of w. Two words must share the same \mathscr{D}-fingerprint to stand any chance to represent the same element of $\operatorname{IG}(\mathcal{E})$.

The word problem via \sim

Theorem
$u, v \in E^{+}$. TFAE:
(1) $\bar{u}=\bar{v}$;

The word problem via \sim

Theorem
$u, v \in E^{+}$. TFAE:
(1) $\bar{u}=\bar{v}$;
(2) There exists an integer $m \geq 1$ such that all minimal r-factorisations of u and v, respectively, have precisely m factors, and whenever $u=p_{1} \ldots p_{m}$ and $v=q_{1} \ldots q_{m}$ are such factorisations we have

$$
\left(p_{1}, \ldots, p_{m}\right) \sim\left(q_{1}, \ldots, q_{m}\right)
$$

The coordinatisation idea

Fact
If \mathcal{E} is finite then $\mathscr{D}=\mathscr{J}$ in $\operatorname{IG}(\mathcal{E})$.

The coordinatisation idea

Fact

If \mathcal{E} is finite then $\mathscr{D}=\mathscr{J}$ in $\operatorname{IG}(\mathcal{E})$.
So, for any regular \mathscr{D}-class D, D^{0} is a Rees matrix semigroup, thus the regular elements of $\operatorname{IG}(\mathcal{E})$ may be 'coordinatised' as

$$
(i, g, \lambda)
$$

The coordinatisation idea

Fact

If \mathcal{E} is finite then $\mathscr{D}=\mathscr{J}$ in $\operatorname{IG}(\mathcal{E})$.
So, for any regular \mathscr{D}-class D, D^{0} is a Rees matrix semigroup, thus the regular elements of $\operatorname{IG}(\mathcal{E})$ may be 'coordinatised' as

$$
(i, g, \lambda)
$$

$i \in I$: the \mathscr{R}-classes of \mathcal{E} (from the \mathscr{D}-class corresponding to D);

The coordinatisation idea

Fact

If \mathcal{E} is finite then $\mathscr{D}=\mathscr{J}$ in $\operatorname{IG}(\mathcal{E})$.
So, for any regular \mathscr{D}-class D, D^{0} is a Rees matrix semigroup, thus the regular elements of $\operatorname{IG}(\mathcal{E})$ may be 'coordinatised' as

$$
(i, g, \lambda)
$$

$i \in I$: the \mathscr{R}-classes of \mathcal{E} (from the \mathscr{D}-class corresponding to D); $\lambda \in \Lambda$: the \mathscr{L}-classes of \mathcal{E} (from the \mathscr{D}-class corresponding to D);

The coordinatisation idea

Fact

If \mathcal{E} is finite then $\mathscr{D}=\mathscr{J}$ in $\operatorname{IG}(\mathcal{E})$.
So, for any regular \mathscr{D}-class D, D^{0} is a Rees matrix semigroup, thus the regular elements of $\operatorname{IG}(\mathcal{E})$ may be 'coordinatised' as

$$
(i, g, \lambda)
$$

$i \in I$: the \mathscr{R}-classes of \mathcal{E} (from the \mathscr{D}-class corresponding to D); $\lambda \in \Lambda$: the \mathscr{L}-classes of \mathcal{E} (from the \mathscr{D}-class corresponding to D); $g \in G$: the max. subgroup of D, g represented by a group word over generators $f_{i \lambda}$.

The coordinatisation idea

Fact

If \mathcal{E} is finite then $\mathscr{D}=\mathscr{J}$ in $\operatorname{IG}(\mathcal{E})$.
So, for any regular \mathscr{D}-class D, D^{0} is a Rees matrix semigroup, thus the regular elements of $\operatorname{IG}(\mathcal{E})$ may be 'coordinatised' as

$$
(i, g, \lambda)
$$

$i \in I$: the \mathscr{R}-classes of \mathcal{E} (from the \mathscr{D}-class corresponding to D); $\lambda \in \Lambda$: the \mathscr{L}-classes of \mathcal{E} (from the \mathscr{D}-class corresponding to D); $g \in G$: the max. subgroup of $D, \mathrm{~g}$ represented by a group word over generators $f_{i \lambda}$.
Can this representation be performed effectively?

The coordinatisation idea

Fact

If \mathcal{E} is finite then $\mathscr{D}=\mathscr{J}$ in $\operatorname{IG}(\mathcal{E})$.
So, for any regular \mathscr{D}-class D, D^{0} is a Rees matrix semigroup, thus the regular elements of $\operatorname{IG}(\mathcal{E})$ may be 'coordinatised' as

$$
(i, g, \lambda)
$$

$i \in I$: the \mathscr{R}-classes of \mathcal{E} (from the \mathscr{D}-class corresponding to D); $\lambda \in \Lambda$: the \mathscr{L}-classes of \mathcal{E} (from the \mathscr{D}-class corresponding to D); $g \in G$: the max. subgroup of D, g represented by a group word over generators $f_{i \lambda}$.
Can this representation be performed effectively? Yes.

The coordinatisation idea

Fact

If \mathcal{E} is finite then $\mathscr{D}=\mathscr{J}$ in $\operatorname{IG}(\mathcal{E})$.
So, for any regular \mathscr{D}-class D, D^{0} is a Rees matrix semigroup, thus the regular elements of $\operatorname{IG}(\mathcal{E})$ may be 'coordinatised' as

$$
(i, g, \lambda)
$$

$i \in I$: the \mathscr{R}-classes of \mathcal{E} (from the \mathscr{D}-class corresponding to D); $\lambda \in \Lambda$: the \mathscr{L}-classes of \mathcal{E} (from the \mathscr{D}-class corresponding to D); $g \in G$: the max. subgroup of D, g represented by a group word over generators $f_{i \lambda}$.
Can this representation be performed effectively? Yes. What about \sim ?

The coordinatisation idea

Fact

If \mathcal{E} is finite then $\mathscr{D}=\mathscr{J}$ in $\operatorname{IG}(\mathcal{E})$.
So, for any regular \mathscr{D}-class D, D^{0} is a Rees matrix semigroup, thus the regular elements of $\operatorname{IG}(\mathcal{E})$ may be 'coordinatised' as

$$
(i, g, \lambda)
$$

$i \in I$: the \mathscr{R}-classes of \mathcal{E} (from the \mathscr{D}-class corresponding to D); $\lambda \in \Lambda$: the \mathscr{L}-classes of \mathcal{E} (from the \mathscr{D}-class corresponding to D); $g \in G$: the max. subgroup of D, g represented by a group word over generators $f_{i \lambda}$.
Can this representation be performed effectively? Yes. What about ~? Yup, that too.

The partial maps σ_{e} and τ_{e}

Lemma
Let $(i, g, \lambda) \in D$ and $e \in E$ such that $D \leq D_{\bar{e}}$.

The partial maps σ_{e} and τ_{e}

Lemma
Let $(i, g, \lambda) \in D$ and $e \in E$ such that $D \leq D_{\bar{e}}$.
(a) $\bar{e}(i, g, \lambda) \in D \Longrightarrow \bar{e}(i, g, \lambda) \mathscr{L}(i, g, \lambda)$

The partial maps σ_{e} and τ_{e}

Lemma
Let $(i, g, \lambda) \in D$ and $e \in E$ such that $D \leq D_{\bar{e}}$.
(a) $\bar{e}(i, g, \lambda) \in D \Longrightarrow \bar{e}(i, g, \lambda) \mathscr{L}(i, g, \lambda)$
(b) $(i, g, \lambda) \bar{e} \in D \Longrightarrow(i, g, \lambda) \bar{e} \mathscr{R}(i, g, \lambda)$

The partial maps σ_{e} and τ_{e}

Lemma
Let $(i, g, \lambda) \in D$ and $e \in E$ such that $D \leq D_{\bar{e}}$.
(a) $\bar{e}(i, g, \lambda) \in D \Longrightarrow \bar{e}(i, g, \lambda) \mathscr{L}(i, g, \lambda)$
(b) $(i, g, \lambda) \bar{e} \in D \Longrightarrow(i, g, \lambda) \bar{e} \mathscr{R}(i, g, \lambda)$

Define $\sigma_{e}: i \mapsto i^{\prime}$ if $\bar{e}(i, g, \lambda)=\left(i^{\prime}, h, \lambda\right)$ for some $g, h \in G, \lambda \in \Lambda$.

The partial maps σ_{e} and τ_{e}

Lemma

Let $(i, g, \lambda) \in D$ and $e \in E$ such that $D \leq D_{\bar{e}}$.
(a) $\bar{e}(i, g, \lambda) \in D \Longrightarrow \bar{e}(i, g, \lambda) \mathscr{L}(i, g, \lambda)$
(b) $(i, g, \lambda) \bar{e} \in D \Longrightarrow(i, g, \lambda) \bar{e} \mathscr{R}(i, g, \lambda)$

Define $\sigma_{e}: i \mapsto i^{\prime}$ if $\bar{e}(i, g, \lambda)=\left(i^{\prime}, h, \lambda\right)$ for some $g, h \in G, \lambda \in \Lambda$. Analogously, let $\tau_{e}: \lambda \mapsto \lambda^{\prime}$ if $(i, g, \lambda) \bar{e}=\left(i, h, \lambda^{\prime}\right)$ for some $i \in I$, $g, h \in G$.

The partial maps σ_{e} and τ_{e}

Lemma

Let $(i, g, \lambda) \in D$ and $e \in E$ such that $D \leq D_{\bar{e}}$.
(a) $\bar{e}(i, g, \lambda) \in D \Longrightarrow \bar{e}(i, g, \lambda) \mathscr{L}(i, g, \lambda)$
(b) $(i, g, \lambda) \bar{e} \in D \Longrightarrow(i, g, \lambda) \bar{e} \mathscr{R}(i, g, \lambda)$

Define $\sigma_{e}: i \mapsto i^{\prime}$ if $\bar{e}(i, g, \lambda)=\left(i^{\prime}, h, \lambda\right)$ for some $g, h \in G, \lambda \in \Lambda$.
Analogously, let $\tau_{e}: \lambda \mapsto \lambda^{\prime}$ if $(i, g, \lambda) \bar{e}=\left(i, h, \lambda^{\prime}\right)$ for some $i \in I$, $g, h \in G$.

It follows already from the results of [DGR17] that all of these partial maps are effectively computable from \mathcal{E}.

The 'effective' FitzGerald

Lemma (Des FitzGerald, 1972)
Let S be an idempotent generated semigroup and $a \in S$ a regular element. Then $a=e_{1} \ldots e_{n}$ for some idempotents $e_{1}, \ldots, e_{n} \in D_{a}$.

The 'effective' FitzGerald

Lemma (Des FitzGerald, 1972)
Let S be an idempotent generated semigroup and $a \in S$ a regular element. Then $a=e_{1} \ldots e_{n}$ for some idempotents $e_{1}, \ldots, e_{n} \in D_{a}$.

Now, given a word $w=u e_{i \lambda} v$ representing a regular element of $\operatorname{IG}(\mathcal{E})$ (with a distinguished seed),

The 'effective' FitzGerald

Lemma (Des FitzGerald, 1972)

Let S be an idempotent generated semigroup and $a \in S$ a regular element. Then $a=e_{1} \ldots e_{n}$ for some idempotents $e_{1}, \ldots, e_{n} \in D_{a}$.

Now, given a word $w=u e_{i \lambda} v$ representing a regular element of $\operatorname{IG}(\mathcal{E})$ (with a distinguished seed), one can effectively rewrite this word (using the partial maps from the previous slide) into

$$
w^{\prime}=e_{i_{1} \mu_{1}} \ldots e_{i_{k} \mu_{k}} e_{i \lambda} e_{j_{1} \lambda_{1}} \ldots e_{j_{l} \lambda_{l}}
$$

so that $\bar{w}=\overline{w^{\prime}}$;

The 'effective' FitzGerald

Lemma (Des FitzGerald, 1972)

Let S be an idempotent generated semigroup and $a \in S$ a regular element. Then $a=e_{1} \ldots e_{n}$ for some idempotents $e_{1}, \ldots, e_{n} \in D_{a}$.

Now, given a word $w=u e_{i \lambda} v$ representing a regular element of $\operatorname{IG}(\mathcal{E})$ (with a distinguished seed), one can effectively rewrite this word (using the partial maps from the previous slide) into

$$
w^{\prime}=e_{i_{1} \mu_{1}} \ldots e_{i_{k} \mu_{k}} e_{i \lambda} e_{j_{1} \lambda_{1}} \ldots e_{j_{l} \lambda_{l}}
$$

so that $\bar{w}=\overline{w^{\prime}}$; hence,

$$
\bar{w}=\left(i_{1}, f_{i_{1} \mu_{1}} f_{i_{2} \mu_{1}}^{-1} \ldots f_{i_{k} \mu_{k}} f_{i \mu_{k}}^{-1} f_{i \lambda} f_{j_{1} \lambda}^{-1} f_{j_{1} \lambda_{1}} \ldots f_{j_{i} \lambda_{l-1}}^{-1} f_{j_{i} \lambda_{l}}, \lambda_{l}\right) .
$$

IV. Saltarello: Presto WP for IG is a CSP in FGG

Idempotent actions: the full story

If $\bar{e}(i, g, \lambda) \mathscr{D}(i, g, \lambda)$ (i.e. if $\sigma_{e} i$ is defined) then

$$
\bar{e}(i, g, \lambda)=\left(\sigma_{e} i, f_{\sigma_{e} i, \lambda_{0}} f_{i, \lambda_{0}}^{-1} g, \lambda\right)
$$

where λ_{0} is any fixed (=image) point of τ_{e}.

Idempotent actions: the full story

If $\bar{e}(i, g, \lambda) \mathscr{D}(i, g, \lambda)$ (i.e. if $\sigma_{e} i$ is defined) then

$$
\bar{e}(i, g, \lambda)=\left(\sigma_{e} i, f_{\sigma_{e} i, \lambda_{0}} f_{i, \lambda_{0}}^{-1} g, \lambda\right)
$$

where λ_{0} is any fixed (=image) point of τ_{e}.
Similarly, if $\lambda \tau_{e}$ is defined then

$$
(i, g, \lambda) \bar{e}=\left(i, g f_{i_{0}, \lambda}^{-1} f_{i_{0}, \lambda \tau_{e}}, \lambda \tau_{e}\right)
$$

for any fixed point i_{0} of σ_{e}.

Idempotent actions: the full story

If $\bar{e}(i, g, \lambda) \mathscr{D}(i, g, \lambda)$ (i.e. if $\sigma_{e} i$ is defined) then

$$
\bar{e}(i, g, \lambda)=\left(\sigma_{e} i, f_{\sigma_{e} i, \lambda_{0}} f_{i, \lambda_{0}}^{-1} g, \lambda\right)
$$

where λ_{0} is any fixed (=image) point of τ_{e}.
Similarly, if $\lambda \tau_{e}$ is defined then

$$
(i, g, \lambda) \bar{e}=\left(i, g f_{i_{0}, \lambda}^{-1} f_{i_{0}, \lambda \tau_{e}}, \lambda \tau_{e}\right)
$$

for any fixed point i_{0} of σ_{e}.
Thus we finally get to fiddle with automata (yay!!!)

Idempotent actions: the full story

If $\bar{e}(i, g, \lambda) \mathscr{D}(i, g, \lambda)$ (i.e. if $\sigma_{e} i$ is defined) then

$$
\bar{e}(i, g, \lambda)=\left(\sigma_{e} i, f_{\sigma_{e} i, \lambda_{0}} f_{i, \lambda_{0}}^{-1} g, \lambda\right)
$$

where λ_{0} is any fixed (=image) point of τ_{e}.
Similarly, if $\lambda \tau_{e}$ is defined then

$$
(i, g, \lambda) \bar{e}=\left(i, g f_{i_{0}, \lambda}^{-1} f_{i_{0}, \lambda \tau_{e}}, \lambda \tau_{e}\right)
$$

for any fixed point i_{0} of σ_{e}.
Thus we finally get to fiddle with automata (yay!!!) with group-labelled transitions.

Contact automata

We want to capture the following transformation:

$$
(\ldots, g, \lambda)(i, h, \ldots)
$$

Contact automata

We want to capture the following transformation:

$$
\left[\left(\ldots, g^{\prime}, \mu\right) \bar{e}\right](i, h, \ldots)
$$

Contact automata

We want to capture the following transformation:

$$
\left(\ldots, g^{\prime}, \mu\right)[\bar{e}(i, h, \ldots)]
$$

Contact automata

We want to capture the following transformation:

$$
\left(\ldots, g^{\prime}, \mu\right)\left(j, h^{\prime}, \ldots\right)
$$

Contact automata

We want to capture the following transformation:

$$
\left(\ldots, g^{\prime}, \mu\right)\left(j, h^{\prime}, \ldots\right)
$$

Contact automata

We want to capture the following transformation:

$$
\left(\ldots, g^{\prime}, \mu\right)\left(j, h^{\prime}, \ldots\right)
$$

Let D_{1}, D_{2} be two regular \mathscr{D}-classes of $\operatorname{IG}(\mathcal{E})$, coordinatised by $I_{1} \times G \times \Lambda_{1}$ and $I_{2} \times H \times \Lambda_{2}$, respectively.

Contact automata

We want to capture the following transformation:

$$
\left(\ldots, g^{\prime}, \mu\right)\left(j, h^{\prime}, \ldots\right)
$$

Let D_{1}, D_{2} be two regular \mathscr{D}-classes of IG (\mathcal{E}), coordinatised by $I_{1} \times G \times \Lambda_{1}$ and $I_{2} \times H \times \Lambda_{2}$, respectively. We define the contact automaton $\mathcal{A}\left(D_{1}, D_{2}\right)$, a two-way NFA with states $\Lambda_{1} \times I_{2}$ and alphabet E, where the transitions are defined and labelled by elements of $G \times H^{\partial}$ as follows:

Contact automata

We want to capture the following transformation:

$$
\left(\ldots, g^{\prime}, \mu\right)\left(j, h^{\prime}, \ldots\right)
$$

Let D_{1}, D_{2} be two regular \mathscr{D}-classes of IG (\mathcal{E}), coordinatised by $I_{1} \times G \times \Lambda_{1}$ and $I_{2} \times H \times \Lambda_{2}$, respectively. We define the contact automaton $\mathcal{A}\left(D_{1}, D_{2}\right)$, a two-way NFA with states $\Lambda_{1} \times I_{2}$ and alphabet E, where the transitions are defined and labelled by elements of $G \times H^{\partial}$ as follows:

$$
\text { if }\left(\lambda=\mu \tau_{e}^{(1)} \text { and } \sigma_{e}^{(2)} i=j\right) \text { or }\left(\lambda \tau_{e}^{(1)}=\mu \text { and } i=\sigma_{e}^{(2)} j\right)
$$

The CSP

So, the WP for $\operatorname{IG}(\mathcal{E})$ essentially comes down to chasing paths in various contact automata with suitable group labels.

The CSP

So, the WP for $\operatorname{IG}(\mathcal{E})$ essentially comes down to chasing paths in various contact automata with suitable group labels.
G_{1}, \ldots, G_{m} - finitely presented groups

The CSP

So, the WP for $\operatorname{IG}(\mathcal{E})$ essentially comes down to chasing paths in various contact automata with suitable group labels.
G_{1}, \ldots, G_{m} - finitely presented groups
$\rho_{1}, \ldots, \rho_{m-1}$ - rational subsets of $G_{1} \times G_{2}^{\partial}, \ldots, G_{m-1} \times G_{m}^{\partial}$

The CSP

So, the WP for $\operatorname{IG}(\mathcal{E})$ essentially comes down to chasing paths in various contact automata with suitable group labels.
G_{1}, \ldots, G_{m} - finitely presented groups
$\rho_{1}, \ldots, \rho_{m-1}$ - rational subsets of $G_{1} \times G_{2}^{\partial}, \ldots, G_{m-1} \times G_{m}^{\partial}$
The problem $\mathbf{P}\left(G_{1}, \ldots, G_{m} ; \rho_{1}, \ldots, \rho_{m-1}\right)$:

The CSP

So, the WP for $\operatorname{IG}(\mathcal{E})$ essentially comes down to chasing paths in various contact automata with suitable group labels.
G_{1}, \ldots, G_{m} - finitely presented groups
$\rho_{1}, \ldots, \rho_{m-1}$ - rational subsets of $G_{1} \times G_{2}^{\partial}, \ldots, G_{m-1} \times G_{m}^{\partial}$
The problem $\mathbf{P}\left(G_{1}, \ldots, G_{m} ; \rho_{1}, \ldots, \rho_{m-1}\right)$:
INPUT: $a_{k}, b_{k} \in G_{k}(1 \leq k \leq m)$.

The CSP

So, the WP for $\operatorname{IG}(\mathcal{E})$ essentially comes down to chasing paths in various contact automata with suitable group labels.
G_{1}, \ldots, G_{m} - finitely presented groups
$\rho_{1}, \ldots, \rho_{m-1}$ - rational subsets of $G_{1} \times G_{2}^{\partial}, \ldots, G_{m-1} \times G_{m}^{\partial}$
The problem $\mathbf{P}\left(G_{1}, \ldots, G_{m} ; \rho_{1}, \ldots, \rho_{m-1}\right)$:
INPUT: $a_{k}, b_{k} \in G_{k}(1 \leq k \leq m)$.
OUTPUT: Decide if there exist $x_{t} \in G_{t}, 2 \leq t \leq m-1$, such that

$$
\begin{aligned}
\left(a_{1}^{-1} b_{1}, x_{2}\right) & \in \rho_{1} \\
\left(a_{r}^{-1} x_{r}^{-1} b_{r}, x_{r+1}\right) & \in \rho_{r} \quad(2 \leq r \leq m-2), \\
\left(a_{m-1}^{-1} x_{m-1}^{-1} b_{m-1}, b_{m} a_{m}^{-1}\right) & \in \rho_{m-1}
\end{aligned}
$$

The main theorem

Theorem (IgD, Gould, Yang, 2019)
Assume D_{k} is coordinatised by $I_{k} \times G_{k} \times \Lambda_{k}$.

The main theorem

Theorem (IgD, Gould, Yang, 2019)
Assume D_{k} is coordinatised by $I_{k} \times G_{k} \times \Lambda_{k}$. Then there exist rational subsets

$$
\rho_{s}(\lambda, i ; \mu, j) \subseteq G_{s} \times G_{s+1}^{\partial} \quad\left(1 \leq s<m, \lambda, \mu \in \Lambda_{s}, i, j \in I_{s+1}\right)
$$

that are effectively computable from \mathcal{E}

The main theorem

Theorem (IgD, Gould, Yang, 2019)
Assume D_{k} is coordinatised by $I_{k} \times G_{k} \times \Lambda_{k}$. Then there exist rational subsets

$$
\rho_{s}(\lambda, i ; \mu, j) \subseteq G_{s} \times G_{s+1}^{\partial} \quad\left(1 \leq s<m, \lambda, \mu \in \Lambda_{s}, i, j \in I_{s+1}\right)
$$

that are effectively computable from \mathcal{E} such that

$$
\left(i_{1}, g_{1}, \lambda_{1}\right) \ldots\left(i_{m}, g_{m}, \lambda_{m}\right)=\left(j_{1}, h_{1}, \mu_{1}\right) \ldots\left(j_{m}, h_{m}, \mu_{m}\right)
$$

holds in $\operatorname{IG}(\mathcal{E})$ if and only if

The main theorem

Theorem (IgD, Gould, Yang, 2019)
Assume D_{k} is coordinatised by $I_{k} \times G_{k} \times \Lambda_{k}$. Then there exist rational subsets

$$
\rho_{s}(\lambda, i ; \mu, j) \subseteq G_{s} \times G_{s+1}^{\partial} \quad\left(1 \leq s<m, \lambda, \mu \in \Lambda_{s}, i, j \in I_{s+1}\right)
$$

that are effectively computable from \mathcal{E} such that

$$
\left(i_{1}, g_{1}, \lambda_{1}\right) \ldots\left(i_{m}, g_{m}, \lambda_{m}\right)=\left(j_{1}, h_{1}, \mu_{1}\right) \ldots\left(j_{m}, h_{m}, \mu_{m}\right)
$$

holds in $\operatorname{IG}(\mathcal{E})$ if and only if $i_{1}=j_{1}, \lambda_{m}=\mu_{m}$,

The main theorem

Theorem (IgD, Gould, Yang, 2019)

Assume D_{k} is coordinatised by $I_{k} \times G_{k} \times \Lambda_{k}$. Then there exist rational subsets

$$
\rho_{s}(\lambda, i ; \mu, j) \subseteq G_{s} \times G_{s+1}^{\partial} \quad\left(1 \leq s<m, \lambda, \mu \in \Lambda_{s}, i, j \in I_{s+1}\right)
$$

that are effectively computable from \mathcal{E} such that

$$
\left(i_{1}, g_{1}, \lambda_{1}\right) \ldots\left(i_{m}, g_{m}, \lambda_{m}\right)=\left(j_{1}, h_{1}, \mu_{1}\right) \ldots\left(j_{m}, h_{m}, \mu_{m}\right)
$$

holds in $\operatorname{IG}(\mathcal{E})$ if and only if $i_{1}=j_{1}, \lambda_{m}=\mu_{m}$, and the problem

$$
\mathbf{P}\left(G_{1}, \ldots, G_{m} ; \rho_{1}\left(\lambda_{1}, i_{2} ; \mu_{1}, j_{2}\right), \ldots, \rho_{m-1}\left(\lambda_{m-1}, i_{m} ; \mu_{m-1}, j_{m}\right)\right)
$$

returns a positive answer on input $g_{k}, h_{k} \in G_{k}, 1 \leq k \leq m$.

Special cases

(i) $m=1$: We have $(i, g, \lambda)=(j, h, \mu)$ if and only if $i=j$, $\lambda=\mu$, and $g=h$.

Special cases

(i) $m=1$: We have $(i, g, \lambda)=(j, h, \mu)$ if and only if $i=j$, $\lambda=\mu$, and $g=h$. So, the word problem for the regular part of $\operatorname{IG}(\mathcal{E})$ is indeed equivalent to the word problems of the maximal subgroups.

Special cases

(i) $m=1$: We have $(i, g, \lambda)=(j, h, \mu)$ if and only if $i=j$, $\lambda=\mu$, and $g=h$. So, the word problem for the regular part of $\operatorname{IG}(\mathcal{E})$ is indeed equivalent to the word problems of the maximal subgroups.
(ii) $m=2: \mathbf{P}\left(G_{1}, G_{2}, \rho\right)$ is essentially the membership problem for $\rho \subseteq G_{1} \times G_{2}^{\partial}$.

Special cases

(i) $m=1$: We have $(i, g, \lambda)=(j, h, \mu)$ if and only if $i=j$, $\lambda=\mu$, and $g=h$. So, the word problem for the regular part of $\operatorname{IG}(\mathcal{E})$ is indeed equivalent to the word problems of the maximal subgroups.
(ii) $m=2: \mathbf{P}\left(G_{1}, G_{2}, \rho\right)$ is essentially the membership problem for $\rho \subseteq G_{1} \times G_{2}^{\partial}$. The construction in [DGR17] was set up so that a certain segment of the word problem is equivalent to $\mathbf{P}\left(G, G, \rho_{H}\right)$ where

$$
\rho_{H}=\left\{\left(h, h^{-1}\right): h \in H\right\},
$$

which is just the membership problem for H in G.

The principal applied result

Theorem (DGY, 2019)
Let \mathcal{E} be a finite biordered set with the property that the maximal subgroups in all non-maximal* \mathscr{D}-classes of $\operatorname{IG}(\mathcal{E})$ are finite. Then $\mathrm{IG}(\mathcal{E})$ has decidable word problem.

* - the identity element is discarded if \mathcal{E} comes from a monoid

The principal applied result

Theorem (DGY, 2019)

Let \mathcal{E} be a finite biordered set with the property that the maximal subgroups in all non-maximal* \mathscr{D}-classes of $\operatorname{IG}(\mathcal{E})$ are finite. Then $\mathrm{IG}(\mathcal{E})$ has decidable word problem.

* - the identity element is discarded if \mathcal{E} comes from a monoid

Remark

The maximal \mathscr{D}-classes necessarily yield free maximal subgroups, as there are no singular squares.

The principal applied result

Theorem (DGY, 2019)

Let \mathcal{E} be a finite biordered set with the property that the maximal subgroups in all non-maximal* \mathscr{D}-classes of $\operatorname{IG}(\mathcal{E})$ are finite. Then $\mathrm{IG}(\mathcal{E})$ has decidable word problem.

* - the identity element is discarded if \mathcal{E} comes from a monoid

Remark

The maximal \mathscr{D}-classes necessarily yield free maximal subgroups, as there are no singular squares.

Ingredients:

The principal applied result

Theorem (DGY, 2019)

Let \mathcal{E} be a finite biordered set with the property that the maximal subgroups in all non-maximal* \mathscr{D}-classes of $\operatorname{IG}(\mathcal{E})$ are finite. Then $\mathrm{IG}(\mathcal{E})$ has decidable word problem.

* - the identity element is discarded if \mathcal{E} comes from a monoid

Remark

The maximal \mathscr{D}-classes necessarily yield free maximal subgroups, as there are no singular squares.

Ingredients:

- finite groups allow for an exhaustive search;

The principal applied result

Theorem (DGY, 2019)

Let \mathcal{E} be a finite biordered set with the property that the maximal subgroups in all non-maximal* \mathscr{D}-classes of $\operatorname{IG}(\mathcal{E})$ are finite. Then $\mathrm{IG}(\mathcal{E})$ has decidable word problem.

* - the identity element is discarded if \mathcal{E} comes from a monoid

Remark

The maximal \mathscr{D}-classes necessarily yield free maximal subgroups, as there are no singular squares.

Ingredients:

- finite groups allow for an exhaustive search;
- Benois' Theorem (aka free groups have decidable RSMP);

The principal applied result

Theorem (DGY, 2019)

Let \mathcal{E} be a finite biordered set with the property that the maximal subgroups in all non-maximal* \mathscr{D}-classes of $\operatorname{IG}(\mathcal{E})$ are finite. Then $\mathrm{IG}(\mathcal{E})$ has decidable word problem.

* - the identity element is discarded if \mathcal{E} comes from a monoid

Remark

The maximal \mathscr{D}-classes necessarily yield free maximal subgroups, as there are no singular squares.

Ingredients:

- finite groups allow for an exhaustive search;
- Benois' Theorem (aka free groups have decidable RSMP);
- Grunschlag (1999): rational subsets of virtually free groups;

The principal applied result

Theorem (DGY, 2019)

Let \mathcal{E} be a finite biordered set with the property that the maximal subgroups in all non-maximal* \mathscr{D}-classes of $\operatorname{IG}(\mathcal{E})$ are finite. Then $\operatorname{IG}(\mathcal{E})$ has decidable word problem.

* - the identity element is discarded if \mathcal{E} comes from a monoid

Remark

The maximal \mathscr{D}-classes necessarily yield free maximal subgroups, as there are no singular squares.

Ingredients:

- finite groups allow for an exhaustive search;
- Benois' Theorem (aka free groups have decidable RSMP);
- Grunschlag (1999): rational subsets of virtually free groups;
- P.Silva (2002) \Rightarrow effective version of Grunschlag's result

Applications

Corollary
For any $n \geq 1$, the free idempotent generated semigroups $\operatorname{IG}\left(\mathcal{E}_{\tau_{n}}\right)$ and $\operatorname{IG}\left(\mathcal{E}_{\mathcal{P} \mathcal{T}_{n}}\right)$ have decidable word problems.

Applications

Corollary
For any $n \geq 1$, the free idempotent generated semigroups $\operatorname{IG}\left(\mathcal{E}_{\mathcal{T}_{n}}\right)$ and $\operatorname{IG}\left(\mathcal{E}_{\mathcal{P} \mathcal{T}_{n}}\right)$ have decidable word problems.

Question
Let Q be a finite field. Is the maximal subgroup of $\operatorname{IG}\left(\mathcal{E}_{M_{n}(Q)}\right)$
contained in its \mathscr{D}-class $\overline{D_{r}}$ (corresponding to matrices of rank r) finite whenever $r \leq n-2$?

Applications

Corollary
For any $n \geq 1$, the free idempotent generated semigroups $\operatorname{IG}\left(\mathcal{E}_{\mathcal{T}_{n}}\right)$ and $\operatorname{IG}\left(\mathcal{E}_{\mathcal{P} \mathcal{T}_{n}}\right)$ have decidable word problems.

Question
Let Q be a finite field. Is the maximal subgroup of $\operatorname{IG}\left(\mathcal{E}_{M_{n}(Q)}\right)$
contained in its \mathscr{D}-class $\overline{D_{r}}$ (corresponding to matrices of rank r) finite whenever $r \leq n-2$?

Theorem
If \mathcal{E} is finite, then $\operatorname{IG}(\mathcal{E})$ is always a Fountain (aka weakly abundant) semigroup satisfying the congruence condition.

The end-product

Advances in Mathematics 345 (2019) 998-1041

Contents lists available at ScienceDirect

Advances in Mathematics
wown elsevier com/locate/aim

> A group-theoretical interpretation of the word problem for free idempotent generated semigroups

> a School of Mathematics and Statistics, Xidian University, Xi'an $7100 \gamma 1$, PR China
> b Department of Mathematics and Informatics, University of Novi Sad,
> Trg Dositeja Obradovicia 4, 21101 Novi Sad, Serbia
> ${ }^{c}$ Department of Mathematics, University of York, Heslington, York YO1O SDD, UK

```
ARTICLE 1 NFO
```

Article history:
Received 8 February 2018
Received in revised form 20 December 2018
Accepted 9 January 2019
Accepted 9 January 201
Available online xxxx
Communicated by Ross Street,

MSC:

primary 20M05
secondary $20 \mathrm{~F} 10,68 \mathrm{Q} 70$
Keywords:
Free idempotent gencrated semigroup
Biordered
Word problem
Rational subae

ABSTRACT
The set of idempotents of any semigroup carries the structure of a biordered set, which contains a great deal of information concerning the idempotent generated subsemigroup of the semigroup in question. This leads to the construction of a free idempotent generated semigroup $\operatorname{IG}(\mathcal{E})$ - the 'free-est' semigroup with a given biordered set \mathcal{E} of idempotents. We show that when \mathcal{E} is finite, the word problem for $\operatorname{IG}(\mathcal{E})$ is equivalent to a family of constraint satisfaction problems involving rational subsets of direct products of pairs of maximal subgroups of $\mathrm{IG}(\mathcal{E})$. As an application, we obtain decidability of the word problem for an important class of examples. Also, we prove that for finite $\mathcal{E}, \operatorname{IG}(\mathcal{E})$ is always a weakly abundant semigroup satisfying the congruence condition.
(1) 2019 Elsevier Inc. All rights reserved.

GRAZIE MILLE! THANK YOU!

Questions and comments to: dockie@dmi.uns.ac.rs

Further information may be found at:
http://people.dmi.uns.ac.rs/~dockie

