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Idempotent generated semigroups

Many natural semigroups are idempotent generated (S = 〈E (S)〉):

I The semigroup Tn \ Sn of singular (non-invertible)
transformations on a finite set (Howie, 1966);

I The singular part of Mn(F), the semigroup of all n × n
matrices over a field F (Erdos (not Paul!), 1967);

I In 2006, Putcha completed the classification of linear
algebraic monoids that are idempotent-generated;

I The singular part of Pn, the partition monoid on a finite set
(East, FitzGerald, 2012);

Hence:
What can we say about the structure of the free-est
idempotent-generated (IG) semigroup with a fixed struc-
ture/configuration of idempotents ???
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Errr,... ‘structure of idempotents’???

Biordered sets!

Basic pair {e, f } of idempotents:

{e, f } ∩ {ef , fe} 6= ∅

that is, ef = e or ef = f or fe = e or fe = f .
(Note: if, for example, ef ∈ {e, f }, then (fe)2 = fe.)

Biordered set of a semigroup S = the partial algebra

ES = (E (S), ∗)

obtained by retaining the products of basic pairs (in S).
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Biordered sets

Nambooripad, Easdown (’80s): Biordered sets of semigroups can
be finitely axiomatised (as a class of partial algebras)

−→ abstract biordered sets E = (E , ∗)

Remark
A big chunk of the axioms are expressed in terms of the
quasi-orders

e ≤(l) f ⇔ e = ef , e ≤(r) f ⇔ e = fe.

(hence the name, “bi-ordered set”). From these, we can read off
many relevant semigroup-theoretical relationships:

≤=≤(l) ∩ ≤(r), L =≤(l) ∩(≤(l))−1, R =≤(r) ∩(≤(r))−1,

D = L ∨R.
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IG(E)

Let E be a biordered set.

Consider the following category.

Objects: Pairs (S , φ) where S is a semigroup and φ : E → ES is an
isomorphism of biordered sets;

Morphisms: θ : (S , φ)→ (T , ψ) – semigroup homomorphisms
θ : S → T such that φθ = ψ.

It can be shown that this category has an initial object (IG(E), ιE ).
Here IG(E) is the free idempotent generated semigroup on E .

A more accessible definition:

IG(E) = 〈E : e f = e ∗ f whenever {e, f } is a basic pair 〉.
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Key properties of IG(E) (Easdown, 1985)

Let θ : IG(E)→ S (where S = 〈E 〉) be the natural surjective
homomorphism.

I The restriction of θ to E is an isomorphism of biordered sets
E → ES .

I Hence, the ‘eggbox pictures’ of De (in IG(E)) and De (in S)
have the ‘same shape’ (same dimensions, same distribution of
idempotents,...).

I The maximal subgroup He (in S) is the image (under θ) of
the maximal subgroup He (in IG(E)).

I IG(E) may contain other, non-regular D-classes.

So, understanding IG(E) is essential in understanding the structure
of arbitrary IG semigroups.
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I. Allegro vivace
A joyous quest for maximal subgroups
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The (breakdown of the) freeness conjecture

Question
Which groups arise as maximal subgroups of IG(E)?

I Work of Pastijn and Nambooripad (’70s and ’80s) and
McElwee (2002) led to the belief/conjecture that these
maximal subgroups must always be free groups.

I This conjecture was proved false by Brittenham, Margolis, and
Meakin in 2009 who obtained the groups Z⊕ Z (from a
particular 73-element semigroup arising from a combinatorial
design), and F∗ for an arbitrary field F.

I Finally, Gray and Ruškuc (2012) proved that every group
arises as a maximal subgroup of some free idempotent
generated semigroup (!!!). If the group in question is finitely
generated, the biordered set may be assumed to arise from a
finite semigroup.
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Presentation for the maximal subgroups (1)

Obtained by Gray & Ruškuc from the Reidemeister-Schreier
rewriting process for subgroups of semigroups.

I The generators fiλ for He are in a bijective correspondence
with idempotents eiλ that are D-related to e.

I Three types of relations:
I Some generators are = 1 (fi,π(i) = 1);
I Some generators are equal (fiλ = fiµ);
I f −1

iλ fiµ = f −1
jλ fjµ whenever (i , j ;λ, µ) is a singular square.
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Singular squares
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Presentation for the maximal subgroups (2)

Alternatively, if the undelying biordered set E comes from an
idempotent generated regular semigroup, Brittenham, Margolis &
Meakin (2009) showed that the maximal subgroups of IG(E) are
precisely the fundamental groups of connected components (=
D-classes) of the Graham-Houghton complex of E :

I Vertices: R-classes Ri and L -classes Lλ
I Edges: correspond to idempotents eiλ ∈ Ri ∩ Lλ
I 2-cells: correspond to singular squares

This provides an alternative presentation for these groups; a clever
choice of a spanning tree may speed up computations.
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Refinements of the Gray-Ruškuc universality result

I IgD & Ruškuc, 2013: Every (finitely generated) group arises
as a maximal subgroup of IG(EB), where B is a (finite) band.

I Gould & Yang, 2014: G arises as a maximal subgroup of
IG(ES), where S is the endomorphism monoid of a free G -act.
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Computing some natural examples

Goal
Determine the maximal subgroups of IG(ES) for some natural
examples of S . In particular, are they the same as the
corresponding subgroups of S ?

I Full transformation monoids: Gray & Ruškuc, 2012
(symmetric groups, provided rank ≤ n − 2);

I Partial transformation monoids: IgD, 2013
(symmetric groups again);

I Full matrix monoid over a skew field: IgD & Gray, 2014
(general linear groups, if rank < n/3, otherwise...);

I Endomorphism monoid of a free G -act: IgD, Gould & Yang,
2015 (wreath products of G by symmetric groups).
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II. Andante con moto
A taste of the word problem: the good and the ‘bad’
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Recognising regular elements

From now on, E is always finite.

Theorem (IgD, Gray, Ruškuc, 2017)

There exists an algorithm which, given w ∈ E+, decides whether
w is a regular element of IG(E), and if so, returns f , g ∈ E such
that f R w L g .

Namely, w is regular if and only if there is a factorisation

w = uev

such that ue L e R ev . In such a case, e D w , and e is called the
seed of w . (The decidability of this condition ultimately harks back
to the Howie-Lallement Lemma.)
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There exists an algorithm which, given w ∈ E+, decides whether
w is a regular element of IG(E), and if so, returns f , g ∈ E such
that f R w L g .

Namely, w is regular if and only if there is a factorisation

w = uev

such that ue L e R ev . In such a case, e D w , and e is called the
seed of w .

(The decidability of this condition ultimately harks back
to the Howie-Lallement Lemma.)

SandGAL, Cremona, 10-13 June 2019 Igor Dolinka12



Recognising regular elements

From now on, E is always finite.

Theorem (IgD, Gray, Ruškuc, 2017)
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The word problem for regular elements of IG(E)

Theorem (DGR, 2017)

(i) There exists an algorithm which, given a finite biorder E ,
computes the presentations of all maximal subgroups of IG(E).

(ii) If all these presentations have soluble word problems, then
there exists an algorithm which, for u, v ∈ E+ representing
regular elements of IG(E), decides whether u = v .

Method I (DGR, 2017):
Decide if u H v , and then Reidemeister-Schreier.

Method II (IgD, Gould, Yang, 2019):
Rees matrix ‘coordinatisation’ (via an effective version of an old
result of FitzGerald) – wait for Mov.3
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However... the ‘bad’ news

Theorem (DGR, 2017)

For any finitely presented group G and any finitely generated
subgroup H there exists a band BG ,H (with BG ,H denoting the
corresponding biorder) with the following two properties:

(i) Every maximal subgroup of IG(BG ,H) is either trivial or
isomorphic to G ;

(ii) The solubility of the word problem of IG(BG ,H) implies the
decidability of the membership problem of H in G .

Therefore, there exists a finite band B such that IG(EB) has
undecidable word problem even though the word problems of all of
its maximal subgroups are decidable. (Because G = F2 × F2 and
the Mihailova construction.)
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However... the ‘bad’ news (synopsis)

I The construction of BG ,H is an adaptation of the IgD+Ruškuc
construction from 2013.

I It allows for encoding the membership problem of H in G into
equalities of products of certain pairs of regular elements
a(g), b(g), g ∈ G . In fact, we get

a(1)b(1) = a(g−1)b(g)

if and only if g ∈ H.
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III. Con moto moderato
Working the way:

factorisations, fingerprints, coordinates
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(Minimal) r-factorisations

r-factorisation = a factorisation w = p1 . . . pm such that all of
p1, . . . , pm are regular elements of IG(E)

Factorisations (and so r-factorisations) of a word w can be
naturally ordered: (p1, . . . , pm) � (q1, . . . , qs) means
q1 . . . qs is finer than p1 . . . pm.

The unique maximal r-factorisation is the factorisation into
(idempotent) letters.

We are, however, interested in the minimal r-factorisations =
coarsest factorisations into regular-element-inducing factors.

As it turns out, all minimal factorisations of a word are pretty
‘similar’ w.r.t. IG(E).
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≈ and ∼

For two sequences of words over E+ we define

(p1, . . . , pm) ≈ (q1, . . . , qs)

if and only if m = s and one of the three following conditions hold:

(i) pi = qi for some 1 ≤ i ≤ m and pj = qj for all j 6= i ;

(ii) pi = qie and qi+1 = epi+1 for some 1 ≤ i < m and e ∈ E ,
and pj = qj for all j 6∈ {i , i + 1};

(iii) qi = pie and pi+1 = eqi+1 for some 1 ≤ i < m and e ∈ E ,
and pj = qj for all j 6∈ {i , i + 1}.

∼ is the transitive closure of ≈.
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The D-fingerprint

Theorem
u, v ∈ E+ such that u = v . Also, let u = p1 . . . pm and
v = q1 . . . qs be minimal r-factorisations. Then m = s and
pi D qi (1 ≤ i ≤ m).

(Furthermore, p1 R q1 and pm L qm.)

So, given w ∈ E+, the sequence of D-classes

(Dp1 , . . . ,Dpm)

is an invariant of w (where w = p1 . . . pm is a minimal
r-factorisation). This is the D-fingerprint of w . Two words must
share the same D-fingerprint to stand any chance to represent the
same element of IG(E).
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The word problem via ∼

Theorem
u, v ∈ E+. TFAE:

(1) u = v ;

(2) There exists an integer m ≥ 1 such that all minimal
r-factorisations of u and v , respectively, have precisely m
factors, and whenever u = p1 . . . pm and v = q1 . . . qm are
such factorisations we have

(p1, . . . , pm) ∼ (q1, . . . , qm).
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The coordinatisation idea

Fact
If E is finite then D = J in IG(E).

So, for any regular D-class D, D0 is a Rees matrix semigroup, thus
the regular elements of IG(E) may be ‘coordinatised’ as

(i , g , λ)

i ∈ I : the R-classes of E (from the D-class corresponding to D);
λ ∈ Λ: the L -classes of E (from the D-class corresponding to D);
g ∈ G : the max. subgroup of D, g represented by a group word
over generators fiλ.

Can this representation be performed effectively? Yes.
What about ∼ ? Yup, that too.
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The partial maps σe and τe

Lemma
Let (i , g , λ) ∈ D and e ∈ E such that D ≤ De .

(a) e(i , g , λ) ∈ D =⇒ e(i , g , λ) L (i , g , λ)

(b) (i , g , λ)e ∈ D =⇒ (i , g , λ)e R (i , g , λ)

Define σe : i 7→ i ′ if e(i , g , λ) = (i ′, h, λ) for some g , h ∈ G , λ ∈ Λ.

Analogously, let τe : λ 7→ λ′ if (i , g , λ)e = (i , h, λ′) for some i ∈ I ,
g , h ∈ G .

It follows already from the results of [DGR17] that all of these
partial maps are effectively computable from E .
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The ‘effective’ FitzGerald

Lemma (Des FitzGerald, 1972)

Let S be an idempotent generated semigroup and a ∈ S a regular
element. Then a = e1 . . . en for some idempotents e1, . . . , en ∈ Da.

Now, given a word w = ueiλv representing a regular element of
IG(E) (with a distinguished seed), one can effectively rewrite this
word (using the partial maps from the previous slide) into

w ′ = ei1µ1 . . . eikµk eiλej1λ1 . . . ejlλl ,

so that w = w ′; hence,

w =
(
i1, fi1µ1f

−1
i2µ1

. . . fikµk f
−1
iµk

fiλf
−1
j1λ

fj1λ1 . . . f
−1
jlλl−1

fjlλl , λl

)
.
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IV. Saltarello: Presto
WP for IG is a CSP in FGG
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Idempotent actions: the full story

If e(i , g , λ) D (i , g , λ) (i.e. if σe i is defined) then

e(i , g , λ) = (σe i , fσe i ,λ0f
−1
i ,λ0

g , λ),

where λ0 is any fixed (=image) point of τe .

Similarly, if λτe is defined then

(i , g , λ)e = (i , gf −1i0,λ
fi0,λτe , λτe)

for any fixed point i0 of σe .

Thus we finally get to fiddle with automata (yay!!!) with
group-labelled transitions.
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Contact automata

We want to capture the following transformation:

(. . . , g , λ)(i , h, . . . )

Let D1,D2 be two regular D-classes of IG(E), coordinatised by
I1 × G × Λ1 and I2 × H × Λ2, respectively. We define the
contact automaton A(D1,D2), a two-way NFA with states Λ1 × I2
and alphabet E , where the transitions are defined and labelled by
elements of G × H∂ as follows:

if (λ = µτ
(1)
e and σ

(2)
e i = j) or (λτ

(1)
e = µ and i = σ

(2)
e j).
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The CSP

So, the WP for IG(E) essentially comes down to chasing paths in
various contact automata with suitable group labels.

G1, . . . ,Gm – finitely presented groups
ρ1, . . . , ρm−1 – rational subsets of G1 × G∂

2 , . . . ,Gm−1 × G∂
m

The problem P(G1, . . . ,Gm; ρ1, . . . , ρm−1):

INPUT: ak , bk ∈ Gk (1 ≤ k ≤ m).
OUTPUT: Decide if there exist xt ∈ Gt , 2 ≤ t ≤ m − 1, such that

(a−11 b1, x2) ∈ ρ1,
(a−1r x−1r br , xr+1) ∈ ρr (2 ≤ r ≤ m − 2),

(a−1m−1x
−1
m−1bm−1, bma

−1
m ) ∈ ρm−1.
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The main theorem

Theorem (IgD, Gould, Yang, 2019)

Assume Dk is coordinatised by Ik × Gk × Λk .

Then there exist
rational subsets

ρs(λ, i ;µ, j) ⊆ Gs × G∂
s+1 (1 ≤ s < m, λ, µ ∈ Λs , i , j ∈ Is+1)

that are effectively computable from E such that

(i1, g1, λ1) . . . (im, gm, λm) = (j1, h1, µ1) . . . (jm, hm, µm)

holds in IG(E) if and only if i1 = j1, λm = µm, and the problem

P(G1, . . . ,Gm; ρ1(λ1, i2;µ1, j2), . . . , ρm−1(λm−1, im;µm−1, jm))

returns a positive answer on input gk , hk ∈ Gk , 1 ≤ k ≤ m.
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Special cases

(i) m = 1: We have (i , g , λ) = (j , h, µ) if and only if i = j ,
λ = µ, and g = h.

So, the word problem for the regular part
of IG(E) is indeed equivalent to the word problems of the
maximal subgroups.

(ii) m = 2: P(G1,G2, ρ) is essentially the membership problem for
ρ ⊆ G1 × G∂

2 . The construction in [DGR17] was set up so
that a certain segment of the word problem is equivalent to
P(G ,G , ρH) where

ρH = {(h, h−1) : h ∈ H},

which is just the membership problem for H in G .
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The principal applied result

Theorem (DGY, 2019)

Let E be a finite biordered set with the property that the maximal
subgroups in all non-maximal ∗ D-classes of IG(E) are finite. Then
IG(E) has decidable word problem.
∗ - the identity element is discarded if E comes from a monoid

Remark
The maximal D-classes necessarily yield free maximal subgroups, as there
are no singular squares.

Ingredients:

I finite groups allow for an exhaustive search;

I Benois’ Theorem (aka free groups have decidable RSMP);

I Grunschlag (1999): rational subsets of virtually free groups;

I P.Silva (2002) ⇒ effective version of Grunschlag’s result
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Applications

Corollary

For any n ≥ 1, the free idempotent generated semigroups IG(ETn)
and IG(EPT n) have decidable word problems.

Question
Let Q be a finite field. Is the maximal subgroup of IG(EMn(Q))

contained in its D-class Dr (corresponding to matrices of rank r)
finite whenever r ≤ n − 2 ?

Theorem
If E is finite, then IG(E) is always a Fountain (aka weakly
abundant) semigroup satisfying the congruence condition.
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The end-product

SandGAL, Cremona, 10-13 June 2019 Igor Dolinka30



GRAZIE MILLE! THANK YOU!

Questions and comments to:

dockie@dmi.uns.ac.rs

Further information may be found at:

http://people.dmi.uns.ac.rs/∼dockie
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