The word problem for free idempotent generated semigroups: An Italian symphony in $IG(\mathcal{E})$ major

Igor Dolinka

dockie@dmi.uns.ac.rs

Department of Mathematics and Informatics, University of Novi Sad

Semigroups and Groups, Automata, Logics – SandGAL 2019 Cremona, Italy, 11 June 2019

Joint work with...

Victoria Gould (York)

Dandan Yang (Xi'an)

...but also with motifs from previous collaborations with...

Robert D. Gray (UEA Norwich)

Nik Ruškuc (St Andrews)

...but also with motifs from previous collaborations with...

Robert D. Gray (UEA Norwich) Happy Birthday, my friend!

Nik Ruškuc (St Andrews)

Introduzione

Many natural semigroups are idempotent generated $(S = \langle E(S) \rangle)$:

► The semigroup T_n \ S_n of singular (non-invertible) transformations on a finite set (Howie, 1966);

- ► The semigroup T_n \ S_n of singular (non-invertible) transformations on a finite set (Howie, 1966);
- ► The singular part of M_n(𝔅), the semigroup of all n × n matrices over a field 𝔅 (Erdos (not Paul!), 1967);

- The semigroup $\mathcal{T}_n \setminus \mathcal{S}_n$ of singular (non-invertible) transformations on a finite set (Howie, 1966);
- ► The singular part of M_n(𝔅), the semigroup of all n × n matrices over a field 𝔅 (Erdos (not Paul!), 1967);
- In 2006, Putcha completed the classification of linear algebraic monoids that are idempotent-generated;

- ► The semigroup T_n \ S_n of singular (non-invertible) transformations on a finite set (Howie, 1966);
- ► The singular part of M_n(𝔅), the semigroup of all n × n matrices over a field 𝔅 (Erdos (not Paul!), 1967);
- In 2006, Putcha completed the classification of linear algebraic monoids that are idempotent-generated;
- The singular part of P_n, the partition monoid on a finite set (East, FitzGerald, 2012);

Many natural semigroups are idempotent generated $(S = \langle E(S) \rangle)$:

- ► The semigroup T_n \ S_n of singular (non-invertible) transformations on a finite set (Howie, 1966);
- ► The singular part of M_n(𝔅), the semigroup of all n × n matrices over a field 𝔅 (Erdos (not Paul!), 1967);
- In 2006, Putcha completed the classification of linear algebraic monoids that are idempotent-generated;
- The singular part of P_n, the partition monoid on a finite set (East, FitzGerald, 2012);

Hence:

What can we say about the structure of the free-est idempotent-generated (IG) semigroup with a fixed structure/configuration of idempotents ???

Biordered sets!

Biordered sets!

Basic pair $\{e, f\}$ of idempotents:

 $\{e, f\} \cap \{ef, fe\} \neq \emptyset$

Biordered sets!

Basic pair $\{e, f\}$ of idempotents:

 $\{e, f\} \cap \{ef, fe\} \neq \emptyset$

that is, ef = e or ef = f or fe = e or fe = f.

Biordered sets!

Basic pair $\{e, f\}$ of idempotents:

$$\{e, f\} \cap \{ef, fe\} \neq \emptyset$$

that is, ef = e or ef = f or fe = e or fe = f. (Note: if, for example, $ef \in \{e, f\}$, then $(fe)^2 = fe$.)

Biordered sets!

Basic pair $\{e, f\}$ of idempotents:

 $\{e, f\} \cap \{ef, fe\} \neq \emptyset$

that is, ef = e or ef = f or fe = e or fe = f. (Note: if, for example, $ef \in \{e, f\}$, then $(fe)^2 = fe$.)

Biordered set of a semigroup S = the partial algebra

$$\mathcal{E}_S = (E(S), \ast)$$

obtained by retaining the products of basic pairs (in S).

Nambooripad, Easdown ('80s): Biordered sets of semigroups can be finitely axiomatised (as a class of partial algebras)

Nambooripad, Easdown ('80s): Biordered sets of semigroups can be finitely axiomatised (as a class of partial algebras)

 \longrightarrow abstract biordered sets $\mathcal{E} = (E, *)$

Nambooripad, Easdown ('80s): Biordered sets of semigroups can be finitely axiomatised (as a class of partial algebras)

 \longrightarrow abstract biordered sets $\mathcal{E} = (E, *)$

Remark

A big chunk of the axioms are expressed in terms of the quasi-orders

$$e \leq^{(l)} f \Leftrightarrow e = ef, \qquad e \leq^{(r)} f \Leftrightarrow e = fe.$$

(hence the name, "bi-ordered set").

Nambooripad, Easdown ('80s): Biordered sets of semigroups can be finitely axiomatised (as a class of partial algebras)

 \longrightarrow abstract biordered sets $\mathcal{E} = (E, *)$

Remark

A big chunk of the axioms are expressed in terms of the quasi-orders

$$e \leq^{(I)} f \Leftrightarrow e = ef, \qquad e \leq^{(r)} f \Leftrightarrow e = fe.$$

(hence the name, "bi-ordered set"). From these, we can read off many relevant semigroup-theoretical relationships:

$$\leq = \leq^{(l)} \cap \leq^{(r)}, \quad \mathscr{L} = \leq^{(l)} \cap (\leq^{(l)})^{-1}, \quad \mathscr{R} = \leq^{(r)} \cap (\leq^{(r)})^{-1},$$
$$\mathscr{D} = \mathscr{L} \lor \mathscr{R}.$$

$IG(\mathcal{E})$

Let $\ensuremath{\mathcal{E}}$ be a biordered set.

$\mathsf{IG}(\mathcal{E})$

Let \mathcal{E} be a biordered set. Consider the following category. Objects: Pairs (S, ϕ) where S is a semigroup and $\phi : \mathcal{E} \to \mathcal{E}_S$ is an isomorphism of biordered sets;

Morphisms: $\theta : (S, \phi) \to (T, \psi)$ – semigroup homomorphisms $\theta : S \to T$ such that $\phi \theta = \psi$.

$\mathsf{IG}(\mathcal{E})$

Let \mathcal{E} be a biordered set. Consider the following category. Objects: Pairs (S, ϕ) where S is a semigroup and $\phi : \mathcal{E} \to \mathcal{E}_S$ is an isomorphism of biordered sets:

Morphisms: θ : $(S, \phi) \rightarrow (T, \psi)$ – semigroup homomorphisms θ : $S \rightarrow T$ such that $\phi \theta = \psi$.

It can be shown that this category has an initial object $(IG(\mathcal{E}), \iota_E)$. Here $IG(\mathcal{E})$ is the free idempotent generated semigroup on \mathcal{E} .

$\mathsf{IG}(\mathcal{E})$

Let \mathcal{E} be a biordered set. Consider the following category. Objects: Pairs (S, ϕ) where S is a semigroup and $\phi : \mathcal{E} \to \mathcal{E}_S$ is an isomorphism of biordered sets:

Morphisms: θ : $(S, \phi) \rightarrow (T, \psi)$ – semigroup homomorphisms θ : $S \rightarrow T$ such that $\phi \theta = \psi$.

It can be shown that this category has an initial object $(IG(\mathcal{E}), \iota_E)$. Here $IG(\mathcal{E})$ is the free idempotent generated semigroup on \mathcal{E} .

A more accessible definition:

$$\mathsf{IG}(\mathcal{E}) = \langle \overline{E} : \overline{e} \overline{f} = \overline{e * f} \text{ whenever } \{e, f\} \text{ is a basic pair } \rangle.$$

Let θ : IG(\mathcal{E}) \rightarrow S (where $S = \langle E \rangle$) be the natural surjective homomorphism.

Let $\theta: IG(\mathcal{E}) \to S$ (where $S = \langle E \rangle$) be the natural surjective homomorphism.

• The restriction of θ to E is an isomorphism of biordered sets $\mathcal{E} \to \mathcal{E}_S$.

Let θ : IG(\mathcal{E}) \rightarrow S (where $S = \langle E \rangle$) be the natural surjective homomorphism.

- The restriction of θ to E is an isomorphism of biordered sets $\mathcal{E} \to \mathcal{E}_S$.
- Hence, the 'eggbox pictures' of D_e (in IG(E)) and D_e (in S) have the 'same shape' (same dimensions, same distribution of idempotents,...).

Let $\theta: IG(\mathcal{E}) \to S$ (where $S = \langle E \rangle$) be the natural surjective homomorphism.

- The restriction of θ to E is an isomorphism of biordered sets $\mathcal{E} \to \mathcal{E}_S$.
- ► Hence, the 'eggbox pictures' of D_e (in IG(E)) and D_e (in S) have the 'same shape' (same dimensions, same distribution of idempotents,...).
- The maximal subgroup H_e (in S) is the image (under θ) of the maximal subgroup H_e (in IG(ε)).

Let θ : IG(\mathcal{E}) \rightarrow S (where $S = \langle E \rangle$) be the natural surjective homomorphism.

- The restriction of θ to E is an isomorphism of biordered sets $\mathcal{E} \to \mathcal{E}_S$.
- ► Hence, the 'eggbox pictures' of D_e (in IG(E)) and D_e (in S) have the 'same shape' (same dimensions, same distribution of idempotents,...).
- The maximal subgroup H_e (in S) is the image (under θ) of the maximal subgroup H_e (in IG(ε)).
- ▶ $IG(\mathcal{E})$ may contain other, non-regular \mathcal{D} -classes.

Let $\theta: IG(\mathcal{E}) \to S$ (where $S = \langle E \rangle$) be the natural surjective homomorphism.

- The restriction of θ to E is an isomorphism of biordered sets $\mathcal{E} \to \mathcal{E}_S$.
- ► Hence, the 'eggbox pictures' of D_e (in IG(E)) and D_e (in S) have the 'same shape' (same dimensions, same distribution of idempotents,...).
- The maximal subgroup H_e (in S) is the image (under θ) of the maximal subgroup H_e (in IG(ε)).
- ▶ $IG(\mathcal{E})$ may contain other, non-regular \mathcal{D} -classes.

So, understanding $IG(\mathcal{E})$ is essential in understanding the structure of arbitrary IG semigroups.

I. Allegro vivace A joyous quest for maximal subgroups

Question

Question

Which groups arise as maximal subgroups of $IG(\mathcal{E})$?

Work of Pastijn and Nambooripad ('70s and '80s) and McElwee (2002) led to the belief/conjecture that these maximal subgroups must always be free groups.

Question

- Work of Pastijn and Nambooripad ('70s and '80s) and McElwee (2002) led to the belief/conjecture that these maximal subgroups must always be free groups.
- ► This conjecture was proved false by Brittenham, Margolis, and Meakin in 2009 who obtained the groups Z ⊕ Z (from a particular 73-element semigroup arising from a combinatorial design), and F^{*} for an arbitrary field F.

Question

- Work of Pastijn and Nambooripad ('70s and '80s) and McElwee (2002) led to the belief/conjecture that these maximal subgroups must always be free groups.
- ► This conjecture was proved false by Brittenham, Margolis, and Meakin in 2009 who obtained the groups Z ⊕ Z (from a particular 73-element semigroup arising from a combinatorial design), and F^{*} for an arbitrary field F.
- Finally, Gray and Ruškuc (2012) proved that every group arises as a maximal subgroup of some free idempotent generated semigroup (!!!).

Question

- Work of Pastijn and Nambooripad ('70s and '80s) and McElwee (2002) led to the belief/conjecture that these maximal subgroups must always be free groups.
- ► This conjecture was proved false by Brittenham, Margolis, and Meakin in 2009 who obtained the groups Z ⊕ Z (from a particular 73-element semigroup arising from a combinatorial design), and F^{*} for an arbitrary field F.
- Finally, Gray and Ruškuc (2012) proved that every group arises as a maximal subgroup of some free idempotent generated semigroup (!!!). If the group in question is finitely generated, the biordered set may be assumed to arise from a finite semigroup.
Obtained by Gray & Ruškuc from the Reidemeister-Schreier rewriting process for subgroups of semigroups.

• The generators $f_{i\lambda}$ for $H_{\overline{e}}$ are in a bijective correspondence with idempotents $e_{i\lambda}$ that are \mathscr{D} -related to e.

- ► The generators $f_{i\lambda}$ for $H_{\overline{e}}$ are in a bijective correspondence with idempotents $e_{i\lambda}$ that are \mathscr{D} -related to e.
- Three types of relations:

- ► The generators $f_{i\lambda}$ for $H_{\overline{e}}$ are in a bijective correspondence with idempotents $e_{i\lambda}$ that are \mathscr{D} -related to e.
- Three types of relations:

Some generators are
$$= 1$$
 ($f_{i,\pi(i)} = 1$);

- ► The generators $f_{i\lambda}$ for $H_{\overline{e}}$ are in a bijective correspondence with idempotents $e_{i\lambda}$ that are \mathscr{D} -related to e.
- Three types of relations:
 - Some generators are = 1 ($f_{i,\pi(i)} = 1$);
 - Some generators are equal $(f_{i\lambda} = f_{i\mu})$;

- ► The generators $f_{i\lambda}$ for $H_{\overline{e}}$ are in a bijective correspondence with idempotents $e_{i\lambda}$ that are \mathscr{D} -related to e.
- Three types of relations:

Some generators are
$$= 1$$
 ($f_{i,\pi(i)} = 1$);

- Some generators are equal $(f_{i\lambda} = f_{i\mu})$;
- $f_{i\lambda}^{-1}f_{i\mu} = f_{j\lambda}^{-1}f_{j\mu}$ whenever $(i, j; \lambda, \mu)$ is a singular square.

Singular squares

Alternatively, if the undelying biordered set \mathcal{E} comes from an idempotent generated regular semigroup, Brittenham, Margolis & Meakin (2009) showed that the maximal subgroups of IG(\mathcal{E}) are precisely the fundamental groups of connected components (= \mathscr{D} -classes) of the Graham-Houghton complex of \mathcal{E} :

Alternatively, if the undelying biordered set \mathcal{E} comes from an idempotent generated regular semigroup, Brittenham, Margolis & Meakin (2009) showed that the maximal subgroups of IG(\mathcal{E}) are precisely the fundamental groups of connected components (= \mathscr{D} -classes) of the Graham-Houghton complex of \mathcal{E} :

▶ Vertices: \mathscr{R} -classes R_i and \mathscr{L} -classes L_λ

Alternatively, if the undelying biordered set \mathcal{E} comes from an idempotent generated regular semigroup, Brittenham, Margolis & Meakin (2009) showed that the maximal subgroups of IG(\mathcal{E}) are precisely the fundamental groups of connected components (= \mathscr{D} -classes) of the Graham-Houghton complex of \mathcal{E} :

- ▶ Vertices: \mathscr{R} -classes R_i and \mathscr{L} -classes L_λ
- Edges: correspond to idempotents $e_{i\lambda} \in R_i \cap L_\lambda$

Alternatively, if the undelying biordered set \mathcal{E} comes from an idempotent generated regular semigroup, Brittenham, Margolis & Meakin (2009) showed that the maximal subgroups of IG(\mathcal{E}) are precisely the fundamental groups of connected components (= \mathscr{D} -classes) of the Graham-Houghton complex of \mathcal{E} :

- ▶ Vertices: \mathscr{R} -classes R_i and \mathscr{L} -classes L_λ
- Edges: correspond to idempotents $e_{i\lambda} \in R_i \cap L_\lambda$
- 2-cells: correspond to singular squares

Alternatively, if the undelying biordered set \mathcal{E} comes from an idempotent generated regular semigroup, Brittenham, Margolis & Meakin (2009) showed that the maximal subgroups of IG(\mathcal{E}) are precisely the fundamental groups of connected components (= \mathscr{D} -classes) of the Graham-Houghton complex of \mathcal{E} :

- ▶ Vertices: \mathscr{R} -classes R_i and \mathscr{L} -classes L_λ
- ▶ Edges: correspond to idempotents $e_{i\lambda} \in R_i \cap L_\lambda$
- 2-cells: correspond to singular squares

This provides an alternative presentation for these groups; a clever choice of a spanning tree may speed up computations.

Refinements of the Gray-Ruškuc universality result

► IgD & Ruškuc, 2013: Every (finitely generated) group arises as a maximal subgroup of IG(*E*_B), where B is a (finite) band.

Refinements of the Gray-Ruškuc universality result

- IgD & Ruškuc, 2013: Every (finitely generated) group arises as a maximal subgroup of IG(𝔅_B), where B is a (finite) band.
- Gould & Yang, 2014: G arises as a maximal subgroup of IG(E_S), where S is the endomorphism monoid of a free G-act.

Goal

Goal

Determine the maximal subgroups of $IG(\mathcal{E}_S)$ for some natural examples of S. In particular, are they the same as the corresponding subgroups of S?

► Full transformation monoids: Gray & Ruškuc, 2012 (symmetric groups, provided rank ≤ n - 2);

Goal

- ► Full transformation monoids: Gray & Ruškuc, 2012 (symmetric groups, provided rank ≤ n - 2);
- Partial transformation monoids: lgD, 2013 (symmetric groups again);

Goal

- ► Full transformation monoids: Gray & Ruškuc, 2012 (symmetric groups, provided rank ≤ n - 2);
- Partial transformation monoids: IgD, 2013 (symmetric groups again);
- Full matrix monoid over a skew field: IgD & Gray, 2014 (general linear groups, if rank < n/3, otherwise...);

Goal

- ► Full transformation monoids: Gray & Ruškuc, 2012 (symmetric groups, provided rank ≤ n - 2);
- Partial transformation monoids: IgD, 2013 (symmetric groups again);
- Full matrix monoid over a skew field: IgD & Gray, 2014 (general linear groups, if rank < n/3, otherwise...);</p>
- Endomorphism monoid of a free G-act: IgD, Gould & Yang, 2015 (wreath products of G by symmetric groups).

II. Andante con moto

A taste of the word problem: the good and the 'bad'

From now on, \mathcal{E} is always finite.

From now on, $\mathcal E$ is always finite.

Theorem (IgD, Gray, Ruškuc, 2017)

There exists an algorithm which, given $w \in E^+$, decides whether \overline{w} is a regular element of IG(\mathcal{E}), and if so, returns $f, g \in E$ such that $\overline{f} \mathscr{R} \overline{w} \mathscr{L} \overline{g}$.

From now on, $\mathcal E$ is always finite.

Theorem (IgD, Gray, Ruškuc, 2017)

There exists an algorithm which, given $w \in E^+$, decides whether \overline{w} is a regular element of IG(\mathcal{E}), and if so, returns $f, g \in E$ such that $\overline{f} \mathscr{R} \overline{w} \mathscr{L} \overline{g}$.

Namely, \overline{w} is regular if and only if there is a factorisation

w = uev

such that $\overline{ue} \mathcal{L} \overline{e} \mathcal{R} \overline{ev}$.

From now on, $\mathcal E$ is always finite.

Theorem (IgD, Gray, Ruškuc, 2017)

There exists an algorithm which, given $w \in E^+$, decides whether \overline{w} is a regular element of IG(\mathcal{E}), and if so, returns $f, g \in E$ such that $\overline{f} \mathscr{R} \overline{w} \mathscr{L} \overline{g}$.

Namely, \overline{w} is regular if and only if there is a factorisation

w = uev

such that $\overline{ue} \mathscr{L} \overline{e} \mathscr{R} \overline{ev}$. In such a case, $\overline{e} \mathscr{D} \overline{w}$, and e is called the seed of w.

From now on, $\mathcal E$ is always finite.

Theorem (IgD, Gray, Ruškuc, 2017)

There exists an algorithm which, given $w \in E^+$, decides whether \overline{w} is a regular element of IG(\mathcal{E}), and if so, returns $f, g \in E$ such that $\overline{f} \mathscr{R} \overline{w} \mathscr{L} \overline{g}$.

Namely, \overline{w} is regular if and only if there is a factorisation

w = uev

such that $\overline{ue} \mathcal{L} \overline{e} \mathcal{R} \overline{ev}$. In such a case, $\overline{e} \mathcal{D} \overline{w}$, and e is called the seed of w. (The decidability of this condition ultimately harks back to the Howie-Lallement Lemma.)

Theorem (DGR, 2017)

 (i) There exists an algorithm which, given a finite biorder *E*, computes the presentations of all maximal subgroups of IG(*E*).

Theorem (DGR, 2017)

- (i) There exists an algorithm which, given a finite biorder *E*, computes the presentations of all maximal subgroups of IG(*E*).
- (ii) If all these presentations have soluble word problems, then there exists an algorithm which, for $u, v \in E^+$ representing regular elements of IG(\mathcal{E}), decides whether $\overline{u} = \overline{v}$.

Theorem (DGR, 2017)

- (i) There exists an algorithm which, given a finite biorder *E*, computes the presentations of all maximal subgroups of IG(*E*).
- (ii) If all these presentations have soluble word problems, then there exists an algorithm which, for $u, v \in E^+$ representing regular elements of IG(\mathcal{E}), decides whether $\overline{u} = \overline{v}$.

Method I (DGR, 2017): Decide if $\overline{u} \mathcal{H} \overline{v}$, and then Reidemeister-Schreier.

Theorem (DGR, 2017)

- (i) There exists an algorithm which, given a finite biorder *E*, computes the presentations of all maximal subgroups of IG(*E*).
- (ii) If all these presentations have soluble word problems, then there exists an algorithm which, for $u, v \in E^+$ representing regular elements of IG(\mathcal{E}), decides whether $\overline{u} = \overline{v}$.

Method I (DGR, 2017): Decide if $\overline{u} \mathcal{H} \overline{v}$, and then Reidemeister-Schreier.

Method II (IgD, Gould, Yang, 2019): Rees matrix 'coordinatisation' (via an effective version of an old result of FitzGerald) – wait for Mov.3

Theorem (DGR, 2017)

For any finitely presented group G and any finitely generated subgroup H there exists a band $B_{G,H}$ (with $\mathcal{B}_{G,H}$ denoting the corresponding biorder) with the following two properties:

Theorem (DGR, 2017)

For any finitely presented group G and any finitely generated subgroup H there exists a band $B_{G,H}$ (with $\mathcal{B}_{G,H}$ denoting the corresponding biorder) with the following two properties:

 (i) Every maximal subgroup of IG(B_{G,H}) is either trivial or isomorphic to G;

Theorem (DGR, 2017)

For any finitely presented group G and any finitely generated subgroup H there exists a band $B_{G,H}$ (with $\mathcal{B}_{G,H}$ denoting the corresponding biorder) with the following two properties:

- (i) Every maximal subgroup of IG(B_{G,H}) is either trivial or isomorphic to G;
- (ii) The solubility of the word problem of $IG(\mathcal{B}_{G,H})$ implies the decidability of the membership problem of H in G.

Theorem (DGR, 2017)

For any finitely presented group G and any finitely generated subgroup H there exists a band $B_{G,H}$ (with $\mathcal{B}_{G,H}$ denoting the corresponding biorder) with the following two properties:

- (i) Every maximal subgroup of IG(B_{G,H}) is either trivial or isomorphic to G;
- (ii) The solubility of the word problem of $IG(\mathcal{B}_{G,H})$ implies the decidability of the membership problem of H in G.

Therefore, there exists a finite band B such that $IG(\mathcal{E}_B)$ has undecidable word problem even though the word problems of all of its maximal subgroups are decidable.

Theorem (DGR, 2017)

For any finitely presented group G and any finitely generated subgroup H there exists a band $B_{G,H}$ (with $\mathcal{B}_{G,H}$ denoting the corresponding biorder) with the following two properties:

- (i) Every maximal subgroup of IG(B_{G,H}) is either trivial or isomorphic to G;
- (ii) The solubility of the word problem of $IG(\mathcal{B}_{G,H})$ implies the decidability of the membership problem of H in G.

Therefore, there exists a finite band B such that $IG(\mathcal{E}_B)$ has undecidable word problem even though the word problems of all of its maximal subgroups are decidable. (Because $G = F_2 \times F_2$ and the Mihailova construction.) However... the 'bad' news (synopsis)

• The construction of $B_{G,H}$ is an adaptation of the IgD+Ruškuc construction from 2013.

However... the 'bad' news (synopsis)

- The construction of $B_{G,H}$ is an adaptation of the IgD+Ruškuc construction from 2013.
- It allows for encoding the membership problem of *H* in *G* into equalities of products of certain pairs of regular elements a(g), b(g), g ∈ G.
However... the 'bad' news (synopsis)

- The construction of $B_{G,H}$ is an adaptation of the IgD+Ruškuc construction from 2013.
- It allows for encoding the membership problem of *H* in *G* into equalities of products of certain pairs of regular elements a(g), b(g), g ∈ G. In fact, we get

$$a(1)b(1) = a(g^{-1})b(g)$$

if and only if $g \in H$.

III. Con moto moderato Working the way: factorisations, fingerprints, coordinates

r-factorisation = a factorisation $w = p_1 \dots p_m$ such that all of $\overline{p_1}, \dots, \overline{p_m}$ are regular elements of IG(\mathcal{E})

r-factorisation = a factorisation $w = p_1 \dots p_m$ such that all of $\overline{p_1}, \dots, \overline{p_m}$ are regular elements of IG(\mathcal{E})

Factorisations (and so r-factorisations) of a word w can be naturally ordered: $(p_1, \ldots, p_m) \preceq (q_1, \ldots, q_s)$ means $q_1 \ldots q_s$ is finer than $p_1 \ldots p_m$.

r-factorisation = a factorisation $w = p_1 \dots p_m$ such that all of $\overline{p_1}, \dots, \overline{p_m}$ are regular elements of IG(\mathcal{E})

Factorisations (and so r-factorisations) of a word w can be naturally ordered: $(p_1, \ldots, p_m) \preceq (q_1, \ldots, q_s)$ means $q_1 \ldots q_s$ is finer than $p_1 \ldots p_m$.

The unique maximal r-factorisation is the factorisation into (idempotent) letters.

r-factorisation = a factorisation $w = p_1 \dots p_m$ such that all of $\overline{p_1}, \dots, \overline{p_m}$ are regular elements of IG(\mathcal{E})

Factorisations (and so r-factorisations) of a word w can be naturally ordered: $(p_1, \ldots, p_m) \preceq (q_1, \ldots, q_s)$ means $q_1 \ldots q_s$ is finer than $p_1 \ldots p_m$.

The unique maximal r-factorisation is the factorisation into (idempotent) letters.

We are, however, interested in the minimal r-factorisations = coarsest factorisations into regular-element-inducing factors.

r-factorisation = a factorisation $w = p_1 \dots p_m$ such that all of $\overline{p_1}, \dots, \overline{p_m}$ are regular elements of IG(\mathcal{E})

Factorisations (and so r-factorisations) of a word w can be naturally ordered: $(p_1, \ldots, p_m) \preceq (q_1, \ldots, q_s)$ means $q_1 \ldots q_s$ is finer than $p_1 \ldots p_m$.

The unique maximal r-factorisation is the factorisation into (idempotent) letters.

We are, however, interested in the minimal r-factorisations = coarsest factorisations into regular-element-inducing factors.

As it turns out, all minimal factorisations of a word are pretty 'similar' w.r.t. $IG(\mathcal{E})$.

\approx and \sim

For two sequences of words over E^+ we define

$$(p_1,\ldots,p_m)\approx (q_1,\ldots,q_s)$$

if and only if m = s and one of the three following conditions hold:

\approx and \sim

For two sequences of words over E^+ we define

$$(p_1,\ldots,p_m)\approx (q_1,\ldots,q_s)$$

if and only if m = s and one of the three following conditions hold: (i) $\overline{p_i} = \overline{q_i}$ for some $1 \le i \le m$ and $p_j = q_j$ for all $j \ne i$;

pprox and \sim

For two sequences of words over E^+ we define

$$(p_1,\ldots,p_m)\approx (q_1,\ldots,q_s)$$

if and only if m = s and one of the three following conditions hold: (i) $\overline{p_i} = \overline{q_i}$ for some $1 \le i \le m$ and $p_i = q_i$ for all $i \ne i$:

(ii)
$$\overline{p_i} = \overline{q_i e}$$
 and $\overline{q_{i+1}} = \overline{ep_{i+1}}$ for some $1 \le i < m$ and $e \in E$,
and $p_j = q_j$ for all $j \notin \{i, i+1\}$;

\approx and \sim

For two sequences of words over E^+ we define

$$(p_1,\ldots,p_m)\approx (q_1,\ldots,q_s)$$

if and only if m = s and one of the three following conditions hold:

pprox and \sim

For two sequences of words over E^+ we define

$$(p_1,\ldots,p_m)\approx (q_1,\ldots,q_s)$$

if and only if m = s and one of the three following conditions hold:

 \sim is the transitive closure of $\approx.$

Theorem

 $u, v \in E^+$ such that $\overline{u} = \overline{v}$. Also, let $u = p_1 \dots p_m$ and $v = q_1 \dots q_s$ be minimal r-factorisations. Then m = s and $\overline{p_i} \mathscr{D} \overline{q_i} \ (1 \le i \le m)$.

Theorem

 $u, v \in E^+$ such that $\overline{u} = \overline{v}$. Also, let $u = p_1 \dots p_m$ and $v = q_1 \dots q_s$ be minimal r-factorisations. Then m = s and $\overline{p_i} \mathscr{D} \ \overline{q_i} \ (1 \le i \le m)$. (Furthermore, $\overline{p_1} \mathscr{R} \ \overline{q_1}$ and $\overline{p_m} \mathscr{L} \ \overline{q_m}$.)

Theorem

 $u, v \in E^+$ such that $\overline{u} = \overline{v}$. Also, let $u = p_1 \dots p_m$ and $v = q_1 \dots q_s$ be minimal r-factorisations. Then m = s and $\overline{p_i} \mathscr{D} \overline{q_i} \ (1 \le i \le m)$. (Furthermore, $\overline{p_1} \mathscr{R} \overline{q_1}$ and $\overline{p_m} \mathscr{L} \overline{q_m}$.)

So, given $w \in E^+$, the sequence of \mathscr{D} -classes

$$(D_{\overline{p_1}},\ldots,D_{\overline{p_m}})$$

is an invariant of w (where $w = p_1 \dots p_m$ is a minimal r-factorisation).

Theorem

 $u, v \in E^+$ such that $\overline{u} = \overline{v}$. Also, let $u = p_1 \dots p_m$ and $v = q_1 \dots q_s$ be minimal r-factorisations. Then m = s and $\overline{p_i} \mathscr{D} \overline{q_i} \ (1 \le i \le m)$. (Furthermore, $\overline{p_1} \mathscr{R} \overline{q_1}$ and $\overline{p_m} \mathscr{L} \overline{q_m}$.)

So, given $w \in E^+$, the sequence of \mathscr{D} -classes

$$(D_{\overline{p_1}},\ldots,D_{\overline{p_m}})$$

is an invariant of w (where $w = p_1 \dots p_m$ is a minimal r-factorisation). This is the \mathcal{D} -fingerprint of w.

Theorem

 $u, v \in E^+$ such that $\overline{u} = \overline{v}$. Also, let $u = p_1 \dots p_m$ and $v = q_1 \dots q_s$ be minimal r-factorisations. Then m = s and $\overline{p_i} \mathscr{D} \overline{q_i} \ (1 \le i \le m)$. (Furthermore, $\overline{p_1} \mathscr{R} \overline{q_1}$ and $\overline{p_m} \mathscr{L} \overline{q_m}$.)

So, given $w \in E^+$, the sequence of \mathscr{D} -classes

$$(D_{\overline{p_1}},\ldots,D_{\overline{p_m}})$$

is an invariant of w (where $w = p_1 \dots p_m$ is a minimal r-factorisation). This is the \mathcal{D} -fingerprint of w. Two words must share the same \mathcal{D} -fingerprint to stand any chance to represent the same element of IG(\mathcal{E}).

The word problem via \sim

Theorem $u, v \in E^+$. TFAE: (1) $\overline{u} = \overline{v}$;

The word problem via \sim

Theorem

- $u, v \in E^+$. TFAE:
- (1) $\overline{u} = \overline{v};$
- (2) There exists an integer $m \ge 1$ such that all minimal *r*-factorisations of *u* and *v*, respectively, have precisely *m* factors, and whenever $u = p_1 \dots p_m$ and $v = q_1 \dots q_m$ are such factorisations we have

$$(p_1,\ldots,p_m)\sim (q_1,\ldots,q_m).$$

Fact If \mathcal{E} is finite then $\mathscr{D} = \mathscr{J}$ in IG(\mathcal{E}).

Fact If \mathcal{E} is finite then $\mathscr{D} = \mathscr{J}$ in $IG(\mathcal{E})$.

So, for any regular \mathscr{D} -class D, D^0 is a Rees matrix semigroup, thus the regular elements of $IG(\mathcal{E})$ may be 'coordinatised' as

 (i, g, λ)

Fact If \mathcal{E} is finite then $\mathscr{D} = \mathscr{J}$ in $IG(\mathcal{E})$.

So, for any regular \mathscr{D} -class D, D^0 is a Rees matrix semigroup, thus the regular elements of $IG(\mathcal{E})$ may be 'coordinatised' as

 (i, g, λ)

 $i \in I$: the \mathscr{R} -classes of \mathcal{E} (from the \mathscr{D} -class corresponding to D);

Fact If \mathcal{E} is finite then $\mathscr{D} = \mathscr{J}$ in $IG(\mathcal{E})$.

So, for any regular \mathscr{D} -class D, D^0 is a Rees matrix semigroup, thus the regular elements of $IG(\mathcal{E})$ may be 'coordinatised' as

 (i, g, λ)

 $i \in I$: the \mathscr{R} -classes of \mathscr{E} (from the \mathscr{D} -class corresponding to D); $\lambda \in \Lambda$: the \mathscr{L} -classes of \mathscr{E} (from the \mathscr{D} -class corresponding to D);

Fact

If \mathcal{E} is finite then $\mathscr{D} = \mathscr{J}$ in $IG(\mathcal{E})$.

So, for any regular \mathscr{D} -class D, D^0 is a Rees matrix semigroup, thus the regular elements of $IG(\mathcal{E})$ may be 'coordinatised' as

 (i, g, λ)

 $i \in I$: the \mathscr{R} -classes of \mathscr{E} (from the \mathscr{D} -class corresponding to D); $\lambda \in \Lambda$: the \mathscr{L} -classes of \mathscr{E} (from the \mathscr{D} -class corresponding to D); $g \in G$: the max. subgroup of D, g represented by a group word over generators $f_{i\lambda}$.

Fact

If \mathcal{E} is finite then $\mathscr{D} = \mathscr{J}$ in $IG(\mathcal{E})$.

So, for any regular \mathscr{D} -class D, D^0 is a Rees matrix semigroup, thus the regular elements of $IG(\mathcal{E})$ may be 'coordinatised' as

 (i, g, λ)

 $i \in I$: the \mathscr{R} -classes of \mathscr{E} (from the \mathscr{D} -class corresponding to D); $\lambda \in \Lambda$: the \mathscr{L} -classes of \mathscr{E} (from the \mathscr{D} -class corresponding to D); $g \in G$: the max. subgroup of D, g represented by a group word over generators $f_{i\lambda}$.

Can this representation be performed effectively?

SandGAL, Cremona, 10-13 June 2019

Fact

If \mathcal{E} is finite then $\mathscr{D} = \mathscr{J}$ in $IG(\mathcal{E})$.

So, for any regular \mathscr{D} -class D, D^0 is a Rees matrix semigroup, thus the regular elements of $IG(\mathcal{E})$ may be 'coordinatised' as

 (i, g, λ)

 $i \in I$: the \mathscr{R} -classes of \mathscr{E} (from the \mathscr{D} -class corresponding to D); $\lambda \in \Lambda$: the \mathscr{L} -classes of \mathscr{E} (from the \mathscr{D} -class corresponding to D); $g \in G$: the max. subgroup of D, g represented by a group word over generators $f_{i\lambda}$.

Can this representation be performed effectively? Yes.

SandGAL, Cremona, 10-13 June 2019

Fact

If \mathcal{E} is finite then $\mathscr{D} = \mathscr{J}$ in $IG(\mathcal{E})$.

So, for any regular \mathscr{D} -class D, D^0 is a Rees matrix semigroup, thus the regular elements of $IG(\mathcal{E})$ may be 'coordinatised' as

 (i, g, λ)

 $i \in I$: the \mathscr{R} -classes of \mathscr{E} (from the \mathscr{D} -class corresponding to D); $\lambda \in \Lambda$: the \mathscr{L} -classes of \mathscr{E} (from the \mathscr{D} -class corresponding to D); $g \in G$: the max. subgroup of D, g represented by a group word over generators $f_{i\lambda}$.

Can this representation be performed effectively? Yes. What about \sim ?

Fact

If \mathcal{E} is finite then $\mathscr{D} = \mathscr{J}$ in $IG(\mathcal{E})$.

So, for any regular \mathscr{D} -class D, D^0 is a Rees matrix semigroup, thus the regular elements of $IG(\mathcal{E})$ may be 'coordinatised' as

 (i, g, λ)

 $i \in I$: the \mathscr{R} -classes of \mathscr{E} (from the \mathscr{D} -class corresponding to D); $\lambda \in \Lambda$: the \mathscr{L} -classes of \mathscr{E} (from the \mathscr{D} -class corresponding to D); $g \in G$: the max. subgroup of D, g represented by a group word over generators $f_{i\lambda}$.

Can this representation be performed effectively? Yes. What about \sim ? Yup, that too.

Lemma Let $(i, g, \lambda) \in D$ and $e \in E$ such that $D \leq D_{\overline{e}}$.

Lemma Let $(i, g, \lambda) \in D$ and $e \in E$ such that $D \leq D_{\overline{e}}$. (a) $\overline{e}(i, g, \lambda) \in D \Longrightarrow \overline{e}(i, g, \lambda) \mathscr{L}(i, g, \lambda)$

Lemma

Let $(i, g, \lambda) \in D$ and $e \in E$ such that $D \leq D_{\overline{e}}$. (a) $\overline{e}(i, g, \lambda) \in D \Longrightarrow \overline{e}(i, g, \lambda) \mathscr{L}(i, g, \lambda)$ (b) $(i, g, \lambda)\overline{e} \in D \Longrightarrow (i, g, \lambda)\overline{e} \mathscr{R}(i, g, \lambda)$

Lemma Let $(i, g, \lambda) \in D$ and $e \in E$ such that $D \leq D_{\overline{e}}$. (a) $\overline{e}(i, g, \lambda) \in D \Longrightarrow \overline{e}(i, g, \lambda) \mathscr{L}(i, g, \lambda)$ (b) $(i, g, \lambda)\overline{e} \in D \Longrightarrow (i, g, \lambda)\overline{e} \mathscr{R}(i, g, \lambda)$

Define $\sigma_e : i \mapsto i'$ if $\overline{e}(i, g, \lambda) = (i', h, \lambda)$ for some $g, h \in G, \lambda \in \Lambda$.

Lemma

Let $(i, g, \lambda) \in D$ and $e \in E$ such that $D \leq D_{\overline{e}}$. (a) $\overline{e}(i, g, \lambda) \in D \Longrightarrow \overline{e}(i, g, \lambda) \mathscr{L}(i, g, \lambda)$ (b) $(i, g, \lambda)\overline{e} \in D \Longrightarrow (i, g, \lambda)\overline{e} \mathscr{R}(i, g, \lambda)$

Define $\sigma_e : i \mapsto i'$ if $\overline{e}(i, g, \lambda) = (i', h, \lambda)$ for some $g, h \in G, \lambda \in \Lambda$. Analogously, let $\tau_e : \lambda \mapsto \lambda'$ if $(i, g, \lambda)\overline{e} = (i, h, \lambda')$ for some $i \in I$, $g, h \in G$.

Lemma

Let $(i, g, \lambda) \in D$ and $e \in E$ such that $D \leq D_{\overline{e}}$. (a) $\overline{e}(i, g, \lambda) \in D \Longrightarrow \overline{e}(i, g, \lambda) \mathscr{L}(i, g, \lambda)$ (b) $(i, g, \lambda)\overline{e} \in D \Longrightarrow (i, g, \lambda)\overline{e} \mathscr{R}(i, g, \lambda)$

Define $\sigma_e : i \mapsto i'$ if $\overline{e}(i, g, \lambda) = (i', h, \lambda)$ for some $g, h \in G, \lambda \in \Lambda$. Analogously, let $\tau_e : \lambda \mapsto \lambda'$ if $(i, g, \lambda)\overline{e} = (i, h, \lambda')$ for some $i \in I$, $g, h \in G$.

It follows already from the results of [DGR17] that all of these partial maps are effectively computable from \mathcal{E} .

SandGAL, Cremona, 10-13 June 2019

The 'effective' FitzGerald

Lemma (Des FitzGerald, 1972)

Let S be an idempotent generated semigroup and $a \in S$ a regular element. Then $a = e_1 \dots e_n$ for some idempotents $e_1, \dots, e_n \in D_a$.

The 'effective' FitzGerald

Lemma (Des FitzGerald, 1972)

Let S be an idempotent generated semigroup and $a \in S$ a regular element. Then $a = e_1 \dots e_n$ for some idempotents $e_1, \dots, e_n \in D_a$.

Now, given a word $w = ue_{i\lambda}v$ representing a regular element of $IG(\mathcal{E})$ (with a distinguished seed),
The 'effective' FitzGerald

Lemma (Des FitzGerald, 1972)

Let S be an idempotent generated semigroup and $a \in S$ a regular element. Then $a = e_1 \dots e_n$ for some idempotents $e_1, \dots, e_n \in D_a$.

Now, given a word $w = ue_{i\lambda}v$ representing a regular element of $IG(\mathcal{E})$ (with a distinguished seed), one can effectively rewrite this word (using the partial maps from the previous slide) into

$$w'=e_{i_1\mu_1}\ldots e_{i_k\mu_k}e_{i\lambda}e_{j_1\lambda_1}\ldots e_{j_l\lambda_l},$$

so that $\overline{w} = \overline{w'}$;

The 'effective' FitzGerald

Lemma (Des FitzGerald, 1972)

Let S be an idempotent generated semigroup and $a \in S$ a regular element. Then $a = e_1 \dots e_n$ for some idempotents $e_1, \dots, e_n \in D_a$.

Now, given a word $w = ue_{i\lambda}v$ representing a regular element of $IG(\mathcal{E})$ (with a distinguished seed), one can effectively rewrite this word (using the partial maps from the previous slide) into

$$w'=e_{i_1\mu_1}\ldots e_{i_k\mu_k}e_{i\lambda}e_{j_1\lambda_1}\ldots e_{j_l\lambda_l},$$

so that $\overline{w} = \overline{w'}$; hence,

$$\overline{w} = \left(i_1, f_{i_1\mu_1}f_{i_2\mu_1}^{-1}\dots f_{i_k\mu_k}f_{i_\mu k}^{-1}f_{i_\lambda}f_{j_1\lambda}^{-1}f_{j_1\lambda_1}\dots f_{j_l\lambda_{l-1}}^{-1}f_{j_l\lambda_l}, \lambda_l\right).$$

SandGAL, Cremona, 10-13 June 2019

IV. Saltarello: Presto WP for IG is a CSP in FGG

If $\overline{e}(i, g, \lambda) \mathcal{D}(i, g, \lambda)$ (i.e. if $\sigma_e i$ is defined) then $\overline{e}(i, g, \lambda) = (\sigma_e i, f_{\sigma_e i, \lambda_0} f_{i, \lambda_0}^{-1} g, \lambda),$

where λ_0 is any fixed (=image) point of τ_e .

If $\overline{e}(i, g, \lambda) \mathcal{D}(i, g, \lambda)$ (i.e. if $\sigma_e i$ is defined) then $\overline{e}(i, g, \lambda) = (\sigma_e i, f_{\sigma_e i, \lambda_0} f_{i, \lambda_0}^{-1} g, \lambda),$

where λ_0 is any fixed (=image) point of τ_e .

Similarly, if $\lambda \tau_e$ is defined then

$$(i,g,\lambda)\overline{e} = (i,gf_{i_0,\lambda}^{-1}f_{i_0,\lambda\tau_e},\lambda\tau_e)$$

for any fixed point i_0 of σ_e .

If $\overline{e}(i, g, \lambda) \mathcal{D}(i, g, \lambda)$ (i.e. if $\sigma_e i$ is defined) then $\overline{e}(i, g, \lambda) = (\sigma_e i, f_{\sigma_e i, \lambda_0} f_{i, \lambda_0}^{-1} g, \lambda),$

where λ_0 is any fixed (=image) point of τ_e .

Similarly, if $\lambda \tau_e$ is defined then

$$(i,g,\lambda)\overline{e} = (i,gf_{i_0,\lambda}^{-1}f_{i_0,\lambda\tau_e},\lambda\tau_e)$$

for any fixed point i_0 of σ_e .

Thus we finally get to fiddle with automata (yay!!!)

If $\overline{e}(i, g, \lambda) \mathscr{D}(i, g, \lambda)$ (i.e. if $\sigma_e i$ is defined) then $\overline{e}(i, g, \lambda) = (\sigma_e i, f_{\sigma_e i, \lambda_0} f_{i, \lambda_0}^{-1} g, \lambda),$

where λ_0 is any fixed (=image) point of τ_e .

Similarly, if $\lambda \tau_e$ is defined then

$$(i,g,\lambda)\overline{e} = (i,gf_{i_0,\lambda}^{-1}f_{i_0,\lambda\tau_e},\lambda\tau_e)$$

for any fixed point i_0 of σ_e .

Thus we finally get to fiddle with automata (yay!!!) with group-labelled transitions.

We want to capture the following transformation:

 $(\ldots, g, \lambda)(i, h, \ldots)$

We want to capture the following transformation:

 $[(\ldots, \mathbf{g}', \mu)\overline{\mathbf{e}}](i, h, \ldots)$

We want to capture the following transformation:

 $(\ldots, g', \mu)[\overline{e}(i, h, \ldots)]$

We want to capture the following transformation:

 $(\ldots,g',\mu)(j,h',\ldots)$

We want to capture the following transformation:

 $(\ldots,g',\mu)(j,h',\ldots)$

We want to capture the following transformation:

 $(\ldots,g',\mu)(j,h',\ldots)$

Let D_1, D_2 be two regular \mathscr{D} -classes of IG(\mathcal{E}), coordinatised by $l_1 \times G \times \Lambda_1$ and $l_2 \times H \times \Lambda_2$, respectively.

We want to capture the following transformation:

 $(\ldots,g',\mu)(j,h',\ldots)$

Let D_1, D_2 be two regular \mathscr{D} -classes of IG(\mathcal{E}), coordinatised by $I_1 \times G \times \Lambda_1$ and $I_2 \times H \times \Lambda_2$, respectively. We define the contact automaton $\mathcal{A}(D_1, D_2)$, a two-way NFA with states $\Lambda_1 \times I_2$ and alphabet E, where the transitions are defined and labelled by elements of $G \times H^\partial$ as follows:

We want to capture the following transformation:

 $(\ldots,g',\mu)(j,h',\ldots)$

Let D_1, D_2 be two regular \mathscr{D} -classes of IG(\mathcal{E}), coordinatised by $l_1 \times G \times \Lambda_1$ and $l_2 \times H \times \Lambda_2$, respectively. We define the contact automaton $\mathcal{A}(D_1, D_2)$, a two-way NFA with states $\Lambda_1 \times l_2$ and alphabet E, where the transitions are defined and labelled by elements of $G \times H^\partial$ as follows:

if
$$(\lambda = \mu \tau_e^{(1)} \text{ and } \sigma_e^{(2)} i = j)$$
 or $(\lambda \tau_e^{(1)} = \mu \text{ and } i = \sigma_e^{(2)} j)$.

So, the WP for $IG(\mathcal{E})$ essentially comes down to chasing paths in various contact automata with suitable group labels.

So, the WP for $IG(\mathcal{E})$ essentially comes down to chasing paths in various contact automata with suitable group labels.

 G_1, \ldots, G_m – finitely presented groups

So, the WP for $IG(\mathcal{E})$ essentially comes down to chasing paths in various contact automata with suitable group labels.

 G_1, \ldots, G_m - finitely presented groups $\rho_1, \ldots, \rho_{m-1}$ - rational subsets of $G_1 \times G_2^{\partial}, \ldots, G_{m-1} \times G_m^{\partial}$

So, the WP for $IG(\mathcal{E})$ essentially comes down to chasing paths in various contact automata with suitable group labels.

 G_1, \ldots, G_m - finitely presented groups $\rho_1, \ldots, \rho_{m-1}$ - rational subsets of $G_1 \times G_2^{\partial}, \ldots, G_{m-1} \times G_m^{\partial}$ The problem $P(G_1, \ldots, G_m; \rho_1, \ldots, \rho_{m-1})$:

So, the WP for $IG(\mathcal{E})$ essentially comes down to chasing paths in various contact automata with suitable group labels.

 G_1, \ldots, G_m - finitely presented groups $\rho_1, \ldots, \rho_{m-1}$ - rational subsets of $G_1 \times G_2^{\partial}, \ldots, G_{m-1} \times G_m^{\partial}$ The problem $P(G_1, \ldots, G_m; \rho_1, \ldots, \rho_{m-1})$: INPUT: $a_k, b_k \in G_k$ $(1 \le k \le m)$.

So, the WP for $IG(\mathcal{E})$ essentially comes down to chasing paths in various contact automata with suitable group labels.

 G_1, \ldots, G_m - finitely presented groups $\rho_1, \ldots, \rho_{m-1}$ - rational subsets of $G_1 \times G_2^\partial, \ldots, G_{m-1} \times G_m^\partial$ The problem $P(G_1, \ldots, G_m; \rho_1, \ldots, \rho_{m-1})$: INPUT: $a_k, b_k \in G_k$ $(1 \le k \le m)$. OUTPUT: Decide if there exist $x_t \in G_t$, $2 \le t \le m - 1$, such that $(a_1^{-1}b_1, x_2) \in \rho_1$,

$$(a_r^{-1}x_r^{-1}b_r, x_{r+1}) \in \rho_r$$
 $(2 \le r \le m-2),$
 $(a_{m-1}^{-1}x_{m-1}^{-1}b_{m-1}, b_m a_m^{-1}) \in \rho_{m-1}.$

Theorem (IgD, Gould, Yang, 2019) Assume D_k is coordinatised by $I_k \times G_k \times \Lambda_k$.

Theorem (IgD, Gould, Yang, 2019) Assume D_k is coordinatised by $I_k \times G_k \times \Lambda_k$. Then there exist rational subsets

 $\rho_{s}(\lambda, i; \mu, j) \subseteq G_{s} \times G_{s+1}^{\partial} \quad (1 \leq s < m, \ \lambda, \mu \in \Lambda_{s}, \ i, j \in I_{s+1})$

that are effectively computable from ${\mathcal E}$

Theorem (IgD, Gould, Yang, 2019) Assume D_k is coordinatised by $I_k \times G_k \times \Lambda_k$. Then there exist rational subsets

 $\rho_{s}(\lambda, i; \mu, j) \subseteq G_{s} \times G^{\partial}_{s+1} \quad (1 \leq s < m, \ \lambda, \mu \in \Lambda_{s}, \ i, j \in I_{s+1})$

that are effectively computable from ${\mathcal E}$ such that

 $(i_1,g_1,\lambda_1)\ldots(i_m,g_m,\lambda_m)=(j_1,h_1,\mu_1)\ldots(j_m,h_m,\mu_m)$

holds in $IG(\mathcal{E})$ if and only if

Theorem (IgD, Gould, Yang, 2019) Assume D_k is coordinatised by $I_k \times G_k \times \Lambda_k$. Then there exist rational subsets

 $\rho_{s}(\lambda, i; \mu, j) \subseteq G_{s} \times G^{\partial}_{s+1} \quad (1 \leq s < m, \ \lambda, \mu \in \Lambda_{s}, \ i, j \in I_{s+1})$

that are effectively computable from $\mathcal E$ such that

 $(i_1,g_1,\lambda_1)\ldots(i_m,g_m,\lambda_m)=(j_1,h_1,\mu_1)\ldots(j_m,h_m,\mu_m)$

holds in IG(\mathcal{E}) if and only if $i_1 = j_1$, $\lambda_m = \mu_m$,

Theorem (IgD, Gould, Yang, 2019) Assume D_k is coordinatised by $I_k \times G_k \times \Lambda_k$. Then there exist rational subsets

 $\rho_{s}(\lambda, i; \mu, j) \subseteq G_{s} \times G^{\partial}_{s+1} \quad (1 \leq s < m, \ \lambda, \mu \in \Lambda_{s}, \ i, j \in I_{s+1})$

that are effectively computable from $\mathcal E$ such that

$$(i_1,g_1,\lambda_1)\ldots(i_m,g_m,\lambda_m)=(j_1,h_1,\mu_1)\ldots(j_m,h_m,\mu_m)$$

holds in IG(\mathcal{E}) if and only if $i_1 = j_1$, $\lambda_m = \mu_m$, and the problem

$$\mathbf{P}(G_1,...,G_m;\rho_1(\lambda_1,i_2;\mu_1,j_2),...,\rho_{m-1}(\lambda_{m-1},i_m;\mu_{m-1},j_m))$$

returns a positive answer on input $g_k, h_k \in G_k$, $1 \le k \le m$.

(i)
$$m = 1$$
: We have $(i, g, \lambda) = (j, h, \mu)$ if and only if $i = j$, $\lambda = \mu$, and $g = h$.

(i) m = 1: We have (i, g, λ) = (j, h, μ) if and only if i = j,
 λ = μ, and g = h. So, the word problem for the regular part of IG(E) is indeed equivalent to the word problems of the maximal subgroups.

- (i) m = 1: We have (i, g, λ) = (j, h, μ) if and only if i = j,
 λ = μ, and g = h. So, the word problem for the regular part of IG(E) is indeed equivalent to the word problems of the maximal subgroups.
- (ii) m = 2: $P(G_1, G_2, \rho)$ is essentially the membership problem for $\rho \subseteq G_1 \times G_2^{\partial}$.

- (i) m = 1: We have (i, g, λ) = (j, h, μ) if and only if i = j,
 λ = μ, and g = h. So, the word problem for the regular part of IG(E) is indeed equivalent to the word problems of the maximal subgroups.
- (ii) m = 2: $\mathbf{P}(G_1, G_2, \rho)$ is essentially the membership problem for $\rho \subseteq G_1 \times G_2^{\partial}$. The construction in [DGR17] was set up so that a certain segment of the word problem is equivalent to $\mathbf{P}(G, G, \rho_H)$ where

$$\rho_H = \{(h, h^{-1}): h \in H\},$$

which is just the membership problem for H in G.

SandGAL, Cremona, 10-13 June 2019

Theorem (DGY, 2019)

Let \mathcal{E} be a finite biordered set with the property that the maximal subgroups in all non-maximal^{*} \mathcal{D} -classes of $IG(\mathcal{E})$ are finite. Then $IG(\mathcal{E})$ has decidable word problem.

 * - the identity element is discarded if ${\cal E}$ comes from a monoid

Theorem (DGY, 2019)

Let \mathcal{E} be a finite biordered set with the property that the maximal subgroups in all non-maximal^{*} \mathcal{D} -classes of $IG(\mathcal{E})$ are finite. Then $IG(\mathcal{E})$ has decidable word problem.

 * - the identity element is discarded if ${\cal E}$ comes from a monoid

Remark

The maximal \mathscr{D} -classes necessarily yield free maximal subgroups, as there are no singular squares.

Theorem (DGY, 2019)

Let \mathcal{E} be a finite biordered set with the property that the maximal subgroups in all non-maximal^{*} \mathcal{D} -classes of $IG(\mathcal{E})$ are finite. Then $IG(\mathcal{E})$ has decidable word problem.

 * - the identity element is discarded if ${\mathcal E}$ comes from a monoid

Remark

The maximal $\mathscr{D}\text{-}\mathsf{classes}$ necessarily yield free maximal subgroups, as there are no singular squares.

Ingredients:

Theorem (DGY, 2019)

Let \mathcal{E} be a finite biordered set with the property that the maximal subgroups in all non-maximal^{*} \mathcal{D} -classes of $IG(\mathcal{E})$ are finite. Then $IG(\mathcal{E})$ has decidable word problem.

 * - the identity element is discarded if ${\mathcal E}$ comes from a monoid

Remark

The maximal $\mathscr{D}\text{-}\mathsf{classes}$ necessarily yield free maximal subgroups, as there are no singular squares.

Ingredients:

finite groups allow for an exhaustive search;

Theorem (DGY, 2019)

Let \mathcal{E} be a finite biordered set with the property that the maximal subgroups in all non-maximal^{*} \mathcal{D} -classes of $IG(\mathcal{E})$ are finite. Then $IG(\mathcal{E})$ has decidable word problem.

 * - the identity element is discarded if ${\cal E}$ comes from a monoid

Remark

The maximal $\mathscr{D}\text{-}\mathsf{classes}$ necessarily yield free maximal subgroups, as there are no singular squares.

Ingredients:

- finite groups allow for an exhaustive search;
- Benois' Theorem (aka free groups have decidable RSMP);

Theorem (DGY, 2019)

Let \mathcal{E} be a finite biordered set with the property that the maximal subgroups in all non-maximal^{*} \mathcal{D} -classes of $IG(\mathcal{E})$ are finite. Then $IG(\mathcal{E})$ has decidable word problem.

 * - the identity element is discarded if ${\cal E}$ comes from a monoid

Remark

The maximal $\mathscr{D}\text{-}\mathsf{classes}$ necessarily yield free maximal subgroups, as there are no singular squares.

Ingredients:

- finite groups allow for an exhaustive search;
- Benois' Theorem (aka free groups have decidable RSMP);
- Grunschlag (1999): rational subsets of virtually free groups;
The principal applied result

Theorem (DGY, 2019)

Let \mathcal{E} be a finite biordered set with the property that the maximal subgroups in all non-maximal^{*} \mathcal{D} -classes of $IG(\mathcal{E})$ are finite. Then $IG(\mathcal{E})$ has decidable word problem.

 * - the identity element is discarded if ${\mathcal E}$ comes from a monoid

Remark

The maximal $\mathscr{D}\text{-}\mathsf{classes}$ necessarily yield free maximal subgroups, as there are no singular squares.

Ingredients:

- finite groups allow for an exhaustive search;
- Benois' Theorem (aka free groups have decidable RSMP);
- Grunschlag (1999): rational subsets of virtually free groups;
- ▶ P.Silva (2002) \Rightarrow effective version of Grunschlag's result

Applications

Corollary

For any $n \ge 1$, the free idempotent generated semigroups $IG(\mathcal{E}_{\mathcal{T}_n})$ and $IG(\mathcal{E}_{\mathcal{PT}_n})$ have decidable word problems.

Applications

Corollary

For any $n \ge 1$, the free idempotent generated semigroups $IG(\mathcal{E}_{\mathcal{T}_n})$ and $IG(\mathcal{E}_{\mathcal{PT}_n})$ have decidable word problems.

Question

Let Q be a finite field. Is the maximal subgroup of $IG(\mathcal{E}_{M_n(Q)})$ contained in its \mathscr{D} -class $\overline{D_r}$ (corresponding to matrices of rank r) finite whenever $r \leq n-2$?

Applications

Corollary

For any $n \ge 1$, the free idempotent generated semigroups $IG(\mathcal{E}_{\mathcal{T}_n})$ and $IG(\mathcal{E}_{\mathcal{PT}_n})$ have decidable word problems.

Question

Let Q be a finite field. Is the maximal subgroup of $IG(\mathcal{E}_{M_n(Q)})$ contained in its \mathscr{D} -class $\overline{D_r}$ (corresponding to matrices of rank r) finite whenever $r \leq n-2$?

Theorem

If \mathcal{E} is finite, then $IG(\mathcal{E})$ is always a Fountain (aka weakly abundant) semigroup satisfying the congruence condition.

The end-product

Advances in Mathematics 345 (2019) 998-1041

A group-theoretical interpretation of the word problem for free idempotent generated semigroups

Yang Dandan^a, Igor Dolinka^{b,*,1}, Victoria Gould^c

* School of Mathematics and Statistics, Xidian University, Xi'an 710071, PR China ^b Department of Mathematics and Informatics, University of Novi Sad,

Try Dositeja Obradovića 4, 21101 Novi Sad, Serbia

^c Department of Mathematics, University of York, Heslington, York YO10 5DD, UK

ARTICLE INFO

ABSTRACT

Article history:

Received 8 February 2018 Received in revised form 20 December 2018 Accepted 9 January 2019 Available online xxxx Communicated by Ross Street

MSC:

primary 20M05 secondary 20F10, 68Q70

Keywords: Free idempotent generated semigroup Biordered set Word problem Rational subset The set of idempotents of any semigroup carries the structure of a biodrefer dex which contains a great deal of information concerning the idempotent generated subsemigroup of question. This leads to the construction of a free idempotent generated semigroup $I_{\rm GC}(r)$ — the free weibody the structure of the structure of the structure of the show that when E is finite, the word problem for G(C) is questioned as subset of direct products or pairs of maximal subgroups of $I_{\rm GC}(r)$. As an application, we obtain involving rational subsets of direct products of pairs of maximal subgroups of $I_{\rm GC}(r)$. As an application, we obtain commisse, Also, we prove that for finite $E_{\rm r}$ (GC) is a larger condition.

© 2019 Elsevier Inc. All rights reserved.

GRAZIE MILLE! THANK YOU!

Questions and comments to: dockie@dmi.uns.ac.rs

Further information may be found at: http://people.dmi.uns.ac.rs/~dockie