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Idempotents in a semigroup

Question
How to record (without dealing with the entire semigroup)
sufficient information about the structure of idempotents
in a semigroup?

Answer (Nambooripad, 1980s): Biordered sets!

Biordered set (of S) = partial algebra ES = (E (S), ·) obtained
by retaining products of basic pairs (e, f ):

{ef , fe} ∩ {e, f } 6= ∅.

Induced quasi-orders:

e ≤` f if and only if ef = e, e ≤r f if and only if ef = f ,

≤=≤` ∩ ≤r – this is the usual Rees order.
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IG(E)

Nambooripad, Easdown (1980s): Biordered sets of semigroups
have a finite axiomatisation.

Thus we can speak about abstract
biordered sets.

Also: There is a largest / free-est / most general
idempotent-generated semigroup with a prescribed biordered set E .

This is the free idempotent-generated semigroup over E :

IG(E) = 〈E | ef = e · f whenever {e, f } is a basic pair in E〉.

E
∼= //

⊆
��

E φ // ES
⊆ // S

IG(E)

Ψφ

44
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Basic properties of IG(E)

Assume we have fixed a homomorphism Ψ : IG(E)→ S
extending the map e 7→ e, e ∈ E (S).

(IG1) For any e ∈ E , Ψ maps the D-class of e in IG(E) precisely
onto the D-class of e in S ′ = 〈E (S)〉.

(IG2) In fact, Ψ maps the R-class of e onto the R-class of e,
and the L -class of e onto the L -class of e.

(IG3) Hence, the restriction of Ψ to He in IG(E) is a surjective
group homomorphism onto He in S ′.

This third property was (partially) responsible for spawning

Conjecture (Folklore, 80s)

Maximal subgroups of free idempotent-generated semigroups
must always be free.
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(Spectacular) failure of the freeness conjecture

Brittenham, Margolis, Meakin (2009): A 73-element semigroup S
generated by its 37 idempotents (arising from a combinatorial
design) such that IG(ES) contains Z× Z as a subgroup

Gray, Ruškuc (2012): Quite the opposite of the conjecture is true –
for any group G there is a suitable semigroup S such that G arises
as a maximal subgroup in IG(ES)

IgD, Ruškuc (2013): For finitely presented G , (the biorder of) a
finite band S will do
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Computing the maximal subgroups (1)

Brittenham, Margolis, Meakin (2009): The maximal subgroup He

in IG(E) = the fundamental group of the GH-complex of the
D-class D = De in S ′ = 〈E 〉:

Vertices: The R- and the L -classes in D

Edges: (R, L) such that R ∩ L contains an idempotent (so edges
correspond to idempotents in D)

2-cells: singular squares = 4-cycles e R e ′L f ′R f L e such that
(∃h ∈ E ) with

I either eh = e ′, f h = f ′, he = e, hf = f (“left-right”), or

I he = f , he ′ = f ′, eh = e, f h = f . (“up-down”).

Gray, Ruškuc (2012): A presentation for the group He via the
Reidemester-Schreier theory for substructures of monoids
+ turns out to be a specific instance of the above for a particular
spanning tree of the GH-complex
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Gray, Ruškuc (2012): A presentation for the group He via the
Reidemester-Schreier theory for substructures of monoids

+ turns out to be a specific instance of the above for a particular
spanning tree of the GH-complex

WP for IG(E) Igor Dolinka5



Computing the maximal subgroups (1)

Brittenham, Margolis, Meakin (2009): The maximal subgroup He

in IG(E) = the fundamental group of the GH-complex of the
D-class D = De in S ′ = 〈E 〉:
Vertices: The R- and the L -classes in D

Edges: (R, L) such that R ∩ L contains an idempotent (so edges
correspond to idempotents in D)

2-cells: singular squares = 4-cycles e R e ′L f ′R f L e such that
(∃h ∈ E ) with

I either eh = e ′, f h = f ′, he = e, hf = f (“left-right”), or

I he = f , he ′ = f ′, eh = e, f h = f . (“up-down”).
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Computing the maximal subgroups (2)

S max. subgroups who & when

Tn Sr Gray, Ruškuc
r ≤ n − 2 (2012, PLMS)

PTn Sr IgD
r ≤ n − 2 (2013, Comm. Alg.)

Mn(F) GLr (F) IgD, Gray
r < n/3 (2014, TrAMS)

End(Fn(G )) G o Sr Yang, IgD, Gould
r ≤ n − 2 (2015, J. Algebra)
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A first stab at the WP for IG(E)

IgD, Gray, Ruškuc (2017):

I There is an algorithm which, given w ∈ E+ recognises
whether w represents a regular element of IG(E).

I Given u, v ∈ E+ representing regular elements of IG(E),
the question whether u = v entirely boils down to the WP
for the maximal subgroups.

I There is a finite (20-element) band S such that all max.
subgroups of IG(ES) are either trivial or products of two free
groups (so they have decidable WP), and yet the WP is
undecidable (by using the Mikhailova construction).

So, what is the WP for IG(E) really all about?
+ Yang, IgD, Gould (2019, Adv. Math.)

& IgD (2021, Israel J. Math.)
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Words representing regular elements

Assume that w ∈ E+ represents a regular element w of IG(E).
(By [DGR 17] this can be algorithmically tested.)

Then it can be
“coordinatised” within its (regular) D-class D as

(i , g , λ),

where i , λ record the R- and the L -class of w, and g is
a (group) word in the generators of the maximal subgroup in D.

I [YDG 19]: There is an algorithm for computing w→ (i , g , λ).
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General situation

In general, for w ∈ E+, the element w ∈ IG(E) need to to be
regular.

However, then we can consider the notion of a

I minimal r-factorisation: A coarsest factorisation

w = w1 . . .wk

into pieces representing regular elements

Theorem (Yang, IgD, Gould, 2019)

Assume u = v holds in IG(E), and that u = u1 . . .uk and
v = v1 . . . vr are minimal r-factorisations. Then k = r and we have

I ui D vi for all 1 ≤ i ≤ k, and, furthermore

I u1 R v1 and uk L vk .

So, we have an invariant: w→ D-fingerprint (D1, . . . ,Dk) of w
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The moral of the story

The WP for IG(E) (for finite E) comes down to comparing
elements of the form

(i1, g1, λ1)(i2, g2, λ2) . . . (ik , gk , λk)

of a given D-fingerprint (D1, . . . ,Dk).

WP for IG(E) Igor Dolinka10



Aaand... Action!

Let D be a regular D-class of IG(E), with index sets I ,Λ and
maximal subgroup G .

Then the idempotents from E exercise
partial left and right actions on I and Λ respectively:

e · i = i ′ if and only if e(i , g , λ) = (i ′, be,i ,i ′g , λ)

λ · e = λ′ if and only if (i , g , λ)e = (i , gae,λ,λ′ , λ
′)

(The coefficients a, b depend solely on the displayed indices, and
are easily expressed in terms of the generators of G .)
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Contact graphs A(D1,D2)

Dp (p = 1, 2) – regular D-classes with index sets Ip,Λp

& max. subgroups Gp.

Vertices: Λ1 × I2

Edges: (λ, i) −→ (µ, j) such that λ = µ · e and e · i = j

Group labels: (a, b−1) ∈ G1 × G2 where a = ae,λ,µ and b = be,i ,j

Label of a walk: the product of edges along the walk (and edges
can be travesed backwards, when we take the inverse of the label)

Vertex group W(λ,i): the subgroup of G1 × G2 consisting of the
labels of all closed walks based at (λ, i)
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It’s all about new relations

Assume we have the following data:

I groups G1, . . . ,Gm (m ≥ 2),

I relations ρk ⊆ Gk × Gk+1 (≤ k < m),

I elements ak , bk ∈ Gk (1 ≤ k ≤ m).

From these, we construct a new relation ρ ⊆ G1 × Gm by defining:
(g , h) ∈ ρ if and only if ∃xr ∈ Gr (2 ≤ r ≤ m) such that

(a−1
1 gb1, x2) ∈ ρ1,

(a−1
2 x2b2, x3) ∈ ρ2,

...

(a−1
m−1xm−1bm−1, xm) ∈ ρm−1,

a−1
m xmbm = h.

Clearly, ρ induces a map ϕρ : P(G1)→ P(Gm).
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The map θ

Now let

x = (i1, a1, λ1) . . . (im, am, λm)

y = (j1, b1, µ1) . . . (jm, bm, µm)

be two elements of IG(E) of D-fingerprint (D1, . . . ,Dm).

Let Gk be the max. subgroup in Dk (1 ≤ k ≤ m) and

ρk =

{
W(λk ,ik+1)(gk , hk) if ∃ a walk (λk , ik+1) (µk , jk+1),
∅ otherwise.

where W(λk ,ik+1) is the vertex group of A(Dk ,Dk+1) at (λk , ik+1),
and (gk , hk) is the label of any walk (λk , ik+1) (µk , jk+1).

Then the associated mapping ϕρ is denoted (·, x, y)θ.
It can be calculated in terms of standard computational tasks
within group theory.
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The WP for IG(E) (E finite)

Theorem (IgD, 2021)

x = y holds in IG(E) if and only if i1 = j1, λm = µm, and

1 ∈ ({1}, x, y)θ.

(m = 2: the membership problem for a certain subgroup of G1 × G2)

Theorem
Let x, y ∈ IG(E). If these elements are not of the same
D-fingerprint, they cannot be J -related. Otherwise, if they are,
we have:

(i) xR y if and only if i1 = j1 and ({1}, x, y)θ 6= ∅;

(ii) xL y if and only if λm = µm and 1 ∈ (G1, x, y)θ;

(iii) xD y if and only if (G1, x, y)θ 6= ∅.

Also, D = J + Sch-group of x ∼= (G1, x, x)θ/({1}, x, x)θ.
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IG(ETn) facts

I 〈E (Tn)〉 = (Tn \ Sn) ∪ {idn}

I D-classes form a chain Dn,Dn−1, . . .D1 (classified by rank)

I maximal subgroup in Dm (in IG(ETn)) is
I m = n: trivial
I m = n − 1: free of rank

(
n
2

)
− 1

I m ≤ n − 2: Sm
I a typical element of Dm is of the form

(P, g ,A)

P – a partition of [1, n] into m classes; A – a subset of [1, n]
of size m; g – an element of the max. subgroup (see above)
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Contact graph A(Dm,D r) in IG(ETn)

Vertices: Subset-partition pairs (A,P)

Edges: (A,P) −→ (B,Q) labelled by e exists iff

I ker e separates B (with A = Be), and

I im e saturates P (with the classes of Q being unions of
(ker e)-classes mapping into the same P-class)

P separates X = every P-class contains max 1 element of X

X saturates P = every P-class contains at least 1 element of X

Lemma
For (P, g ,A) ∈ Dm and (P ′, g ′,A′) ∈ Dr the product
(P, g ,A)(P ′, g ′,A′) is regular if and only if either
(1) m ≥ r and A saturates P ′, or (2) m ≤ r and P ′ separates A.

So, such pairs (A,P ′) are regular (= uninteresting).
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Connected components in A(Dm,D r)

The type of (A,P) (|A| = m, |P| = r): the sequence

|A ∩ P1|, . . . , |A ∩ Pr |

sorted in a non-increasing order.

Example

n = 9, A = {1, 3, 5, 7}, P = {{1, 2, 6}, {3, 5, 7, 9}, {4, 8}}.
The type of (A,P) is (3, 1, 0).

When (A,P) and (B,Q) are of the same type, we say they are
homeomorphic.

Homeomorphism (φ, ψ) : (A,P) ∼ (B,Q) – a pair of bijections
φ : A→ B, ψ : P → Q such that

ai ∈ Pj if and only if aiφ ∈ Pjψ.
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Connected components in A(Dm,D r) (cont’d)

(A,P) is stationary if all P-classes containing elements from
[1, n] \ A are singletons.

Proposition

(A,P) and (B,Q) are connected in A(Dm,Dr ) iff they are
homeomorphic and not stationary.

Remark
Stationary pairs are always isolated vertices.
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The degenerate case

Proposition

If m = n − 1 or r = n − 1 then (A,P) is non-regular in A(Dm,Dr )
iff it is stationary.

=⇒ The vertex group W(A,P) is trivial.

Other vertex groups? We don’t know. (But also we don’t care.)

So, in the rest of the talk assume that m, r ≤ n − 2.
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Group labels of edges

Proposition

Assume there is an edge (A,P) −→ (B,Q) in A(Dm,Dr ) induced
by e ∈ E.

Assume, further, that A = {a1 < · · · < am},
B = {b1 < · · · < bm}, and that the classes of P,Q are enumerated
such that minP1 < · · · < minPr and minQ1 < · · · < minQr .
Then the considered edge is labelled by (π, π′) ∈ Sm × Sr such
that

I biπe = ai for all 1 ≤ i ≤ m,

I Pje
−1 = Qjπ′ for all 1 ≤ j ≤ r .

Corollary

The label of every walk (A,P) (B,Q) is a homeomorphism of
its endpoints. In particular, the label of every loop based at (A,P)
is an auto-homeomorphism of (A,P).
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The main result

Theorem (IgD, 2022)

Let (A,P) be a vertex in A(Dm,Dr ).

I If it is stationary, W(A,P) is trivial.

I Otherwise, W(A,P) = AHom(A,P).

Remarks
I The first component π of an element of AHom(A,P) is just

any P|A-preserving permutation of A.

I There is an easy description whether (π, π′) ∈ AHom(A,P).

I Each non-empty “vertical slice” of AHom(A,P) is a coset of a
symmetric group (permuting the P-classes not intersecting A).

I This leads to a nice generating set of AHom(A,P) within
Sm × Sr .
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Conclusion

Now, all elements are “in place” so that one can, in a more-less
straightforward manner, write a GAP code solving the WP for
IG(ETn).

Namely, for the “coset representatives” (gk , hk) in the WP
it suffices to take any homeomorphism (Ak ,Pk+1) ∼ (Bk ,Qk+1).
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Thank you!

Questions and comments to:

dockie@dmi.uns.ac.rs

Further information may be found at:

http://people.dmi.uns.ac.rs/∼dockie
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