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The word problem (in groups, monoids,...)

Assume we have given a (finitely generated) group G = 〈X 〉

(e.g. by a presentation, etc.). So, elements of G are represented by
words over X = X ∪ X−1.

For starters, we’d very much like to know if two words represent
the same element of G , and, in addition, is there an algorithm
(think: computer program) which decides this.

The word problem for G :

INPUT: A word w ∈ X
∗
.

QUESTION: Does w represent the identity element 1 in G?

Similarly, one can ask about the word problem for monoids /
inverse monoids / ..., with the difference being that the input
requires two words u, v , and then we’re keen to decide if u = v
holds in the corresponding monoid.
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The beginning of the story: Back to the Great Depression
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Gimme some old time rock’n’roll

Theorem (W. Magnus, 1932)

Every one-relator group has decidable word problem.

Theorem (Magnus, 1930, “Der Freiheitssatz”)

w ∈ X
∗

& A ⊂ X :

I cyclically reduced;

I contains an occurrence of a letter not in A;

=⇒ the subgroup of Gp〈X |w = 1〉 generated by A is free.

“Da sind Sie also blind gegangen!”

Max Dehn (Magnus’ PhD advisor)

Theorem (Shirshov, 1962)

Every one-relator Lie algebra has decidable word problem.
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The one-relator monoid Riddle

Open Problem (still! – as of 2020)

Is the word problem decidable for all one-relator monoids
Mon〈X | u = v〉?

Theorem (Adyan, 1966)

The word problem for Mon〈X | u = v〉 is decidable if either:

I one of u, v is empty (e.g. u = 1 – special monoids), or

I both u, v are non-empty, and have different initial letters and
different terminal letters.

Lallement (1977) and L. Zhang (1992) provided alternative proofs
for the result about special monoids. The proof of Zhang is
particularly compact and elegant.

NB. RIP S. I. Adyan (1 January 1931 – 5 May 2020).
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The connection to the inverse realm

Adyan & Oganessyan (1987): The word problem for one-relator
monoids can be reduced to the special case of

Mon〈X | asb = atc〉

where a, b, c ∈ X , b 6= c and s, t ∈ X ∗ (and their duals).

So, where do (one-relator) inverse monoids come into the picture?

Theorem (Ivanov, Margolis & Meakin, 2001)

If the word problem is decidable for all special inverse monoids
Inv〈X |w = 1〉 — where w is a reduced word over X — then the
word problem is decidable for every one-relator monoid.

This holds basically because M = Mon〈X | asb = atc〉 embeds into
I = Inv〈X | asbc−1t−1a−1 = 1〉.
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The plot thickens

Gp〈X |w = 1〉 Mon〈X |w = 1〉 Inv〈X |w = 1〉

decidable WP 3 3 ?
(Magnus, 1932) (Adyan, 1966)

Conjecture (Margolis, Meakin, Stephen, 1987)

Every inverse monoid of the form Inv〈X |w = 1〉 has decidable
word problem.

Theorem (RD Gray, 2019; Invent. Math., March 2020)

There exists a one-relator inverse monoid Inv〈X |w = 1〉 with
undecidable word problem.
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Inverse monoid basics (1): Definitions & FIM

Inverse monoid = a monoid M such that for every a ∈ M there is a
unique a−1 ∈ M such that aa−1a = a and a−1aa−1 = a−1.

Inverse monoids form a class of unary monoids defined by the laws

xx−1x = x , (x−1)−1 = x , (xy)−1 = y−1x−1,

xx−1yy−1 = yy−1xx−1.

Free inverse monoid FIM(X ): Munn, Scheiblich (1973/4)

Elements of FIM(X ) are represented as Munn
trees = birooted finite subtrees of the Cayley
graph of FG (X ). The Munn tree on the left
illustrates the equality

aa−1bb−1ba−1abb−1 = bbb−1a−1ab−1aa−1b.
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Inverse monoid basics (2): The E -unitary property

E -unitary inverse semigroups = the well-behaved, “nice guys”.

For example, here are several (equivalent) definitions:

I For any e ∈ E (S) and x ∈ S ,
e ≤ x (in the natural inverse semigroup order) ⇒ x ∈ E (S).

I The minimum group congruence σ on S is idempotent-pure,
which means that E (S) constitutes a single σ-class.

I σ =∼, where ∼ is the compatibility relation defined by
a ∼ b ⇔ a−1b, ab−1 ∈ E (S).

I ...

Theorem (Ivanov, Margolis & Meakin, 2001)

If w is cyclically reduced, then M = Inv〈X |w = 1〉 is E -unitary.
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The key role of the prefix monoid

Consider a one-relator group G given by Gp〈X |w = 1〉.

Pw = the submonoid of G generated by all the prefixes of w .
This is the prefix monoid of G .
(Caution: depends on the presentation!)

Prefix membership problem for G = Gp〈X |w = 1〉 = membership
problem for Pw within G .

Theorem (Ivanov, Margolis & Meakin, 2001)

If M = Inv〈X |w = 1〉 is E -unitary, then

word problem for M = prefix membership problem for G = Gp〈X |w = 1〉.

Remark
G = Gp〈X |w = 1〉 is the maximum group image of M = Inv〈X |w = 1〉.
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A Glimpse into the Toolbox

eNBSAN, 24 June 2019 Igor Dolinka



Membership problem (for a submonoid M of a group G )

Submonoid membership problem for G : Is there an algorithm which,

given u,w1,w2, · · · ∈ X
∗
, decides if u ∈ Mon〈w1,w2, . . .〉 ?
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Rational subsets in groups
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RSMP + Benois

Rational subset membership problem for a group G = 〈X 〉:

INPUT: A word w ∈ X
∗

and a regular expression α over X .
QUESTION: w ∈ Aα ?
(Here Aα ⊆ G is the image of L (α), as in the previous pic.)

Theorem (Benois, 1969)

Every finitely generated free group has decidable RSMP.
Consequently, rational subsets of f.g. free groups are closed for
intersection and complement.
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Factorisations

In this slide we consider factorisations w ≡ w1 . . .wm.

It is unital w.r.t. M = Inv〈X |w = 1〉 if each piece wi represents an
invertible element (i.e. unit, aa−1 = a−1a = 1) of M.

Lemma
Unital fact. =⇒ Pw ≤ G = Gp〈X |w = 1〉 is generated by

⋃m
i=1 pref(wi ).

In fact, for any factorisation of w we can consider the submonoid

M(w1, . . . ,wm) of G generated by
⋃m

i=1 pref(wi ). In G , we have

Pw ⊆ M(w1, . . . ,wm).

If = holds, the considered factorisation is called conservative.

Theorem

(i) Any unital factorisation is conservative. (aka previous Lemma)

(ii) If M = Inv〈X |w = 1〉 is E -unitary then every conservative
factorisation if unital.
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Amalgamated free product of groups B ∗A C
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HNN extension of a group G∗t,φ:A→B
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The Results
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Theorem A

G = B ∗A C (A,B,C finitely generated):

I B,C have decidable word problems;

I the membership problem for A is decidable in both B and C .

Let M be a submonoid of G with the following properties:

(i) A ⊆ M;

(ii) M ∩ B and M ∩ C are f.g. and

M = Mon〈(M ∩ B) ∪ (M ∩ C )〉;

(iii) the membership problem for
M ∩ B in B is decidable;

(iv) the membership problem for
M ∩ C in C is decidable.

Then the membership problem for M in G is decidable.
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Rational intersections

H ≤ G closed for rational intersections:

R ∈ Rat(G ) =⇒ R ∩ H ∈ Rat(G )

H ≤ G effectively closed for rational intersections:
there is an algorithm which does the following

INPUT: A regular expression for R ∈ Rat(G ).
OUTPUT: Computes a regular expression for R ∩ H.
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Theorem B

G = B ∗A C (A,B,C finitely generated):

I B,C have decidable rational subset membership problems;

I A ≤ B is effectively closed for rational intersections;

I A ≤ C is effectively closed for rational intersections.

Let M be a submonoid of G such that
M ∩ B and M ∩ C are f.g. and

M = Mon〈(M ∩ B) ∪ (M ∩ C )〉.

Then the membership problem for M in G is decidable.
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Application #1: Unique marker letters

Theorem
I G = Gp〈X |w = 1〉

I w ≡ u(w1, . . . ,wk) – a conservative factorisation of w

I ∀i ∈ [1, k]: there is a letter xi appearing exactly once in wi

and not appearing in any wj , j 6= i

=⇒ G has decidable prefix membership problem.

Example

The group

G = Gp〈a, b, x , y | 〉
has decidable prefix membership problem =⇒ the inverse monoid

M = Inv〈a, b, x , y | axbaybaybaxbaybaxb = 1〉
has decidable WP.
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Chicago O’Hare International Airport (IATA code: ORD)

While waiting for a connecting flight at ORD sometime in the 1980s,

Stuart Margolis and John Meakin came up with the following example,

the (in)famous O’Hare (inverse) monoid:

Inv〈a, b, c , d | (abcd)(acd)(ad)(abbcd)(acd) = 1〉
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Application #2: O’Hare-type examples

Proposition

Let M = Inv〈Y , a, d | (aui1d) . . . (auimd) = 1〉, where a, d do not
appear in uij ’s.

Assume further that:

I some of the uij ’s is the empty word;

I for each x ∈ Y we have x ≡ red(uiru
−1
is

) for some r , s;

I each auijd represents a unit of M.

Then G = Gp〈Y , a, d | (aui1d) . . . (auimd) = 1〉 has decidable prefix
membership problem, and so M as decidable WP.

Consequently, the WP for the O’Hare monoid is

decidable – just as announced at the WOW work-

shop in January 2018 by this fine gentleman:
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Application #3: Disjoint alphabets

Theorem
I G = Gp〈X |w = 1〉, w is cyclically reduced

I w ≡ u(w1, . . . ,wk) – a conservative factorisation of w

I i 6= j ⇒ wi and wj have no letters in common

=⇒ G has decidable prefix membership problem,
and thus M = Inv〈X |w = 1〉 has decidable WP.

Example

The group

G = Gp〈a, b, c , d | (abab)(cdcd)(abab)(cdcd)(cdcd)(abab) = 1〉
has decidable prefix membership problem =⇒ the inverse monoid

M = Inv〈a, b, x , y | ababcdcdababcdcdcdcdabab = 1〉
has decidable WP.
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Application #4: Cyclically pinched presentations

Theorem
The prefix membership problem is decidable for one-relator groups
defined by cyclically pinched presentations:

G = Gp〈X ∪ Y | uv−1 = 1〉

where u, v are reduced words over disjoint X ,Y , respectively.

Example

This implies decidability of the prefix membership problem for
surface groups:

I orientable (known)

Gp〈a1, . . . , an, b1, . . . , bn | [a1, b1] . . . [an, bn] = 1〉,
I non-orientable (new)

Gp〈a1, . . . , an | a21 . . . a2n = 1〉.
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Theorem C

G ∗ = G∗t,φ:A→B (G ,A,B finitely generated):

I G has decidable word problem;

I the membership problems for A and B are decidable in G .

Let M be a submonoid of G ∗ with the following properties:

(i) A ∪ B ⊆ M;

(ii) M ∩ G is f.g. and

M = Mon〈(M ∩ G ) ∪ {t, t−1}〉;

(iii) the membership problem for M ∩G in G
is decidable.

Then the membership problem for M in G ∗ is decidable.
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Theorem D

G ∗ = G∗t,φ:A→B (G ,A,B finitely generated):

I G has decidable rational subset membership problem;

I A ≤ G is effectively closed for rational intersections.

For some finite W0,W1, . . . ,Wd ,W
′
1, . . . ,W

′
d ⊆ G let

M = Mon〈W0 ∪W1t ∪W2t
2 ∪ · · · ∪Wd t

d ∪ tW ′
1 ∪ · · · ∪ tdW ′

d〉

Then the membership problem for M in
G ∗ is decidable.
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Application #5: Exponent sum zero result

G = Gp〈X |w = 1〉: some t ∈ X has exponent sum zero in w .

By general theory (“Magnus’ method”, also Lyndon & McCool),
G is ∼= an HNN extension of

H = Gp〈X ′ | ρt(w) = 1〉
where |ρt(w)| < |w |, w.r.t. to free associated subgroups A,B
(will show this in a minute on a concrete example).

Theorem
Suppose that:

I ρt(w) is cyclically reduced;

I H has decidable rational subset membership problem;

I A ≤ H is effectively closed for rational intersections;

I w is either prefix t-positive or prefix t-negative.

=⇒ G has decidable prefix membership problem.
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Application #5: Exponent sum zero result (example)

w ≡ t−1bcbt−8bbct6ct3at−3bt3at−3ct2cta

↓
ρt(w) ≡ b1c1b1b9b9c9c3a0b3a0c3c1a0

G = Gp〈X |w = 1〉 is ∼= an HNN extension of

H = Gp〈a0, b1, . . . , b9, c1, . . . , c9 | ρt(w) = 1〉 (free of rank 18)

w.r.t. A = Gp〈b1, . . . , b8, c1, . . . , c8〉 and B = Gp〈b2, . . . , b9, c2, . . . , c9〉
(which are free by Freiheitssatz);

=⇒ G has decidable prefix membership problem.
+ w is cyclically reduced =⇒ M = Inv〈X |w = 1〉 has decidable WP.

Further examples:
I large classes of Adyan-type presentations;
I conjugacy pinched presentations Gp〈X , t | t−1utv−1 = 1〉

(u, v ∈ X
∗

reduced), including Baumslag-Solitar groups:

B(m, n) = Gp〈a, b | b−1amba−n = 1〉.
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The grand finale & an open problem

By modifying slightly the ideas from Bob’s Inventiones paper, we
obtain

Theorem
There exists a reduced word w over a 3-letter alphabet X such that
G = Gp〈X |w = 1〉 has undecidable prefix membership problem.

Open Problem

Characterise the words w ∈ X
∗

such that the prefix membership
problem for Gp〈X |w = 1〉 is decidable.
In particular, what about cyclically reduced words?

eNBSAN, 24 June 2019 Igor Dolinka27



The grand finale & an open problem

By modifying slightly the ideas from Bob’s Inventiones paper, we
obtain

Theorem
There exists a reduced word w over a 3-letter alphabet X such that
G = Gp〈X |w = 1〉 has undecidable prefix membership problem.

Open Problem

Characterise the words w ∈ X
∗

such that the prefix membership
problem for Gp〈X |w = 1〉 is decidable.

In particular, what about cyclically reduced words?

eNBSAN, 24 June 2019 Igor Dolinka27



The grand finale & an open problem

By modifying slightly the ideas from Bob’s Inventiones paper, we
obtain

Theorem
There exists a reduced word w over a 3-letter alphabet X such that
G = Gp〈X |w = 1〉 has undecidable prefix membership problem.

Open Problem

Characterise the words w ∈ X
∗

such that the prefix membership
problem for Gp〈X |w = 1〉 is decidable.
In particular, what about cyclically reduced words?

eNBSAN, 24 June 2019 Igor Dolinka27



Thank you!

Questions and comments to:

dockie@dmi.uns.ac.rs

Further information may be found at:

http://people.dmi.uns.ac.rs/∼dockie
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