Szegedi Tudományegyetem Informatikai Tanszékcsoport Számitástudomány Alapjai Tanszék 2006. május 8.

Identities of Two-Dimensional Languages Igor Dolinka

Department of Mathematics and Informatics University of Novi Sad, Serbia & Mont.

What is a two-dimensional language?

Well, it depends on your personal view of ordinary (string) languages... Well, it depends on your personal view of ordinary (string) languages...

Version A. (Combinatorial) WORD = a finite sequence of letters Well, it depends on your personal view of ordinary (string) languages...

```
Version A. (Combinatorial)
WORD = a finite sequence of letters
```

```
Version B. (Algebraic)
WORD = an element of a free monoid
```

What is a two-dimensional language?

Α

A two-dimensional word is a matrix of letters – a picture:

$$P = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix},$$

where $a_{ij} \in \Sigma$ for some alphabet Σ .

What is a two-dimensional language?

Α

A two-dimensional word is a matrix of letters – a picture:

$$P = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix},$$

where $a_{ij} \in \Sigma$ for some alphabet Σ .

A picture language is a set of pictures.

Let $P = [a_{ij}]_{m \times n}$ and $Q = [b_{ij}]_{k \times \ell}$ be pictures.

Let $P = [a_{ij}]_{m \times n}$ and $Q = [b_{ij}]_{k \times \ell}$ be pictures.

The **column product** $P \rightarrow Q$ is defined only if m = k, and its result is

$$\begin{bmatrix} a_{11} \cdots a_{1n} & b_{11} \cdots & b_{1\ell} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} \cdots & a_{mn} & b_{m1} \cdots & b_{m\ell} \end{bmatrix}$$

Let $P = [a_{ij}]_{m \times n}$ and $Q = [b_{ij}]_{k \times \ell}$ be pictures.

The **column product** $P \rightarrow Q$ is defined only if m = k, and its result is

$$\begin{bmatrix} a_{11} \cdots a_{1n} & b_{11} \cdots & b_{1\ell} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} \cdots & a_{mn} & b_{m1} \cdots & b_{m\ell} \end{bmatrix}$$

The row product $P \downarrow Q$ is defined only if $n = \ell$, and its result is

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \\ b_{11} & \cdots & b_{1n} \\ \vdots & \ddots & \vdots \\ b_{k1} & \cdots & b_{kn} \end{bmatrix}$$

Let L_1, L_2, L be picture languages.

Let L_1, L_2, L be picture languages.

Products

 $L_1 \to L_2 = \{ P_1 \to P_2 : P_i \in L_i, i = 1, 2, P_1 \to P_2 \text{ exists} \},\$ $L_1 \downarrow L_2 = \{ P_1 \downarrow P_2 : P_i \in L_i, i = 1, 2, P_1 \downarrow P_2 \text{ exists} \}.$

Let L_1, L_2, L be picture languages.

Products

$$L_1 \to L_2 = \{P_1 \to P_2 : P_i \in L_i, i = 1, 2, P_1 \to P_2 \text{ exists}\},\$$

 $L_1 \downarrow L_2 = \{P_1 \downarrow P_2 : P_i \in L_i, i = 1, 2, P_1 \downarrow P_2 \text{ exists}\}.$

Iterations

$$L^{>} = \bigcup_{n \ge 0} L^{\xrightarrow{n}}, \qquad L^{\vee} = \bigcup_{n \ge 0} L^{\downarrow n},$$

where $L^{\stackrel{0}{\rightarrow}} = L^{\downarrow 0} = \{\epsilon\}.$

What is a two-dimensional language?

Β

A two-dimensional word is an element of a free binoid over Σ .

B

A two-dimensional word is an element of a free binoid over Σ .

Free binoid = the free object in the variety of all algebras with two binary associative operations and a common 1 (to be denoted by ϵ).

B

A two-dimensional word is an element of a free binoid over Σ .

Free binoid = the free object in the variety of all algebras with two binary associative operations and a common 1 (to be denoted by ϵ).

A **binoid language** (or **bi-language**) is a subset of a free binoid.

Z.Ésik (2000): sp-biposets

Z.Ésik (2000): sp-biposets

 Σ -labelled biposets: a set with two strict orders $\mathcal{A} = (A, <_1, <_2)$ and a labelling function $\lambda_{\mathcal{A}} : A \to \Sigma$.

Z.Ésik (2000): sp-biposets

 Σ -labelled biposets: a set with two strict orders $\mathcal{A} = (A, <_1, <_2)$ and a labelling function $\lambda_{\mathcal{A}} : A \to \Sigma$.

 $x \in \Sigma$ is identified with the singleton poset S_x , labelled by x.

New biposets are obtained by two binary operations \circ_1 , \circ_2 , where $\mathcal{A} \circ_i \mathcal{B}$ (i = 1, 2) is defined on $A \cup B$ by

$$<^{\mathcal{A}\circ_{i}\mathcal{B}}_{j} = \begin{cases} <^{\mathcal{A}}_{j} \cup <^{\mathcal{B}}_{j} & \text{if } j \neq i, \\ <^{\mathcal{A}}_{j} \cup <^{\mathcal{B}}_{j} \cup (A \times B) & \text{if } j = i. \end{cases}$$

New biposets are obtained by two binary operations \circ_1 , \circ_2 , where $\mathcal{A} \circ_i \mathcal{B}$ (i = 1, 2) is defined on $A \cup B$ by

$$<_{j}^{\mathcal{A} \circ_{i} \mathcal{B}} = \begin{cases} <_{j}^{\mathcal{A}} \cup <_{j}^{\mathcal{B}} & \text{if } j \neq i, \\ <_{j}^{\mathcal{A}} \cup <_{j}^{\mathcal{B}} \cup (A \times B) & \text{if } j = i. \end{cases}$$

A biposet is series-parallel (**sp** for short) if it is generated from the singletons by the two product operations.

I prefer to think about the (nonempty) elements of a free binoid as trees labelled by $\Sigma \cup \{\rightarrow, \downarrow\}$, called **bi-words**.

I prefer to think about the (nonempty) elements of a free binoid as trees labelled by $\Sigma \cup \{\rightarrow, \downarrow\}$, called **bi-words**.

(1) the leaves are labelled by the letters from Σ ,

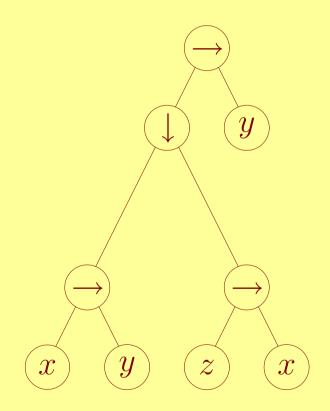
- I prefer to think about the (nonempty) elements of a free binoid as trees labelled by $\Sigma \cup \{\rightarrow, \downarrow\}$, called **bi-words**.
- (1) the leaves are labelled by the letters from Σ ,
- (2) the labels \rightarrow , \downarrow of the non-leaves alternate, depending on the parity of the distance from the root,

- I prefer to think about the (nonempty) elements of a free binoid as trees labelled by $\Sigma \cup \{\rightarrow, \downarrow\}$, called **bi-words**.
- (1) the leaves are labelled by the letters from Σ ,
- (2) the labels \rightarrow , \downarrow of the non-leaves alternate, depending on the parity of the distance from the root,
- (3) each non-leaf has ≥ 2 successors.

- I prefer to think about the (nonempty) elements of a free binoid as trees labelled by $\Sigma \cup \{\rightarrow, \downarrow\}$, called **bi-words**.
- (1) the leaves are labelled by the letters from Σ ,
- (2) the labels \rightarrow , \downarrow of the non-leaves alternate, depending on the parity of the distance from the root,
- (3) each non-leaf has ≥ 2 successors.

The set of all bi-words over Σ : BW $_{\Sigma}$

Example.
$$b(x, y, z) = ((x \rightarrow y) \downarrow (z \rightarrow x)) \rightarrow y$$



We distinguish between three kinds of bi-words:

We distinguish between three kinds of bi-words:

(1) horizontal = the root is labelled by \rightarrow ,

We distinguish between three kinds of bi-words:

(1) horizontal = the root is labelled by \rightarrow ,

(2) vertical = the root is labelled by \downarrow ,

We distinguish between three kinds of bi-words:

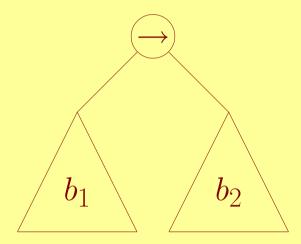
- (1) horizontal = the root is labelled by \rightarrow ,
- (2) vertical = the root is labelled by \downarrow ,
- (3) neutral = singletons + ϵ .

We distinguish between three kinds of bi-words:

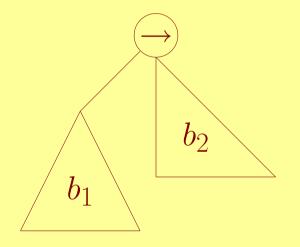
- (1) horizontal = the root is labelled by \rightarrow ,
- (2) vertical = the root is labelled by \downarrow ,
- (3) neutral = singletons + ϵ .

As an example, we show how the horizontal product works. We have three cases.

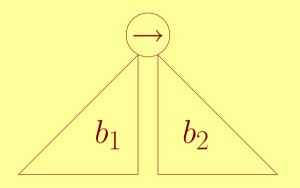
<u>Case 1</u>: b_1, b_2 are vertical/neutral



<u>Case 2</u>: b_1 is vertical/neutral, b_2 is horizontal



<u>Case 3</u>: b_1, b_2 are horizontal



Operations on binoid languages

Let L_1, L_2, L be binoid languages.

Operations on binoid languages

Let L_1, L_2, L be binoid languages.

Products

$$L_1 \to L_2 = \{ b_1 \to b_2 : b_i \in L_i, i = 1, 2 \},\$$
$$L_1 \downarrow L_2 = \{ b_1 \downarrow b_2 : b_i \in L_i, i = 1, 2 \}.$$

Operations on binoid languages

Let L_1, L_2, L be binoid languages.

Products

$$L_1 \to L_2 = \{b_1 \to b_2 : b_i \in L_i, i = 1, 2\},\$$
$$L_1 \downarrow L_2 = \{b_1 \downarrow b_2 : b_i \in L_i, i = 1, 2\}.$$

Iterations

$$L^{>} = \bigcup_{n \ge 0} L^{\xrightarrow{n}}, \qquad L^{\vee} = \bigcup_{n \ge 0} L^{\downarrow n},$$

where $L^{\stackrel{0}{\rightarrow}} = L^{\downarrow 0} = \{\epsilon\}.$

Algebra of bi-languages over Σ :

 $\mathbf{BiLang}_{\Sigma} = (\mathcal{P}(\mathsf{BW}_{\Sigma}), +, \rightarrow, \downarrow, {}^{>}, {}^{\vee}, \varnothing, \{\epsilon\})$

Algebra of bi-languages over Σ :

$$\mathbf{BiLang}_{\Sigma} = (\mathcal{P}(\mathsf{BW}_{\Sigma}), +, \rightarrow, \downarrow, {}^{>}, {}^{\vee}, \varnothing, \{\epsilon\})$$

Algebra of picture languages over Σ :

$$\mathbf{Pict}_{\Sigma} = (\mathcal{P}(\Sigma^{**}), \cup, \rightarrow, \downarrow, {}^{>}, {}^{\vee}, \varnothing, \{\epsilon\})$$

Algebra of bi-languages over Σ :

$$\mathbf{BiLang}_{\Sigma} = (\mathcal{P}(\mathsf{BW}_{\Sigma}), +, \rightarrow, \downarrow, {}^{>}, {}^{\vee}, \varnothing, \{\epsilon\})$$

Algebra of picture languages over Σ :

$$\mathbf{Pict}_{\Sigma} = (\mathcal{P}(\Sigma^{**}), \cup, \rightarrow, \downarrow, {}^{>}, {}^{\vee}, \varnothing, \{\epsilon\})$$

<u>A word of caution</u>: Recognizable picture languages (REC) require, besides the above operations, the intersection and the so-called alphabetic projection. **Theorem.** Identities satisfied by all algebras $BiLang_{\Sigma} = identities$ satisfied by all algebras $Pict_{\Sigma}$.

I.Dolinka, A note on identities of two-dimensional languages, *Discrete Applied Mathematics* **146** (2005), 43–50. **Theorem.** Identities satisfied by all algebras $BiLang_{\Sigma} = identities$ satisfied by all algebras $Pict_{\Sigma}$.

I.Dolinka, A note on identities of two-dimensional languages, *Discrete Applied Mathematics* **146** (2005), 43–50.

In the sequel, we denote the above equational theory by Θ .

Idea:

Proposition.

Idea:

Idea:

Proposition. For each bi-word $b = b(x_1, \ldots, x_n)$ there are: • an alphabet Γ ,

Idea:

- an alphabet Γ ,
- a picture $P_b \in \Gamma^{**}$ (the "witness" picture), and

Idea:

- an alphabet Γ ,
- a picture $P_b \in \Gamma^{**}$ (the "witness" picture), and
- finite picture languages $L_1, \ldots, L_n \subseteq \Gamma^{**}$

Idea:

- \bullet an alphabet Γ ,
- a picture $P_b \in \Gamma^{**}$ (the "witness" picture), and
- finite picture languages L₁,..., L_n ⊆ Γ**
 (consisting of homogeneous pictures = rectangles filled with a single kind of letter)

A result (\sim , 2005)

Idea:

Proposition. For each bi-word $b = b(x_1, \ldots, x_n)$ there are:

- an alphabet Γ ,
- a picture $P_b \in \Gamma^{**}$ (the "witness" picture), and
- finite picture languages L₁,..., L_n ⊆ Γ**
 (consisting of homogeneous pictures = rectangles filled with a single kind of letter)

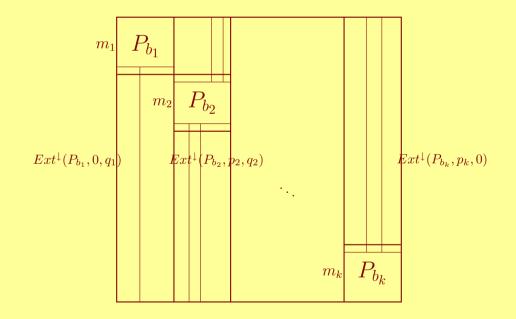
such that for any bi-word $b' = b'(x_1, \ldots, x_n)$ we have

$$P_b \in b'(L_1, \ldots, L_n) \iff b' \equiv b.$$

<u>Idea</u>: Suppose we have witness pictures P_{b_i} for b_i , $1 \leq i \leq k$.

A result (\sim , 2005)

Idea: Suppose we have witness pictures P_{b_i} for b_i , $1 \le i \le k$. The witness for $b_1 \rightarrow b_2 \rightarrow \ldots \rightarrow b_k$ is:



Example:
$$b(x, y, z) = ((x \rightarrow y) \downarrow (z \rightarrow x)) \rightarrow y$$

Example:
$$b(x, y, z) = ((x \rightarrow y) \downarrow (z \rightarrow x)) \rightarrow y$$

The algorithm from the proof of **Proposition** gives $\Gamma = \{1, 2, 3, 4, 5\}.$

Example:
$$b(x, y, z) = ((x \to y) \downarrow (z \to x)) \to y$$

The algorithm from the proof of **Proposition** gives $\Gamma = \{1, 2, 3, 4, 5\}.$

The witness picture is:

$$P_b = \begin{bmatrix} 1 & 2 & 2 & 2 & 5 \\ 1 & 2 & 2 & 2 & 5 \\ 3 & 3 & 3 & 4 & 5 \\ 3 & 3 & 3 & 4 & 5 \\ 3 & 3 & 3 & 4 & 5 \end{bmatrix}$$

What are the axioms for the equational theory Θ ?

What are the axioms for the equational theory Θ ?

Conjecture. The identities of ordinary string languages in the 'horizontal' signature $\{+, \rightarrow, ^{>}, \varnothing, \epsilon\}$ & the same identities in the 'vertical' signature $\{+, \downarrow, ^{\vee}, \varnothing, \epsilon\}$ will do.

What are the axioms for the equational theory Θ ?

Conjecture. The identities of ordinary string languages in the 'horizontal' signature $\{+, \rightarrow, ^{>}, \varnothing, \epsilon\}$ & the same identities in the 'vertical' signature $\{+, \downarrow, ^{\vee}, \varnothing, \epsilon\}$ will do.

Recently, I succeeded in proving that this conjecture is true.

A short summary of the proof follows.

Birational expression = term in the signature $\{+, \rightarrow, \downarrow, ^>, \lor, \varnothing, \epsilon\}$.

Birational expression = term in the signature $\{+, \rightarrow, \downarrow, ^{>}, ^{\vee}, \varnothing, \epsilon\}$.

 \rightarrow -rational (\downarrow -rational) expression = birational expression which contains only +, the constants, and the horizontal (vertical) operation symbols.

Birational expression = term in the signature $\{+, \rightarrow, \downarrow, ^{>}, ^{\vee}, \varnothing, \epsilon\}$.

 \rightarrow -rational (\downarrow -rational) expression = birational expression which contains only +, the constants, and the horizontal (vertical) operation symbols.

Value of a birational expression α , $\mathcal{B}(\alpha) =$ value of the term α under $x \mapsto \{x\}$, $x \in \Sigma$. Birational expression = term in the signature $\{+, \rightarrow, \downarrow, ^{>}, ^{\vee}, \varnothing, \epsilon\}$.

 \rightarrow -rational (\downarrow -rational) expression = birational expression which contains only +, the constants, and the horizontal (vertical) operation symbols.

Value of a birational expression α , $\mathcal{B}(\alpha) =$ value of the term α under $x \mapsto \{x\}$, $x \in \Sigma$.

Birational bi-language = bi-language of the form $\mathcal{B}(\alpha)$

Z.Ésik & Z.L.Németh (2004): every birational bi-language consists of bi-words of bounded depth ($\subseteq BW_{\Sigma}^{\leq d}$). The least such d is the depth $\delta(\alpha)$ of the corresponding expression α .

Z.Ésik & Z.L.Németh (2004): every birational bi-language consists of bi-words of bounded depth ($\subseteq BW_{\Sigma}^{\leq d}$). The least such d is the depth $\delta(\alpha)$ of the corresponding expression α .

Horizontal (vertical) birational expression $\alpha = \mathcal{B}(\alpha)$ consists entirely of horizontal (vertical) and neutral bi-words.

Z.Ésik & Z.L.Németh (2004): every birational bi-language consists of bi-words of bounded depth ($\subseteq \mathsf{BW}_{\Sigma}^{\leq d}$). The least such d is the depth $\delta(\alpha)$ of the corresponding expression α .

Horizontal (vertical) birational expression $\alpha = \mathcal{B}(\alpha)$ consists entirely of horizontal (vertical) and neutral bi-words.

 Γ_1 (Γ_2) = all identities of string languages in the horizontal (vertical) signature.

For any birational expression $\alpha,$ there are birational expressions α^h and α^v such that

- $\alpha = \alpha^h + \alpha^v$ follows from $\Gamma_1 \cup \Gamma_2$,
- $\mathcal{B}(\alpha_h)$ ($\mathcal{B}(\alpha_v)$) consists precisely of all horizontal (vertical) and neutral bi-words from $\mathcal{B}(\alpha)$.

For any birational expression $\alpha,$ there are birational expressions α^h and α^v such that

- $\alpha = \alpha^h + \alpha^v$ follows from $\Gamma_1 \cup \Gamma_2$,
- $\mathcal{B}(\alpha_h)$ ($\mathcal{B}(\alpha_v)$) consists precisely of all horizontal (vertical) and neutral bi-words from $\mathcal{B}(\alpha)$.

Lemma. Let α_1, α_2 be birational expressions, and let α_i^h, α_i^v (i = 1, 2) have the same meaning as above. Then $\alpha_1 = \alpha_2$ belongs to Θ if and only if both $\alpha_1^h = \alpha_2^h$ and $\alpha_1^v = \alpha_2^v$ belong to Θ . A possible problem: α is a horizontal expression $\Rightarrow \alpha \downarrow \epsilon$ is horizontal (in spite of being of the form __ \downarrow __) A possible problem: α is a horizontal expression $\Rightarrow \alpha \downarrow \epsilon$ is horizontal (in spite of being of the form __ \downarrow __)

An expression α is trimmed if it is either

A possible problem: α is a horizontal expression $\Rightarrow \alpha \downarrow \epsilon$ is horizontal (in spite of being of the form _____)

An expression α is trimmed if it is either

• graphically equal to \varnothing , or

A possible problem: α is a horizontal expression $\Rightarrow \alpha \downarrow \epsilon$ is horizontal (in spite of being of the form __ \downarrow __)

An expression α is trimmed if it is either

- graphically equal to \varnothing , or
- has no subterm equivalent to \varnothing or ϵ , except

A possible problem: α is a horizontal expression $\Rightarrow \alpha \downarrow \epsilon$ is horizontal (in spite of being of the form __ \downarrow __)

An expression α is trimmed if it is either

- graphically equal to \varnothing , or
- has no subterm equivalent to \varnothing or ϵ , except
 - a possible single summand graphically equal to ϵ

A possible problem: α is a horizontal expression $\Rightarrow \alpha \downarrow \epsilon$ is horizontal (in spite of being of the form _____)

An expression α is trimmed if it is either

- graphically equal to \varnothing , or
- has no subterm equivalent to \varnothing or ϵ , except
 - a possible single summand graphically equal to ϵ

Lemma. For each α there is a trimmed expression α_0 such that $\Gamma_1 \cup \Gamma_2 \vdash \alpha = \alpha_0$.

Linearization Lemma

Let α be a horizontal birational expression.

Let α be a horizontal birational expression.

(i) There exist a linear (= each variable occurs exactly once) \rightarrow -rational expression $\alpha'(x_1, \ldots, x_n)$ and vertical expressions β_1, \ldots, β_n such that

$$\alpha \equiv \alpha'(\beta_1,\ldots,\beta_n).$$

In such a case, if $\delta(\alpha) \ge 1$, we have $\delta(\alpha) = \max(\delta(\beta_1), \ldots, \delta(\beta_n)) + 1$.

Let α be a horizontal birational expression.

(i) There exist a linear (= each variable occurs exactly once) \rightarrow -rational expression $\alpha'(x_1, \ldots, x_n)$ and vertical expressions β_1, \ldots, β_n such that

$$\alpha \equiv \alpha'(\beta_1,\ldots,\beta_n).$$

In such a case, if $\delta(\alpha) \ge 1$, we have $\delta(\alpha) = \max(\delta(\beta_1), \ldots, \delta(\beta_n)) + 1$.

(ii) There exist a horizontal birational expression â, a linear →-rational expression α''(x₁,...,x_k) and vertical expressions β'₁,...,β'_k such that
(a) the identity α = â follows from Γ₁ ∪ Γ₂,
(b) â ≡ α''(β'₁,...,β'_k), and
(c) ε ∉ B(β'_i) and B(β'_i) ≠ Ø for all 1 ≤ i ≤ k.

Let α_1, α_2 be two horizontal birational expressions (of depth $d \ge$ 1). Linearization Lemma \Rightarrow

$$\alpha_1 = \alpha_1''(\beta_1, \dots, \beta_n), \alpha_2 = \alpha_2''(\beta_{n+1}, \dots, \beta_m),$$

where α_i'' are linear, and $\epsilon \notin \mathcal{B}(\beta_i) \neq \emptyset$.

Let α_1, α_2 be two horizontal birational expressions (of depth $d \ge$ 1). Linearization Lemma \Rightarrow

$$\alpha_1 = \alpha_1''(\beta_1, \dots, \beta_n), \alpha_2 = \alpha_2''(\beta_{n+1}, \dots, \beta_m),$$

where α_i'' are linear, and $\epsilon \notin \mathcal{B}(\beta_i) \neq \emptyset$.

Let $Y_i = \mathcal{B}(\beta_i)$ $(1 \leq i \leq m)$.

Let α_1, α_2 be two horizontal birational expressions (of depth $d \ge 1$). Linearization Lemma \Rightarrow

$$\alpha_1 = \alpha_1''(\beta_1, \dots, \beta_n), \alpha_2 = \alpha_2''(\beta_{n+1}, \dots, \beta_m),$$

where α_i'' are linear, and $\epsilon \notin \mathcal{B}(\beta_i) \neq \emptyset$.

Let $Y_i = \mathcal{B}(\beta_i)$ $(1 \leq i \leq m)$.

All there languages are (nonempty) subsets of E – the set of all neutral and vertical bi-words of depth $\leq d - 1$.

For convenience, let $Y_i^0 = Y_i$ and $Y_i^1 = E \setminus Y_i$.

For convenience, let $Y_i^0 = Y_i$ and $Y_i^1 = E \setminus Y_i$.

For a binary sequence $\sigma \in \{0,1\}^m$, let

$$X_{\sigma} = \bigcap_{i=1}^{m} Y_i^{\sigma(i)}.$$

For convenience, let $Y_i^0 = Y_i$ and $Y_i^1 = E \setminus Y_i$.

For a binary sequence $\sigma \in \{0,1\}^m$, let

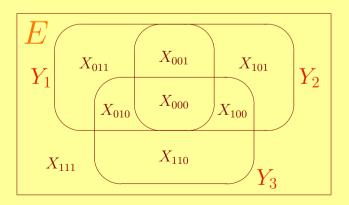
$$X_{\sigma} = \bigcap_{i=1}^{m} Y_i^{\sigma(i)}.$$

What the heck is this?

For convenience, let $Y_i^0 = Y_i$ and $Y_i^1 = E \setminus Y_i$.

For a binary sequence $\sigma \in \{0, 1\}^m$, let $X_{\sigma} = \bigcap_{i=1}^m Y_i^{\sigma(i)}.$

What the heck is this?



For $1 \leq i \leq m$, define the sets $\Lambda_i \subseteq \{0, 1\}^m$ by

 $\sigma \in \Lambda_i$ if and only if $\sigma(i) = 0$ and $X_{\sigma} \neq \emptyset$.

For $1 \leq i \leq m$, define the sets $\Lambda_i \subseteq \{0,1\}^m$ by

 $\sigma \in \Lambda_i$ if and only if $\sigma(i) = 0$ and $X_{\sigma} \neq \emptyset$.

The 'horizontal' identity

$$\alpha_1''\left(\sum_{\sigma\in\Lambda_1}x_{\sigma},\ldots,\sum_{\sigma\in\Lambda_n}x_{\sigma}\right)=\alpha_2''\left(\sum_{\sigma\in\Lambda_{n+1}}x_{\sigma},\ldots,\sum_{\sigma\in\Lambda_m}x_{\sigma}\right)$$

is an adjoined string identity (or doppelgänger) for $\alpha_1 = \alpha_2$.

For $1 \leq i \leq m$, define the sets $\Lambda_i \subseteq \{0, 1\}^m$ by $\sigma \in \Lambda_i$ if and only if $\sigma(i) = 0$ and $X_\sigma \neq \emptyset$.

The 'horizontal' identity

$$\alpha_1''\left(\sum_{\sigma\in\Lambda_1} x_{\sigma}, \dots, \sum_{\sigma\in\Lambda_n} x_{\sigma}\right) = \alpha_2''\left(\sum_{\sigma\in\Lambda_{n+1}} x_{\sigma}, \dots, \sum_{\sigma\in\Lambda_m} x_{\sigma}\right)$$
is an adjoined string identity (or doppelgänger) for $\alpha_1 = \alpha_2$.

The idea behind this identity is that the above sums of letters (from $\Xi_m = \{x_\sigma : \sigma \in \{0,1\}^m\}$) indexed by Λ_i 's record the **set-theoretical configuration** of the bi-languages Y_i .

 $x^{>} + (x^{\vee})^{>} = (x^{\vee})^{>}$

$$x^{>} + (x^{\vee})^{>} = (x^{\vee})^{>}$$

Linearization yields $\beta_1^> + \beta_2^> = \beta_3^>$, where $\beta_1 \equiv x$ $\beta_2 \equiv \beta_3 \equiv x^{\vee}$.

$$x^{>} + (x^{\vee})^{>} = (x^{\vee})^{>}$$

Linearization yields $\beta_1^> + \beta_2^> = \beta_3^>$, where $\beta_1 \equiv x$ $\beta_2 \equiv \beta_3 \equiv x^{\vee}$.

To get rid of ϵ from $\mathcal{B}(\beta_2)=\mathcal{B}(\beta_3),$ we make use of $x^{\vee}=\epsilon+x\downarrow x^{\vee}$

and proceed with $x \downarrow x^{\lor}$ instead of x^{\lor} .

Now we have $Y_1 \subset Y_2 = Y_3$, thus $\Lambda_1 = \{000\}$ and $\Lambda_2 = \Lambda_3 = \{000, 100\}$.

Now we have $Y_1 \subset Y_2 = Y_3$, thus $\Lambda_1 = \{000\}$ and $\Lambda_2 = \Lambda_3 = \{000, 100\}$.

For simplicity, write x for x_{000} and y for x_{100} . So, our doppelgänger is just

$$x^{>} + (x+y)^{>} = (x+y)^{>},$$

a familiar law telling that the Kleene star is monotone.

Assume $\alpha_1 = \alpha_2$ belongs to Θ (i.e. it is a valid bi-langauge identity). Then its doppelgänger is a valid string identity.

Goal: to prove that a valid identity $\alpha_1 = \alpha_2$ is a consequence of $\Gamma_1 \cup \Gamma_2$.

Goal: to prove that a valid identity $\alpha_1 = \alpha_2$ is a consequence of $\Gamma_1 \cup \Gamma_2$.

Plan: induction on $\delta(\alpha_1) = \delta(\alpha_2) = d$ (case $d \leq 1$ is trivial...).

Goal: to prove that a valid identity $\alpha_1 = \alpha_2$ is a consequence of $\Gamma_1 \cup \Gamma_2$.

Plan: induction on $\delta(\alpha_1) = \delta(\alpha_2) = d$ (case $d \leq 1$ is trivial...).

Decomposition Lemma $\Rightarrow \alpha_i = \alpha_i^h + \alpha_i^v$ (i = 1, 2) follows from $\Gamma_1 \cup \Gamma_2$.

Goal: to prove that a valid identity $\alpha_1 = \alpha_2$ is a consequence of $\Gamma_1 \cup \Gamma_2$.

Plan: induction on $\delta(\alpha_1) = \delta(\alpha_2) = d$ (case $d \leq 1$ is trivial...).

Decomposition Lemma $\Rightarrow \alpha_i = \alpha_i^h + \alpha_i^v$ (i = 1, 2) follows from $\Gamma_1 \cup \Gamma_2$.

 $\alpha_1=\alpha_2$ holds if and only if both $\alpha_1^h=\alpha_2^h$ and $\alpha_1^v=\alpha_2^v$ are valid.

Goal: to prove that a valid identity $\alpha_1 = \alpha_2$ is a consequence of $\Gamma_1 \cup \Gamma_2$.

Plan: induction on $\delta(\alpha_1) = \delta(\alpha_2) = d$ (case $d \leq 1$ is trivial...).

Decomposition Lemma $\Rightarrow \alpha_i = \alpha_i^h + \alpha_i^v$ (i = 1, 2) follows from $\Gamma_1 \cup \Gamma_2$.

 $\alpha_1=\alpha_2$ holds if and only if both $\alpha_1^h=\alpha_2^h$ and $\alpha_1^v=\alpha_2^v$ are valid.

So, we may assume that both α_1 and α_2 are e.g. horizontal.

Linearization Lemma \Rightarrow there are horizontal birational expressions $\hat{\alpha}_1, \hat{\alpha}_2$ such that

$$\Gamma_1 \cup \Gamma_2 \vdash \alpha_1 = \hat{\alpha}_1, \quad \alpha_2 = \hat{\alpha}_2,$$

Linearization Lemma \Rightarrow there are horizontal birational expressions $\hat{\alpha}_1, \hat{\alpha}_2$ such that

$$\Gamma_1 \cup \Gamma_2 \vdash \alpha_1 = \hat{\alpha}_1, \quad \alpha_2 = \hat{\alpha}_2,$$

while the identity $\hat{\alpha}_1 = \hat{\alpha}_2$ has the form

$$\alpha_1''(\beta_1',\ldots,\beta_k') = \alpha_2''(\beta_{k+1}',\ldots,\beta_m'),$$

Linearization Lemma \Rightarrow there are horizontal birational expressions $\hat{\alpha}_1, \hat{\alpha}_2$ such that

$$\Gamma_1 \cup \Gamma_2 \vdash \alpha_1 = \hat{\alpha}_1, \quad \alpha_2 = \hat{\alpha}_2,$$

while the identity $\hat{\alpha}_1 = \hat{\alpha}_2$ has the form

$$\alpha_1''(\beta_1',\ldots,\beta_k') = \alpha_2''(\beta_{k+1}',\ldots,\beta_m'),$$

where α_1'', α_2'' are linear \rightarrow -rational expressions (involved later in the course of forming a doppelgänger identity), and $\beta_1', \ldots, \beta_m''$ are vertical expressions, all of them having depth at most d-1, whose values Y_1, \ldots, Y_m satisfy $\epsilon \notin Y_i \neq \emptyset$, $1 \leqslant i \leqslant m$. Let $\Lambda_1, \ldots, \Lambda_m$ and $X_{\sigma}, \sigma \in I$, be as in the definition of a doppelgänger. We already know that

$$Y_i = \bigcup_{\sigma \in \Lambda_i} X_\sigma$$

holds for all $1 \leq i \leq m$.

Let $\Lambda_1, \ldots, \Lambda_m$ and $X_{\sigma}, \sigma \in I$, be as in the definition of a doppelgänger. We already know that

$$Y_i = \bigcup_{\sigma \in \Lambda_i} X_\sigma$$

holds for all $1 \leq i \leq m$.

Ésik–Németh (2004) \Rightarrow birational bi-languages closed for intersections and set differences, so all X_{σ} 's are birational,

 $X_{\sigma} = \mathcal{B}(\xi_{\sigma}).$

Therefore, the following identities are valid:

$$\beta_i' = \sum_{\sigma \in \Lambda_i} \xi_\sigma, \quad (*)$$

for all $1 \leq i \leq m$.

Therefore, the following identities are valid:

$$\beta_i' = \sum_{\sigma \in \Lambda_i} \xi_\sigma, \quad (*)$$

for all $1 \leq i \leq m$.

This is an identity of depth $\leq d - 1$, so it follows from $\Gamma_1 \cup \Gamma_2$ by induction hypothesis.

Doppelgänger Lemma \Rightarrow the adjoined string identity

$$\alpha_1''\left(\sum_{\sigma\in\Lambda_1}x_{\sigma},\ldots,\sum_{\sigma\in\Lambda_n}x_{\sigma}\right)=\alpha_2''\left(\sum_{\sigma\in\Lambda_{n+1}}x_{\sigma},\ldots,\sum_{\sigma\in\Lambda_m}x_{\sigma}\right)$$

is a valid one, thus it belongs to Γ_1 .

Doppelgänger Lemma \Rightarrow the adjoined string identity

$$\alpha_1''\left(\sum_{\sigma\in\Lambda_1}x_{\sigma},\ldots,\sum_{\sigma\in\Lambda_n}x_{\sigma}\right)=\alpha_2''\left(\sum_{\sigma\in\Lambda_{n+1}}x_{\sigma},\ldots,\sum_{\sigma\in\Lambda_m}x_{\sigma}\right)$$

is a valid one, thus it belongs to Γ_1 .

Apply the substitution $x_{\sigma} \mapsto \xi_{\sigma}$.

Doppelgänger Lemma \Rightarrow the adjoined string identity

$$\alpha_1''\left(\sum_{\sigma\in\Lambda_1}x_{\sigma},\ldots,\sum_{\sigma\in\Lambda_n}x_{\sigma}\right)=\alpha_2''\left(\sum_{\sigma\in\Lambda_{n+1}}x_{\sigma},\ldots,\sum_{\sigma\in\Lambda_m}x_{\sigma}\right)$$

is a valid one, thus it belongs to Γ_1 .

Apply the substitution $x_{\sigma} \mapsto \xi_{\sigma}$.

By combining (*) and the above doppelgänger, we obtain the required formal proof for $\alpha_1 = \alpha_2$.

$$x^{>} + (x^{\vee})^{>} = (x^{\vee})^{>}$$

$$x^{>} + (x^{\vee})^{>} = (x^{\vee})^{>}$$

This is first transformed into

$$x^{>} + (x \downarrow x^{\vee})^{>} = (x \downarrow x^{\vee})^{>}.$$

$$x^{>} + (x^{\vee})^{>} = (x^{\vee})^{>}$$

This is first transformed into

$$x^{>} + (x \downarrow x^{\vee})^{>} = (x \downarrow x^{\vee})^{>}.$$

As we have argued, a doppelgänger is

$$x^{>} + (x+y)^{>} = (x+y)^{>}.$$

$$x^{>} + (x^{\vee})^{>} = (x^{\vee})^{>}$$

This is first transformed into

$$x^{>} + (x \downarrow x^{\vee})^{>} = (x \downarrow x^{\vee})^{>}.$$

As we have argued, a doppelgänger is

$$x^{>} + (x+y)^{>} = (x+y)^{>}.$$

So, the nonempty X_{σ} 's are $X_{000} = \{x\}$ and $X_{100} = \{x \downarrow x, x \downarrow x \downarrow x, \dots\}.$

$$x^{>} + (x^{\vee})^{>} = (x^{\vee})^{>}$$

This is first transformed into

$$x^{>} + (x \downarrow x^{\vee})^{>} = (x \downarrow x^{\vee})^{>}.$$

As we have argued, a doppelgänger is

$$x^{>} + (x+y)^{>} = (x+y)^{>}.$$

So, the nonempty X_{σ} 's are $X_{000} = \{x\}$ and $X_{100} = \{x \downarrow x, x \downarrow x \downarrow x, \dots\}.$

Thus, we have $\xi_{000} \equiv x$ and $\xi_{100} = x \downarrow x \downarrow x^{\vee}$.

$$x^{>} + (x^{\vee})^{>} = (x^{\vee})^{>}$$

This is first transformed into

$$x^{>} + (x \downarrow x^{\vee})^{>} = (x \downarrow x^{\vee})^{>}.$$

As we have argued, a doppelgänger is

$$x^{>} + (x+y)^{>} = (x+y)^{>}.$$

So, the nonempty X_{σ} 's are $X_{000} = \{x\}$ and $X_{100} = \{x \downarrow x, x \downarrow x \downarrow x, \dots\}.$

Thus, we have $\xi_{000} \equiv x$ and $\xi_{100} = x \downarrow x \downarrow x^{\vee}$.

Now, our identity follows from the above doppelgänger and $x+x\downarrow x\downarrow x^{\vee}=x\downarrow x^{\vee}.$

THANK YOU!

All questions and comments to: dockie@im.ns.ac.yu

A preprint may be found at: www.im.ns.ac.yu/personal/dolinkai