Szegedi Tudományegyetem

Informatikai Tanszékcsoport
Számitástudomány Alapjai Tanszék
2006. május 8.

Identities of Two-Dimensional Languages

Igor Dolinka

Department of Mathematics and Informatics

University of Novi Sad, Serbia \& Mont.

What is a two-dimensional language?

What is a two-dimensional language?

Well, it depends on your personal view of ordinary (string) languages...

What is a two-dimensional language?

Well, it depends on your personal view of ordinary (string) languages...

Version A. (Combinatorial)
WORD $=$ a finite sequence of letters

What is a two-dimensional language?

Well, it depends on your personal view of ordinary (string) languages...

Version A. (Combinatorial)
WORD $=$ a finite sequence of letters
Version B. (Algebraic)
WORD = an element of a free monoid

What is a two-dimensional language?

A

A two-dimensional word is a matrix of letters - a picture:

$$
P=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]
$$

where $a_{i j} \in \Sigma$ for some alphabet Σ.

What is a two-dimensional language?

A

A two-dimensional word is a matrix of letters - a picture:

$$
P=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \cdots & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right]
$$

where $a_{i j} \in \Sigma$ for some alphabet Σ.
A picture language is a set of pictures.

Operations on pictures and picture languages

Let $P=\left[a_{i j}\right]_{m \times n}$ and $Q=\left[b_{i j}\right]_{k \times \ell}$ be pictures.

Operations on pictures and picture languages

Let $P=\left[a_{i j}\right]_{m \times n}$ and $Q=\left[b_{i j}\right]_{k \times \ell}$ be pictures.

The column product
$P \rightarrow Q$ is defined only if
$m=k$, and its result is

$$
\left[\begin{array}{cccccc}
a_{11} & \cdots & a_{1 n} & b_{11} & \ldots & b_{1 \ell} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n} & b_{m 1} & \cdots & b_{m \ell}
\end{array}\right]
$$

Operations on pictures and picture languages

Let $P=\left[a_{i j}\right]_{m \times n}$ and $Q=\left[b_{i j}\right]_{k \times \ell}$ be pictures.

The column product
$P \rightarrow Q$ is defined only if
$m=k$, and its result is

$$
\left[\begin{array}{cccccc}
a_{11} & \cdots & a_{1 n} & b_{11} & \cdots & b_{1 \ell} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n} & b_{m 1} & \cdots & b_{m \ell}
\end{array}\right]
$$

The row product $P \downarrow Q$ is defined only if $n=\ell$, and its result is

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & \ddots & \vdots \\
a_{m 1} & \cdots & a_{m n} \\
b_{11} & \cdots & b_{1 n} \\
\vdots & \ddots & \vdots \\
b_{k 1} & \cdots & b_{k n}
\end{array}\right]
$$

Operations on pictures and picture languages

Let L_{1}, L_{2}, L be picture languages.

Operations on pictures and picture languages

Let L_{1}, L_{2}, L be picture languages.

Products

$$
\begin{aligned}
L_{1} \rightarrow L_{2} & =\left\{P_{1} \rightarrow P_{2}: P_{i} \in L_{i}, i=1,2, P_{1} \rightarrow P_{2} \text { exists }\right\}, \\
L_{1} \downarrow L_{2} & =\left\{P_{1} \downarrow P_{2}: P_{i} \in L_{i}, i=1,2, P_{1} \downarrow P_{2} \text { exists }\right\} .
\end{aligned}
$$

Operations on pictures and picture languages

Let L_{1}, L_{2}, L be picture languages.

Products

$$
\begin{aligned}
L_{1} \rightarrow L_{2} & =\left\{P_{1} \rightarrow P_{2}: P_{i} \in L_{i}, i=1,2, P_{1} \rightarrow P_{2} \text { exists }\right\}, \\
L_{1} \downarrow L_{2} & =\left\{P_{1} \downarrow P_{2}: P_{i} \in L_{i}, i=1,2, P_{1} \downarrow P_{2} \text { exists }\right\} .
\end{aligned}
$$

Iterations

$$
L^{>}=\bigcup_{n \geqslant 0} L^{n}, \quad L^{\vee}=\bigcup_{n \geqslant 0} L^{\downarrow n},
$$

where $L^{\underline{0}}=L^{\downarrow 0}=\{\epsilon\}$.

What is a two-dimensional language?

B
A two-dimensional word is an element of a free binoid over Σ.

What is a two-dimensional language?

B
A two-dimensional word is an element of a free binoid over Σ.

Free binoid $=$ the free object in the variety of all algebras with two binary associative operations and a common 1 (to be denoted by ϵ).

What is a two-dimensional language?

B
A two-dimensional word is an element of a free binoid over Σ.

Free binoid $=$ the free object in the variety of all algebras with two binary associative operations and a common 1 (to be denoted by ϵ).

A binoid language (or bi-language) is a subset of a free binoid.

How to represent elements of a free binoid? Take 1.
Z.Ésik (2000): sp-biposets

How to represent elements of a free binoid? Take 1.

Z.Ésik (2000): sp-biposets
Σ-labelled biposets: a set with two strict orders $\mathcal{A}=\left(A,<_{1},<_{2}\right)$ and a labelling function $\lambda_{\mathcal{A}}: A \rightarrow \Sigma$.

How to represent elements of a free binoid? Take 1.

Z.Ésik (2000): sp-biposets
Σ-labelled biposets: a set with two strict orders $\mathcal{A}=\left(A,<_{1},<_{2}\right)$ and a labelling function $\lambda_{\mathcal{A}}: A \rightarrow \Sigma$.
$x \in \Sigma$ is identified with the singleton poset S_{x}, labelled by x.

How to represent elements of a free binoid? Take 1.

New biposets are obtained by two binary operations \circ_{1}, \circ_{2}, where $\mathcal{A} \circ_{i} \mathcal{B}(i=1,2)$ is defined on $A \cup B$ by

$$
<_{j}^{\mathcal{A} \circ_{i} \mathcal{B}}= \begin{cases}<_{j}^{\mathcal{A}} \cup<_{j}^{\mathcal{B}} & \text { if } j \neq i, \\ <_{j}^{\mathcal{A}} \cup<_{j}^{\mathcal{B}} \cup(A \times B) & \text { if } j=i .\end{cases}
$$

How to represent elements of a free binoid? Take 1.

New biposets are obtained by two binary operations \circ_{1}, \circ_{2}, where $\mathcal{A} \circ_{i} \mathcal{B}(i=1,2)$ is defined on $A \cup B$ by

$$
<_{j}^{\mathcal{A} \circ_{i} \mathcal{B}}= \begin{cases}<_{j}^{\mathcal{A}} \cup<_{j}^{\mathcal{B}} & \text { if } j \neq i, \\ <_{j}^{\mathcal{A}} \cup<_{j}^{\mathcal{B}} \cup(A \times B) & \text { if } j=i .\end{cases}
$$

A biposet is series-parallel (sp for short) if it is generated from the singletons by the two product operations.

How to represent elements of a free binoid? Take 2.

I prefer to think about the (nonempty) elements of a free binoid as trees labelled by $\Sigma \cup\{\rightarrow, \downarrow\}$, called bi-words.

How to represent elements of a free binoid? Take 2.

I prefer to think about the (nonempty) elements of a free binoid as trees labelled by $\Sigma \cup\{\rightarrow, \downarrow\}$, called bi-words.
(1) the leaves are labelled by the letters from Σ,

How to represent elements of a free binoid? Take 2.

I prefer to think about the (nonempty) elements of a free binoid as trees labelled by $\Sigma \cup\{\rightarrow, \downarrow\}$, called bi-words.
(1) the leaves are labelled by the letters from Σ,
(2) the labels \rightarrow, \downarrow of the non-leaves alternate, depending on the parity of the distance from the root,

How to represent elements of a free binoid? Take 2.

I prefer to think about the (nonempty) elements of a free binoid as trees labelled by $\Sigma \cup\{\rightarrow, \downarrow\}$, called bi-words.
(1) the leaves are labelled by the letters from Σ,
(2) the labels \rightarrow, \downarrow of the non-leaves alternate, depending on the parity of the distance from the root,
(3) each non-leaf has $\geqslant 2$ successors.

How to represent elements of a free binoid? Take 2.

I prefer to think about the (nonempty) elements of a free binoid as trees labelled by $\Sigma \cup\{\rightarrow, \downarrow\}$, called bi-words.
(1) the leaves are labelled by the letters from Σ,
(2) the labels \rightarrow, \downarrow of the non-leaves alternate, depending on the parity of the distance from the root,
(3) each non-leaf has $\geqslant 2$ successors.

The set of all bi-words over $\Sigma: B W_{\Sigma}$

How to represent elements of a free binoid? Take 2.

Example. $b(x, y, z)=((x \rightarrow y) \downarrow(z \rightarrow x)) \rightarrow y$

How to represent elements of a free binoid? Take 2.

We distinguish between three kinds of bi-words:

How to represent elements of a free binoid? Take 2.

We distinguish between three kinds of bi-words:
(1) horizontal $=$ the root is labelled by \rightarrow,

How to represent elements of a free binoid? Take 2.

We distinguish between three kinds of bi-words:
(1) horizontal $=$ the root is labelled by \rightarrow,
(2) vertical $=$ the root is labelled by \downarrow,

How to represent elements of a free binoid? Take 2.

We distinguish between three kinds of bi-words:
(1) horizontal $=$ the root is labelled by \rightarrow,
(2) vertical $=$ the root is labelled by \downarrow,
(3) neutral $=$ singletons $+\epsilon$.

How to represent elements of a free binoid? Take 2.

We distinguish between three kinds of bi-words:
(1) horizontal $=$ the root is labelled by \rightarrow,
(2) vertical $=$ the root is labelled by \downarrow,
(3) neutral $=$ singletons $+\epsilon$.

As an example, we show how the horizontal product works. We have three cases.

How to represent elements of a free binoid? Take 2.

Case 1: b_{1}, b_{2} are vertical/neutral

How to represent elements of a free binoid? Take 2.

Case 2: b_{1} is vertical/neutral, b_{2} is horizontal

How to represent elements of a free binoid? Take 2.

Case 3: b_{1}, b_{2} are horizontal

Operations on binoid languages

Let L_{1}, L_{2}, L be binoid languages.

Operations on binoid languages

Let L_{1}, L_{2}, L be binoid languages.

Products

$$
\begin{aligned}
L_{1} \rightarrow L_{2} & =\left\{b_{1} \rightarrow b_{2}: b_{i} \in L_{i}, i=1,2\right\}, \\
L_{1} \downarrow L_{2} & =\left\{b_{1} \downarrow b_{2}: b_{i} \in L_{i}, i=1,2\right\} .
\end{aligned}
$$

Operations on binoid languages

Let L_{1}, L_{2}, L be binoid languages.

Products

$$
\begin{aligned}
L_{1} \rightarrow L_{2} & =\left\{b_{1} \rightarrow b_{2}: b_{i} \in L_{i}, i=1,2\right\}, \\
L_{1} \downarrow L_{2} & =\left\{b_{1} \downarrow b_{2}: b_{i} \in L_{i}, i=1,2\right\} .
\end{aligned}
$$

Iterations

$$
L^{>}=\bigcup_{n \geqslant 0} L^{n}, \quad L^{\vee}=\bigcup_{n \geqslant 0} L^{\downarrow n},
$$

where $L^{\underline{0}}=L^{\downarrow 0}=\{\epsilon\}$.

Algebras

Algebra of bi-languages over Σ :

$$
\operatorname{BiLang}_{\Sigma}=\left(\mathcal{P}\left(\mathrm{BW}_{\Sigma}\right),+, \rightarrow, \downarrow,{ }^{>},{ }^{\vee}, \varnothing,\{\epsilon\}\right)
$$

Algebras

Algebra of bi-languages over Σ :

$$
\operatorname{BiLang}_{\Sigma}=\left(\mathcal{P}\left(\mathrm{BW}_{\Sigma}\right),+, \rightarrow, \downarrow,,^{>},{ }^{\vee}, \varnothing,\{\epsilon\}\right)
$$

Algebra of picture languages over Σ :

$$
\operatorname{Pict}_{\Sigma}=\left(\mathcal{P}\left(\Sigma^{* *}\right), \cup, \rightarrow, \downarrow,^{>},{ }^{\vee}, \varnothing,\{\epsilon\}\right)
$$

Algebras

Algebra of bi-languages over Σ :

$$
\operatorname{BiLang}_{\Sigma}=\left(\mathcal{P}\left(\mathrm{BW}_{\Sigma}\right),+, \rightarrow, \downarrow,,^{>},{ }^{\vee}, \varnothing,\{\epsilon\}\right)
$$

Algebra of picture languages over Σ :

$$
\operatorname{Pict}_{\Sigma}=\left(\mathcal{P}\left(\Sigma^{* *}\right), \cup, \rightarrow, \downarrow,^{>},{ }^{\vee}, \varnothing,\{\epsilon\}\right)
$$

A word of caution: Recognizable picture languages (REC) require, besides the above operations, the intersection and the so-called alphabetic projection.

A result (\sim, 2005)

Theorem. Identities satisfied by all algebras $\mathrm{BiLang}_{\Sigma}=$ identities satisfied by all algebras $\operatorname{Pict}_{\Sigma}$.
I.Dolinka, A note on identities of two-dimensional languages, Discrete Applied Mathematics 146 (2005), 43-50.

A result (\sim, 2005)

Theorem. Identities satisfied by all algebras $\mathrm{BiLang}_{\Sigma}=$ identities satisfied by all algebras Pict $_{\Sigma}$.
I.Dolinka, A note on identities of two-dimensional languages, Discrete Applied Mathematics 146 (2005), 43-50.

In the sequel, we denote the above equational theory by Θ.

A result (\sim, 2005)

Idea:
Proposition.

A result (\sim, 2005)

Idea:

Proposition. For each bi-word $b=b\left(x_{1}, \ldots, x_{n}\right)$ there are:

A result (\sim, 2005)

Idea:

Proposition. For each bi-word $b=b\left(x_{1}, \ldots, x_{n}\right)$ there are:

- an alphabet Γ,

A result (\sim, 2005)

Idea:

Proposition. For each bi-word $b=b\left(x_{1}, \ldots, x_{n}\right)$ there are:

- an alphabet Γ,
- a picture $P_{b} \in \Gamma^{* *}$ (the "witness" picture), and

A result (\sim, 2005)

Idea:

Proposition. For each bi-word $b=b\left(x_{1}, \ldots, x_{n}\right)$ there are:

- an alphabet Γ,
- a picture $P_{b} \in \Gamma^{* *}$ (the "witness" picture), and
- finite picture languages $L_{1}, \ldots, L_{n} \subseteq \Gamma^{* *}$

A result (\sim, 2005)

Idea:

Proposition. For each bi-word $b=b\left(x_{1}, \ldots, x_{n}\right)$ there are:

- an alphabet Γ,
- a picture $P_{b} \in \Gamma^{* *}$ (the "witness" picture), and
- finite picture languages $L_{1}, \ldots, L_{n} \subseteq \Gamma^{* *}$
(consisting of homogeneous pictures $=$ rectangles filled with
a single kind of letter)

A result (\sim, 2005)

Idea:

Proposition. For each bi-word $b=b\left(x_{1}, \ldots, x_{n}\right)$ there are:

- an alphabet Γ,
- a picture $P_{b} \in \Gamma^{* *}$ (the "witness" picture), and
- finite picture languages $L_{1}, \ldots, L_{n} \subseteq \Gamma^{* *}$
(consisting of homogeneous pictures $=$ rectangles filled with
a single kind of letter)
such that for any bi-word $b^{\prime}=b^{\prime}\left(x_{1}, \ldots, x_{n}\right)$ we have

$$
P_{b} \in b^{\prime}\left(L_{1}, \ldots, L_{n}\right) \Longleftrightarrow b^{\prime} \equiv b
$$

A result (\sim, 2005)

Idea: Suppose we have witness pictures $P_{b_{i}}$ for $b_{i}, 1 \leqslant i \leqslant k$.

A result (\sim, 2005)

Idea: Suppose we have witness pictures $P_{b_{i}}$ for $b_{i}, 1 \leqslant i \leqslant k$. The witness for $b_{1} \rightarrow b_{2} \rightarrow \ldots \rightarrow b_{k}$ is:

A result (\sim, 2005)

Example: $b(x, y, z)=((x \rightarrow y) \downarrow(z \rightarrow x)) \rightarrow y$

A result (\sim, 2005)

Example: $b(x, y, z)=((x \rightarrow y) \downarrow(z \rightarrow x)) \rightarrow y$

The algorithm from the proof of Proposition gives
$\Gamma=\{1,2,3,4,5\}$.

A result (\sim, 2005)

Example: $b(x, y, z)=((x \rightarrow y) \downarrow(z \rightarrow x)) \rightarrow y$

The algorithm from the proof of Proposition gives
$\Gamma=\{1,2,3,4,5\}$.

The witness picture is:

$$
P_{b}=\left[\begin{array}{lllll}
1 & 2 & 2 & 2 & 5 \\
1 & 2 & 2 & 2 & 5 \\
3 & 3 & 3 & 4 & 5 \\
3 & 3 & 3 & 4 & 5 \\
3 & 3 & 3 & 4 & 5
\end{array}\right] .
$$

A problem

What are the axioms for the equational theory Θ ?

A problem

What are the axioms for the equational theory Θ ?
Conjecture. The identities of ordinary string languages in the 'horizontal' signature $\{+, \rightarrow,>, \varnothing, \epsilon\}$ \& the same identities in the 'vertical' signature $\left\{+, \downarrow,{ }^{\vee}, \varnothing, \epsilon\right\}$ will do.

A problem

What are the axioms for the equational theory Θ ?
Conjecture. The identities of ordinary string languages in the 'horizontal' signature $\{+, \rightarrow,>, \varnothing, \epsilon\}$ \& the same identities in the 'vertical' signature $\left\{+, \downarrow,{ }^{\vee}, \varnothing, \epsilon\right\}$ will do.

Recently, I succeeded in proving that this conjecture is true.

A short summary of the proof follows.

Definitions \#1

Birational expression $=$ term in the signature $\left\{+, \rightarrow, \downarrow,{ }^{>},{ }^{\vee}, \varnothing, \epsilon\right\}$.

Definitions \#1

Birational expression $=$ term in the signature $\left\{+, \rightarrow, \downarrow,>,{ }^{\vee}, \varnothing, \epsilon\right\}$.
\rightarrow-rational (\downarrow-rational) expression $=$ birational expression which contains only + , the constants, and the horizontal (vertical) operation symbols.

Definitions \#1

Birational expression $=$ term in the signature $\{+, \rightarrow, \downarrow,>, \vee, \varnothing, \epsilon\}$.
\rightarrow-rational (\downarrow-rational) expression $=$ birational expression which contains only + , the constants, and the horizontal (vertical) operation symbols.

Value of a birational expression $\alpha, \mathcal{B}(\alpha)=$ value of the term α under $x \mapsto\{x\}, x \in \Sigma$.

Definitions \#1

Birational expression $=$ term in the signature $\{+, \rightarrow, \downarrow,>, \vee, \varnothing, \epsilon\}$.
\rightarrow-rational (\downarrow-rational) expression $=$ birational expression which contains only + , the constants, and the horizontal (vertical) operation symbols.

Value of a birational expression $\alpha, \mathcal{B}(\alpha)=$ value of the term α under $x \mapsto\{x\}, x \in \Sigma$.

Birational bi-language $=$ bi-language of the form $\mathcal{B}(\alpha)$

Definitions \#1

Z.Ésik \& Z.L.Németh (2004): every birational bi-language consists of bi-words of bounded depth $\left(\subseteq B W_{\Sigma}^{\leqslant d}\right)$. The least such d is the depth $\delta(\alpha)$ of the corresponding expression α.

Definitions \#1

Z.Ésik \& Z.L.Németh (2004): every birational bi-language consists of bi-words of bounded depth $\left(\subseteq B W_{\Sigma}^{\leqslant d}\right)$. The least such d is the depth $\delta(\alpha)$ of the corresponding expression α.

Horizontal (vertical) birational expression $\alpha=\mathcal{B}(\alpha)$ consists entirely of horizontal (vertical) and neutral bi-words.

Definitions \#1

Z.Ésik \& Z.L.Németh (2004): every birational bi-language consists of bi-words of bounded depth $\left(\subseteq B W_{\Sigma}^{\leqslant d}\right)$. The least such d is the depth $\delta(\alpha)$ of the corresponding expression α.

Horizontal (vertical) birational expression $\alpha=\mathcal{B}(\alpha)$ consists entirely of horizontal (vertical) and neutral bi-words.
$\Gamma_{1}\left(\Gamma_{2}\right)=$ all identities of string languages in the horizontal (vertical) signature.

Decomposition Lemma

For any birational expression α, there are birational expressions α^{h} and α^{v} such that

- $\alpha=\alpha^{h}+\alpha^{v}$ follows from $\Gamma_{1} \cup \Gamma_{2}$,
- $\mathcal{B}\left(\alpha_{h}\right)\left(\mathcal{B}\left(\alpha_{v}\right)\right)$ consists precisely of all horizontal (vertical) and neutral bi-words from $\mathcal{B}(\alpha)$.

Decomposition Lemma

For any birational expression α, there are birational expressions α^{h} and α^{v} such that

- $\alpha=\alpha^{h}+\alpha^{v}$ follows from $\Gamma_{1} \cup \Gamma_{2}$,
- $\mathcal{B}\left(\alpha_{h}\right)\left(\mathcal{B}\left(\alpha_{v}\right)\right)$ consists precisely of all horizontal (vertical) and neutral bi-words from $\mathcal{B}(\alpha)$.

Lemma. Let α_{1}, α_{2} be birational expressions, and let $\alpha_{i}^{h}, \alpha_{i}^{v}$ ($i=1,2$) have the same meaning as above. Then $\alpha_{1}=\alpha_{2}$ belongs to Θ if and only if both $\alpha_{1}^{h}=\alpha_{2}^{h}$ and $\alpha_{1}^{v}=\alpha_{2}^{v}$ belong to Θ.

Definitions \#2 \& a lemma

A possible problem: α is a horizontal expression $\Rightarrow \alpha \downarrow \epsilon$ is horizontal (in spite of being of the form __ \downarrow _ $)$

Definitions \#2 \& a lemma

A possible problem: α is a horizontal expression $\Rightarrow \alpha \downarrow \epsilon$ is horizontal (in spite of being of the form __ \downarrow _ $)$

An expression α is trimmed if it is either

Definitions \#2 \& a lemma

A possible problem: α is a horizontal expression $\Rightarrow \alpha \downarrow \epsilon$ is horizontal (in spite of being of the form __ \downarrow _ $)$

An expression α is trimmed if it is either

- graphically equal to \varnothing, or

Definitions \#2 \& a lemma

A possible problem: α is a horizontal expression $\Rightarrow \alpha \downarrow \epsilon$ is horizontal (in spite of being of the form _ $\downarrow \ldots$)

An expression α is trimmed if it is either

- graphically equal to \varnothing, or
- has no subterm equivalent to \varnothing or ϵ, except

Definitions \#2 \& a lemma

A possible problem: α is a horizontal expression $\Rightarrow \alpha \downarrow \epsilon$ is horizontal (in spite of being of the form _ $\downarrow \ldots$)

An expression α is trimmed if it is either

- graphically equal to \varnothing, or
- has no subterm equivalent to \varnothing or ϵ, except
- a possible single summand graphically equal to ϵ

Definitions \#2 \& a lemma

A possible problem: α is a horizontal expression $\Rightarrow \alpha \downarrow \epsilon$ is horizontal (in spite of being of the form __ \downarrow _ $)$

An expression α is trimmed if it is either

- graphically equal to \varnothing, or
- has no subterm equivalent to \varnothing or ϵ, except
- a possible single summand graphically equal to ϵ

Lemma. For each α there is a trimmed expression α_{0} such that $\Gamma_{1} \cup \Gamma_{2} \vdash \alpha=\alpha_{0}$.

Linearization Lemma

Let α be a horizontal birational expression.

Linearization Lemma

Let α be a horizontal birational expression.
(i) There exist a linear (= each variable occurs exactly once) \rightarrow-rational expression $\alpha^{\prime}\left(x_{1}, \ldots, x_{n}\right)$ and vertical expressions $\beta_{1}, \ldots, \beta_{n}$ such that

$$
\alpha \equiv \alpha^{\prime}\left(\beta_{1}, \ldots, \beta_{n}\right)
$$

In such a case, if $\delta(\alpha) \geqslant 1$, we have $\delta(\alpha)=\max \left(\delta\left(\beta_{1}\right), \ldots, \delta\left(\beta_{n}\right)\right)+1$.

Linearization Lemma

Let α be a horizontal birational expression.
(i) There exist a linear (= each variable occurs exactly once) \rightarrow-rational expression $\alpha^{\prime}\left(x_{1}, \ldots, x_{n}\right)$ and vertical expressions $\beta_{1}, \ldots, \beta_{n}$ such that

$$
\alpha \equiv \alpha^{\prime}\left(\beta_{1}, \ldots, \beta_{n}\right)
$$

In such a case, if $\delta(\alpha) \geqslant 1$, we have $\delta(\alpha)=\max \left(\delta\left(\beta_{1}\right), \ldots, \delta\left(\beta_{n}\right)\right)+1$.
(ii) There exist a horizontal birational expression $\hat{\alpha}$, a linear \rightarrow-rational expression $\alpha^{\prime \prime}\left(x_{1}, \ldots, x_{k}\right)$ and vertical expressions $\beta_{1}^{\prime}, \ldots, \beta_{k}^{\prime}$ such that
(a) the identity $\alpha=\hat{\alpha}$ follows from $\Gamma_{1} \cup \Gamma_{2}$,
(b) $\hat{\alpha} \equiv \alpha^{\prime \prime}\left(\beta_{1}^{\prime}, \ldots, \beta_{k}^{\prime}\right)$, and
(c) $\epsilon \notin \mathcal{B}\left(\beta_{i}^{\prime}\right)$ and $\mathcal{B}\left(\beta_{i}^{\prime}\right) \neq \varnothing$ for all $1 \leqslant i \leqslant k$.

Definition: Doppelgänger (as in "Twin Peaks")

Let α_{1}, α_{2} be two horizontal birational expressions (of depth $d \geqslant$ 1). Linearization Lemma \Rightarrow

$$
\begin{aligned}
& \alpha_{1}=\alpha_{1}^{\prime \prime}\left(\beta_{1}, \ldots, \beta_{n}\right), \\
& \alpha_{2}=\alpha_{2}^{\prime \prime}\left(\beta_{n+1}, \ldots, \beta_{m}\right),
\end{aligned}
$$

where $\alpha_{i}^{\prime \prime}$ are linear, and $\epsilon \notin \mathcal{B}\left(\beta_{i}\right) \neq \varnothing$.

Definition: Doppelgänger (as in "Twin Peaks")

Let α_{1}, α_{2} be two horizontal birational expressions (of depth $d \geqslant$ 1). Linearization Lemma \Rightarrow

$$
\begin{aligned}
& \alpha_{1}=\alpha_{1}^{\prime \prime}\left(\beta_{1}, \ldots, \beta_{n}\right), \\
& \alpha_{2}=\alpha_{2}^{\prime \prime}\left(\beta_{n+1}, \ldots, \beta_{m}\right),
\end{aligned}
$$

where $\alpha_{i}^{\prime \prime}$ are linear, and $\epsilon \notin \mathcal{B}\left(\beta_{i}\right) \neq \varnothing$.
Let $Y_{i}=\mathcal{B}\left(\beta_{i}\right)(1 \leqslant i \leqslant m)$.

Definition: Doppelgänger (as in "Twin Peaks")

Let α_{1}, α_{2} be two horizontal birational expressions (of depth $d \geqslant$ 1). Linearization Lemma \Rightarrow

$$
\begin{aligned}
& \alpha_{1}=\alpha_{1}^{\prime \prime}\left(\beta_{1}, \ldots, \beta_{n}\right), \\
& \alpha_{2}=\alpha_{2}^{\prime \prime}\left(\beta_{n+1}, \ldots, \beta_{m}\right),
\end{aligned}
$$

where $\alpha_{i}^{\prime \prime}$ are linear, and $\epsilon \notin \mathcal{B}\left(\beta_{i}\right) \neq \varnothing$.
Let $Y_{i}=\mathcal{B}\left(\beta_{i}\right)(1 \leqslant i \leqslant m)$.
All there languages are (nonempty) subsets of E - the set of all neutral and vertical bi-words of depth $\leqslant d-1$.

Definition: Doppelgänger (as in "Twin Peaks")

For convenience, let $Y_{i}^{0}=Y_{i}$ and $Y_{i}^{1}=E \backslash Y_{i}$.

Definition: Doppelgänger (as in "Twin Peaks")

For convenience, let $Y_{i}^{0}=Y_{i}$ and $Y_{i}^{1}=E \backslash Y_{i}$.
For a binary sequence $\sigma \in\{0,1\}^{m}$, let

$$
X_{\sigma}=\bigcap_{i=1}^{m} Y_{i}^{\sigma(i)} .
$$

Definition: Doppelgänger (as in "Twin Peaks")

For convenience, let $Y_{i}^{0}=Y_{i}$ and $Y_{i}^{1}=E \backslash Y_{i}$.
For a binary sequence $\sigma \in\{0,1\}^{m}$, let

$$
X_{\sigma}=\bigcap_{i=1}^{m} Y_{i}^{\sigma(i)} .
$$

What the heck is this?

Definition: Doppelgänger (as in "Twin Peaks")

For convenience, let $Y_{i}^{0}=Y_{i}$ and $Y_{i}^{1}=E \backslash Y_{i}$.
For a binary sequence $\sigma \in\{0,1\}^{m}$, let

$$
X_{\sigma}=\bigcap_{i=1}^{m} Y_{i}^{\sigma(i)} .
$$

What the heck is this?

Definition: Doppelgänger (as in "Twin Peaks")

For $1 \leqslant i \leqslant m$, define the sets $\Lambda_{i} \subseteq\{0,1\}^{m}$ by

$$
\sigma \in \Lambda_{i} \text { if and only if } \sigma(i)=0 \text { and } X_{\sigma} \neq \varnothing .
$$

Definition: Doppelgänger (as in "Twin Peaks")

For $1 \leqslant i \leqslant m$, define the sets $\Lambda_{i} \subseteq\{0,1\}^{m}$ by $\sigma \in \Lambda_{i}$ if and only if $\sigma(i)=0$ and $X_{\sigma} \neq \varnothing$.

The 'horizontal' identity
$\alpha_{1}^{\prime \prime}\left(\sum_{\sigma \in \Lambda_{1}} x_{\sigma}, \ldots, \sum_{\sigma \in \Lambda_{n}} x_{\sigma}\right)=\alpha_{2}^{\prime \prime}\left(\sum_{\sigma \in \Lambda_{n+1}} x_{\sigma}, \ldots, \sum_{\sigma \in \Lambda_{m}} x_{\sigma}\right)$
is an adjoined string identity (or doppelgänger) for $\alpha_{1}=\alpha_{2}$.

Definition: Doppelgänger (as in "Twin Peaks")

For $1 \leqslant i \leqslant m$, define the sets $\Lambda_{i} \subseteq\{0,1\}^{m}$ by $\sigma \in \Lambda_{i}$ if and only if $\sigma(i)=0$ and $X_{\sigma} \neq \varnothing$.

The 'horizontal' identity
$\alpha_{1}^{\prime \prime}\left(\sum_{\sigma \in \Lambda_{1}} x_{\sigma}, \ldots, \sum_{\sigma \in \Lambda_{n}} x_{\sigma}\right)=\alpha_{2}^{\prime \prime}\left(\sum_{\sigma \in \Lambda_{n+1}} x_{\sigma}, \ldots, \sum_{\sigma \in \Lambda_{m}} x_{\sigma}\right)$
is an adjoined string identity (or doppelgänger) for $\alpha_{1}=\alpha_{2}$.

The idea behind this identity is that the above sums of letters (from $\Xi_{m}=\left\{x_{\sigma}: \sigma \in\{0,1\}^{m}\right\}$) indexed by Λ_{i} 's record the set-theoretical configuration of the bi-languages Y_{i}.

Example

$$
x^{>}+\left(x^{\vee}\right)^{>}=\left(x^{\vee}\right)^{>}
$$

Example

$$
x^{>}+\left(x^{\vee}\right)^{>}=\left(x^{\vee}\right)^{>}
$$

Linearization yields $\beta_{1}^{>}+\beta_{2}^{>}=\beta_{3}^{>}$, where

$$
\begin{aligned}
& \beta_{1} \equiv x \\
& \beta_{2} \equiv \beta_{3} \equiv x^{\vee} .
\end{aligned}
$$

Example

$$
x^{>}+\left(x^{\vee}\right)^{>}=\left(x^{\vee}\right)^{>}
$$

Linearization yields $\beta_{1}^{>}+\beta_{2}^{>}=\beta_{3}^{>}$, where

$$
\begin{aligned}
& \beta_{1} \equiv x \\
& \beta_{2} \equiv \beta_{3} \equiv x^{\vee}
\end{aligned}
$$

To get rid of ϵ from $\mathcal{B}\left(\beta_{2}\right)=\mathcal{B}\left(\beta_{3}\right)$, we make use of

$$
x^{\vee}=\epsilon+x \downarrow x^{\vee}
$$

and proceed with $x \downarrow x^{\vee}$ instead of x^{\vee}.

Example

Now we have $Y_{1} \subset Y_{2}=Y_{3}$, thus $\Lambda_{1}=\{000\}$ and $\Lambda_{2}=\Lambda_{3}=$ $\{000,100\}$.

Example

Now we have $Y_{1} \subset Y_{2}=Y_{3}$, thus $\Lambda_{1}=\{000\}$ and $\Lambda_{2}=\Lambda_{3}=$ $\{000,100\}$.

For simplicity, write x for x_{000} and y for x_{100}. So, our doppelgänger is just

$$
x^{>}+(x+y)^{>}=(x+y)^{>},
$$

a familiar law telling that the Kleene star is monotone.

Doppelgänger Lemma

Assume $\alpha_{1}=\alpha_{2}$ belongs to Θ (i.e. it is a valid bi-langauge identity). Then its doppelgänger is a valid string identity.

The main proof (outlined)

Goal: to prove that a valid identity $\alpha_{1}=\alpha_{2}$ is a consequence of $\Gamma_{1} \cup \Gamma_{2}$.

The main proof (outlined)

Goal: to prove that a valid identity $\alpha_{1}=\alpha_{2}$ is a consequence of $\Gamma_{1} \cup \Gamma_{2}$.

Plan: induction on $\delta\left(\alpha_{1}\right)=\delta\left(\alpha_{2}\right)=d$ (case $d \leqslant 1$ is trivial...).

The main proof (outlined)

Goal: to prove that a valid identity $\alpha_{1}=\alpha_{2}$ is a consequence of $\Gamma_{1} \cup \Gamma_{2}$.

Plan: induction on $\delta\left(\alpha_{1}\right)=\delta\left(\alpha_{2}\right)=d$ (case $d \leqslant 1$ is trivial...).
Decomposition Lemma $\Rightarrow \alpha_{i}=\alpha_{i}^{h}+\alpha_{i}^{v}(i=1,2)$ follows from $\Gamma_{1} \cup \Gamma_{2}$.

The main proof (outlined)

Goal: to prove that a valid identity $\alpha_{1}=\alpha_{2}$ is a consequence of $\Gamma_{1} \cup \Gamma_{2}$.

Plan: induction on $\delta\left(\alpha_{1}\right)=\delta\left(\alpha_{2}\right)=d$ (case $d \leqslant 1$ is trivial...).
Decomposition Lemma $\Rightarrow \alpha_{i}=\alpha_{i}^{h}+\alpha_{i}^{v}(i=1,2)$ follows from $\Gamma_{1} \cup \Gamma_{2}$.
$\alpha_{1}=\alpha_{2}$ holds if and only if both $\alpha_{1}^{h}=\alpha_{2}^{h}$ and $\alpha_{1}^{v}=\alpha_{2}^{v}$ are valid.

The main proof (outlined)

Goal: to prove that a valid identity $\alpha_{1}=\alpha_{2}$ is a consequence of $\Gamma_{1} \cup \Gamma_{2}$.

Plan: induction on $\delta\left(\alpha_{1}\right)=\delta\left(\alpha_{2}\right)=d$ (case $d \leqslant 1$ is trivial...).
Decomposition Lemma $\Rightarrow \alpha_{i}=\alpha_{i}^{h}+\alpha_{i}^{v}(i=1,2)$ follows from $\Gamma_{1} \cup \Gamma_{2}$.
$\alpha_{1}=\alpha_{2}$ holds if and only if both $\alpha_{1}^{h}=\alpha_{2}^{h}$ and $\alpha_{1}^{v}=\alpha_{2}^{v}$ are valid.

So, we may assume that both α_{1} and α_{2} are e.g. horizontal.

The main proof (outlined)

Linearization Lemma \Rightarrow there are horizontal birational expressions $\hat{\alpha}_{1}, \hat{\alpha}_{2}$ such that

$$
\Gamma_{1} \cup \Gamma_{2} \vdash \quad \alpha_{1}=\hat{\alpha}_{1}, \quad \alpha_{2}=\hat{\alpha}_{2},
$$

The main proof (outlined)

Linearization Lemma \Rightarrow there are horizontal birational expressions $\hat{\alpha}_{1}, \hat{\alpha}_{2}$ such that

$$
\Gamma_{1} \cup \Gamma_{2} \vdash \quad \alpha_{1}=\hat{\alpha}_{1}, \quad \alpha_{2}=\hat{\alpha}_{2},
$$

while the identity $\hat{\alpha}_{1}=\hat{\alpha}_{2}$ has the form

$$
\alpha_{1}^{\prime \prime}\left(\beta_{1}^{\prime}, \ldots, \beta_{k}^{\prime}\right)=\alpha_{2}^{\prime \prime}\left(\beta_{k+1}^{\prime}, \ldots, \beta_{m}^{\prime}\right)
$$

The main proof (outlined)

Linearization Lemma \Rightarrow there are horizontal birational expressions $\hat{\alpha}_{1}, \hat{\alpha}_{2}$ such that

$$
\Gamma_{1} \cup \Gamma_{2} \vdash \quad \alpha_{1}=\hat{\alpha}_{1}, \quad \alpha_{2}=\hat{\alpha}_{2},
$$

while the identity $\hat{\alpha}_{1}=\hat{\alpha}_{2}$ has the form

$$
\alpha_{1}^{\prime \prime}\left(\beta_{1}^{\prime}, \ldots, \beta_{k}^{\prime}\right)=\alpha_{2}^{\prime \prime}\left(\beta_{k+1}^{\prime}, \ldots, \beta_{m}^{\prime}\right)
$$

where $\alpha_{1}^{\prime \prime}, \alpha_{2}^{\prime \prime}$ are linear \rightarrow-rational expressions (involved later in the course of forming a doppelgänger identity), and $\beta_{1}^{\prime}, \ldots, \beta_{m}^{\prime}$ are vertical expressions, all of them having depth at most $d-1$, whose values Y_{1}, \ldots, Y_{m} satisfy $\epsilon \notin Y_{i} \neq \varnothing, 1 \leqslant i \leqslant m$.

The main proof (outlined)

Let $\Lambda_{1}, \ldots, \Lambda_{m}$ and $X_{\sigma}, \sigma \in I$, be as in the definition of a doppelgänger. We already know that

$$
Y_{i}=\bigcup_{\sigma \in \Lambda_{i}} X_{\sigma}
$$

holds for all $1 \leqslant i \leqslant m$.

The main proof (outlined)

Let $\Lambda_{1}, \ldots, \Lambda_{m}$ and $X_{\sigma}, \sigma \in I$, be as in the definition of a doppelgänger. We already know that

$$
Y_{i}=\bigcup_{\sigma \in \Lambda_{i}} X_{\sigma}
$$

holds for all $1 \leqslant i \leqslant m$.
Ésik-Németh (2004) \Rightarrow birational bi-languages closed for intersections and set differences, so all X_{σ} 's are birational,

$$
X_{\sigma}=\mathcal{B}\left(\xi_{\sigma}\right)
$$

The main proof (outlined)

Therefore, the following identities are valid:

$$
\beta_{i}^{\prime}=\sum_{\sigma \in \Lambda_{i}} \xi_{\sigma,} \quad(*)
$$

for all $1 \leqslant i \leqslant m$.

The main proof (outlined)

Therefore, the following identities are valid:

$$
\beta_{i}^{\prime}=\sum_{\sigma \in \Lambda_{i}} \xi_{\sigma}, \quad(*)
$$

for all $1 \leqslant i \leqslant m$.

This is an identity of depth $\leqslant d-1$, so it follows from $\Gamma_{1} \cup \Gamma_{2}$ by induction hypothesis.

The main proof (outlined)

Doppelgänger Lemma \Rightarrow the adjoined string identity
$\alpha_{1}^{\prime \prime}\left(\sum_{\sigma \in \Lambda_{1}} x_{\sigma}, \ldots, \sum_{\sigma \in \Lambda_{n}} x_{\sigma}\right)=\alpha_{2}^{\prime \prime}\left(\sum_{\sigma \in \Lambda_{n+1}} x_{\sigma}, \ldots, \sum_{\sigma \in \Lambda_{m}} x_{\sigma}\right)$
is a valid one, thus it belongs to Γ_{1}.

The main proof (outlined)

Doppelgänger Lemma \Rightarrow the adjoined string identity
$\alpha_{1}^{\prime \prime}\left(\sum_{\sigma \in \Lambda_{1}} x_{\sigma}, \ldots, \sum_{\sigma \in \Lambda_{n}} x_{\sigma}\right)=\alpha_{2}^{\prime \prime}\left(\sum_{\sigma \in \Lambda_{n+1}} x_{\sigma}, \ldots, \sum_{\sigma \in \Lambda_{m}} x_{\sigma}\right)$
is a valid one, thus it belongs to Γ_{1}.

Apply the substitution $x_{\sigma} \mapsto \xi_{\sigma}$.

The main proof (outlined)

Doppelgänger Lemma \Rightarrow the adjoined string identity
$\alpha_{1}^{\prime \prime}\left(\sum_{\sigma \in \Lambda_{1}} x_{\sigma}, \ldots, \sum_{\sigma \in \Lambda_{n}} x_{\sigma}\right)=\alpha_{2}^{\prime \prime}\left(\sum_{\sigma \in \Lambda_{n+1}} x_{\sigma}, \ldots, \sum_{\sigma \in \Lambda_{m}} x_{\sigma}\right)$
is a valid one, thus it belongs to Γ_{1}.

Apply the substitution $x_{\sigma} \mapsto \xi_{\sigma}$.
By combining $(*)$ and the above doppelgänger, we obtain the required formal proof for $\alpha_{1}=\alpha_{2}$.

Example (continued)

$$
x^{>}+\left(x^{\vee}\right)^{>}=\left(x^{\vee}\right)^{>}
$$

Example (continued)

$$
x^{>}+\left(x^{\vee}\right)^{>}=\left(x^{\vee}\right)^{>}
$$

This is first transformed into

$$
x^{>}+\left(x \downarrow x^{\vee}\right)^{>}=\left(x \downarrow x^{\vee}\right)^{>}
$$

Example (continued)

$$
x^{>}+\left(x^{\vee}\right)^{>}=\left(x^{\vee}\right)^{>}
$$

This is first transformed into

$$
x^{>}+\left(x \downarrow x^{\vee}\right)^{>}=\left(x \downarrow x^{\vee}\right)^{>}
$$

As we have argued, a doppelgänger is

$$
x^{>}+(x+y)^{>}=(x+y)^{>}
$$

Example (continued)

$$
x^{>}+\left(x^{\vee}\right)^{>}=\left(x^{\vee}\right)^{>}
$$

This is first transformed into

$$
x^{>}+\left(x \downarrow x^{\vee}\right)^{>}=\left(x \downarrow x^{\vee}\right)^{>}
$$

As we have argued, a doppelgänger is

$$
x^{>}+(x+y)^{>}=(x+y)^{>}
$$

So, the nonempty X_{σ} 's are $X_{000}=\{x\}$ and $X_{100}=\{x \downarrow x, x \downarrow x \downarrow x, \ldots\}$.

Example (continued)

$$
x^{>}+\left(x^{\vee}\right)^{>}=\left(x^{\vee}\right)^{>}
$$

This is first transformed into

$$
x^{>}+\left(x \downarrow x^{\vee}\right)^{>}=\left(x \downarrow x^{\vee}\right)^{>}
$$

As we have argued, a doppelgänger is

$$
x^{>}+(x+y)^{>}=(x+y)^{>}
$$

So, the nonempty X_{σ} 's are $X_{000}=\{x\}$ and $X_{100}=\{x \downarrow x, x \downarrow x \downarrow x, \ldots\}$.
Thus, we have $\xi_{000} \equiv x$ and $\xi_{100}=x \downarrow x \downarrow x^{\vee}$.

Example (continued)

$$
x^{>}+\left(x^{\vee}\right)^{>}=\left(x^{\vee}\right)^{>}
$$

This is first transformed into

$$
x^{>}+\left(x \downarrow x^{\vee}\right)^{>}=\left(x \downarrow x^{\vee}\right)^{>} .
$$

As we have argued, a doppelgänger is

$$
x^{>}+(x+y)^{>}=(x+y)^{>}
$$

So, the nonempty X_{σ} 's are $X_{000}=\{x\}$ and
$X_{100}=\{x \downarrow x, x \downarrow x \downarrow x, \ldots\}$.
Thus, we have $\xi_{000} \equiv x$ and $\xi_{100}=x \downarrow x \downarrow x^{\vee}$.
Now, our identity follows from the above doppelgänger and

$$
x+x \downarrow x \downarrow x^{\vee}=x \downarrow x^{\vee} .
$$

THANK YOU!

All questions and comments to: dockie@im.ns.ac.yu

A preprint may be found at: www.im.ns.ac.yu/personal/dolinkai

