Facets of the Finite Basis Problem for Finite Involution Semigroups

Igor Dolinka
dockie@dmi.uns.ac.rs
Department of Mathematics and Informatics, University of Novi Sad

Będlewo, June 2010

Glossary of terms

The equational theory $E q(A)$ of an algebra A
$=$ the set of all identities (over some fixed countably infinite set X of variables, or letters) satisfied by A.

Glossary of terms

The equational theory $E q(A)$ of an algebra A
$=$ the set of all identities (over some fixed countably infinite set X of variables, or letters) satisfied by A.

Let Σ be a set of identities. An identity $p \approx q$ is a consequence of Σ, written $\Sigma \models p \approx q$,
$=$ every algebra that satisfies all identities from Σ also satisfies $p \approx q$.

Glossary of terms

The equational theory $E q(A)$ of an algebra A
$=$ the set of all identities (over some fixed countably infinite set X of variables, or letters) satisfied by A.

Let Σ be a set of identities. An identity $p \approx q$ is a consequence of Σ, written $\Sigma \models p \approx q$,
$=$ every algebra that satisfies all identities from Σ also satisfies $p \approx q$.

If $\Sigma \subseteq E q(A)$ is such that every identity from $E q(A)$ is a consequence of Σ, then Σ is called an (equational) basis of A.

Glossary of terms

The equational theory $E q(A)$ of an algebra A
$=$ the set of all identities (over some fixed countably infinite set X of variables, or letters) satisfied by A.

Let Σ be a set of identities. An identity $p \approx q$ is a consequence of Σ, written $\Sigma \models p \approx q$,
$=$ every algebra that satisfies all identities from Σ also satisfies $p \approx q$.

If $\Sigma \subseteq E q(A)$ is such that every identity from $E q(A)$ is a consequence of Σ, then Σ is called an (equational) basis of A.

A fundamental property that an algebra A may or may not have is that of having a finite basis.

Glossary of terms

The equational theory $E q(A)$ of an algebra A
$=$ the set of all identities (over some fixed countably infinite set X of variables, or letters) satisfied by A.

Let Σ be a set of identities. An identity $p \approx q$ is a consequence of Σ, written $\Sigma \models p \approx q$,
$=$ every algebra that satisfies all identities from Σ also satisfies $p \approx q$.

If $\Sigma \subseteq E q(A)$ is such that every identity from $E q(A)$ is a consequence of Σ, then Σ is called an (equational) basis of A.

A fundamental property that an algebra A may or may not have is that of having a finite basis. If there is a finite basis for identities of A, then A is said to be finitely based (FB).

Glossary of terms

The equational theory $E q(A)$ of an algebra A
$=$ the set of all identities (over some fixed countably infinite set X of variables, or letters) satisfied by A.

Let Σ be a set of identities. An identity $p \approx q$ is a consequence of Σ, written $\Sigma \models p \approx q$,
$=$ every algebra that satisfies all identities from Σ also satisfies $p \approx q$.

If $\Sigma \subseteq E q(A)$ is such that every identity from $E q(A)$ is a consequence of Σ, then Σ is called an (equational) basis of A.

A fundamental property that an algebra A may or may not have is that of having a finite basis. If there is a finite basis for identities of A, then A is said to be finitely based (FB). Otherwise, it is nonfinitely based (NFB).

Some classical positive results

Each of the following algebras is FB:

Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates \& Powell, 1964)

Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates \& Powell, 1964)
- commutative semigroups (Perkins, 1968)

Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates \& Powell, 1964)
- commutative semigroups (Perkins, 1968)
- finite lattices and lattice-based algebras (McKenzie, 1970)

Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates \& Powell, 1964)
- commutative semigroups (Perkins, 1968)
- finite lattices and lattice-based algebras (McKenzie, 1970)
- finite (associative) rings (L'vov; Kruse, 1973)

Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates \& Powell, 1964)
- commutative semigroups (Perkins, 1968)
- finite lattices and lattice-based algebras (McKenzie, 1970)
- finite (associative) rings (L'vov; Kruse, 1973)
- algebras generating congruence distributive varieties with a finite residual bound (Baker, 1977)

Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates \& Powell, 1964)
- commutative semigroups (Perkins, 1968)
- finite lattices and lattice-based algebras (McKenzie, 1970)
- finite (associative) rings (L'vov; Kruse, 1973)
- algebras generating congruence distributive varieties with a finite residual bound (Baker, 1977)
- algebras generating congruence modular varieties with a finite residual bound (McKenzie, 1987)

Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates \& Powell, 1964)
- commutative semigroups (Perkins, 1968)
- finite lattices and lattice-based algebras (McKenzie, 1970)
- finite (associative) rings (L'vov; Kruse, 1973)
- algebras generating congruence distributive varieties with a finite residual bound (Baker, 1977)
- algebras generating congruence modular varieties with a finite residual bound (McKenzie, 1987)
- algebras generating congruence \wedge-semidistributive varieties with a finite residual bound (Willard, 2000)

Negative results

Examples of finite NFB algebras:

	0	1	2
0	0	0	0
1	0	0	1
2	0	2	2

(Murskiĭ, 1965)

Negative results

Examples of finite NFB algebras:

	0	1	2
0	0	0	0
1	0	0	1
2	0	2	2

(Murskiĭ, 1965)

- a certain 6-element semigroup of matrices (Perkins, 1968)

Negative results

Examples of finite NFB algebras:

	0	1	2
0	0	0	0
1	0	0	1
2	0	2	2

(Murskiĭ, 1965)

- a certain 6-element semigroup of matrices (Perkins, 1968)
- a certain finite pointed group (Bryant, 1982)

Negative results

Examples of finite NFB algebras:

	0	1	2
0	0	0	0
1	0	0	1
2	0	2	2

(Murskiĭ, 1965)

- a certain 6-element semigroup of matrices (Perkins, 1968)
- a certain finite pointed group (Bryant, 1982)
- the full transformation semigroup \mathcal{T}_{n} for $n \geq 3$ and the full semigroup of binary relations \mathcal{R}_{n} for $n \geq 2$

Negative results

Examples of finite NFB algebras:

	0	1	2
0	0	0	0
1	0	0	1
2	0	2	2

(Murskiĭ, 1965)

- a certain 6-element semigroup of matrices (Perkins, 1968)
- a certain finite pointed group (Bryant, 1982)
- the full transformation semigroup \mathcal{T}_{n} for $n \geq 3$ and the full semigroup of binary relations \mathcal{R}_{n} for $n \geq 2$
- a certain 7-element semiring of binary relations (ID, 2007)

Negative results

Examples of finite NFB algebras:

	0	1	2
0	0	0	0
1	0	0	1
2	0	2	2

(Murskiĭ, 1965)

- a certain 6-element semigroup of matrices (Perkins, 1968)
- a certain finite pointed group (Bryant, 1982)
- the full transformation semigroup \mathcal{T}_{n} for $n \geq 3$ and the full semigroup of binary relations \mathcal{R}_{n} for $n \geq 2$
- a certain 7-element semiring of binary relations (ID, 2007)

Tarski's Finite Basis Problem: Is there any algorithmic way to distinguish between finite FB and NFB algebras?

McKenzie's solution of the Tarski problem

No!

McKenzie's solution of the Tarski problem

No!
Theorem (McKenzie, 1996)
There is no algorithm to decide whether a finite algebra is FB.

McKenzie's solution of the Tarski problem

No!
Theorem (McKenzie, 1996)
There is no algorithm to decide whether a finite algebra is FB.
This is exactly why it is so interesting to study the (N)FB property, especially for finite algebras.

McKenzie's solution of the Tarski problem

No!
Theorem (McKenzie, 1996)
There is no algorithm to decide whether a finite algebra is FB.
This is exactly why it is so interesting to study the (N)FB property, especially for finite algebras.

The Tarski-Sapir problem: Is there an algorithm to decide whether a finite semigroup is FB?

McKenzie's solution of the Tarski problem

No!
Theorem (McKenzie, 1996)
There is no algorithm to decide whether a finite algebra is FB.
This is exactly why it is so interesting to study the (N)FB property, especially for finite algebras.

The Tarski-Sapir problem: Is there an algorithm to decide whether a finite semigroup is FB? This problem is still open.

McKenzie's solution of the Tarski problem

No!

Theorem (McKenzie, 1996)
There is no algorithm to decide whether a finite algebra is FB.
This is exactly why it is so interesting to study the (N)FB property, especially for finite algebras.

The Tarski-Sapir problem: Is there an algorithm to decide whether a finite semigroup is FB? This problem is still open.
M. V. Volkov: The finite basis problem for finite semigroups, Sci. Math. Jpn. 53 (2001), 171-199. http://csseminar.kadm.usu.ru/MATHJAP_revisited.pdf

Volkov's NFB criterion (1989)

Let A_{2} be the 5-element semigroup given by the presentation

$$
\left\langle a, b: a^{2}=a=a b a, b^{2}=0, b a b=b\right\rangle .
$$

Volkov's NFB criterion (1989)

Let A_{2} be the 5-element semigroup given by the presentation

$$
\left\langle a, b: a^{2}=a=a b a, b^{2}=0, b a b=b\right\rangle .
$$

This is just the Rees matrix semigroup over a trivial group $E=\{e\}$ with the sandwich matrix

$$
\left(\begin{array}{ll}
e & e \\
0 & e
\end{array}\right)
$$

Volkov's NFB criterion (1989)

Let A_{2} be the 5-element semigroup given by the presentation

$$
\left\langle a, b: a^{2}=a=a b a, b^{2}=0, b a b=b\right\rangle .
$$

This is just the Rees matrix semigroup over a trivial group $E=\{e\}$ with the sandwich matrix

$$
\left(\begin{array}{ll}
e & e \\
0 & e
\end{array}\right)
$$

Fact
Of all varieties generated by Rees matrix semigroups with trivial subgroups, A_{2} generates the largest one.

Volkov's NFB criterion (1989)

Let A_{2} be the 5-element semigroup given by the presentation

$$
\left\langle a, b: a^{2}=a=a b a, b^{2}=0, b a b=b\right\rangle .
$$

This is just the Rees matrix semigroup over a trivial group $E=\{e\}$ with the sandwich matrix

$$
\left(\begin{array}{ll}
e & e \\
0 & e
\end{array}\right)
$$

Fact
Of all varieties generated by Rees matrix semigroups with trivial subgroups, A_{2} generates the largest one.

Fact
A_{2} is representable by matrices (over any field).

Volkov's NFB criterion (1989)

Theorem (M. V. Volkov, 1989)
Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^{d} \approx e$ such that

Volkov's NFB criterion (1989)

Theorem (M. V. Volkov, 1989)
Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^{d} \approx e$ such that

- $a^{d} \in T$ for all $a \in S$, and

Volkov's NFB criterion (1989)

Theorem (M. V. Volkov, 1989)
Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^{d} \approx e$ such that

- $a^{d} \in T$ for all $a \in S$, and
- $G \in \operatorname{var} S$, but $G \notin \operatorname{var} T$.

Volkov's NFB criterion (1989)

Theorem (M. V. Volkov, 1989)
Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^{d} \approx e$ such that

- $a^{d} \in T$ for all $a \in S$, and
- $G \in \operatorname{var} S$, but $G \notin \operatorname{var} T$.

If $A_{2} \in \operatorname{var} S$, then S is NFB.

Volkov's NFB criterion (1989)

Theorem (M. V. Volkov, 1989)
Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^{d} \approx e$ such that

- $a^{d} \in T$ for all $a \in S$, and
- $G \in \operatorname{var} S$, but $G \notin \operatorname{var} T$.

If $A_{2} \in \operatorname{var} S$, then S is NFB.
Corollary
The following semigroups are NFB:

Volkov's NFB criterion (1989)

Theorem (M. V. Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^{d} \approx e$ such that

- $a^{d} \in T$ for all $a \in S$, and
- $G \in \operatorname{var} S$, but $G \notin \operatorname{var} T$.

If $A_{2} \in \operatorname{var} S$, then S is NFB.

Corollary

The following semigroups are NFB:

- the full transformation semigroup $\mathcal{T}_{n}(n \geq 3)$

Volkov's NFB criterion (1989)

Theorem (M. V. Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^{d} \approx e$ such that

- $a^{d} \in T$ for all $a \in S$, and
- $G \in \operatorname{var} S$, but $G \notin \operatorname{var} T$.

If $A_{2} \in \operatorname{var} S$, then S is NFB.

Corollary

The following semigroups are NFB:

- the full transformation semigroup $\mathcal{T}_{n}(n \geq 3)$
- the full semigroup of binary relations $\mathcal{B}_{n}(n \geq 2)$

Volkov's NFB criterion (1989)

Theorem (M. V. Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^{d} \approx e$ such that

- $a^{d} \in T$ for all $a \in S$, and
- $G \in \operatorname{var} S$, but $G \notin \operatorname{var} T$.

If $A_{2} \in \operatorname{var} S$, then S is NFB.

Corollary

The following semigroups are NFB:

- the full transformation semigroup $\mathcal{T}_{n}(n \geq 3)$
- the full semigroup of binary relations $\mathcal{B}_{n}(n \geq 2)$
- the semigroup of partial transformations $\mathcal{P} \mathcal{T}_{n}(n \geq 2)$

Volkov's NFB criterion (1989)

Theorem (M. V. Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^{d} \approx e$ such that

- $a^{d} \in T$ for all $a \in S$, and
- $G \in \operatorname{var} S$, but $G \notin \operatorname{var} T$.

If $A_{2} \in \operatorname{var} S$, then S is NFB.

Corollary

The following semigroups are NFB:

- the full transformation semigroup $\mathcal{T}_{n}(n \geq 3)$
- the full semigroup of binary relations $\mathcal{B}_{n}(n \geq 2)$
- the semigroup of partial transformations $\mathcal{P} \mathcal{T}_{n}(n \geq 2)$
- matrix semigroups $\mathcal{M}_{n}(\mathbb{F})$ for any $n \geq 2$ and any finite field \mathbb{F}

Unary semigroups

Unary semigroup
$=$ a structure $\left(S, \cdot,{ }^{*}\right)$ such that (S, \cdot) is a semigroup and ${ }^{*}$ is a unary operation on S

Unary semigroups

Unary semigroup
$=$ a structure $\left(S, \cdot \cdot{ }^{*}\right)$ such that (S, \cdot) is a semigroup and ${ }^{*}$ is a unary operation on S

Involution semigroup
$=$ a unary semigroup satisfying $(x y)^{*} \approx y^{*} x^{*}$ and $\left(x^{*}\right)^{*} \approx x$

Unary semigroups

Unary semigroup
$=$ a structure $\left(S, \cdot,{ }^{*}\right)$ such that (S, \cdot) is a semigroup and ${ }^{*}$ is a unary operation on S

Involution semigroup
$=$ a unary semigroup satisfying $(x y)^{*} \approx y^{*} x^{*}$ and $\left(x^{*}\right)^{*} \approx x$

Examples

- groups
- inverse semigroups
- regular *-semigroups $\left(x x^{*} x \approx x\right)$
- matrix semigroups with transposition $\mathcal{M}_{n}(\mathbb{F})=\left(\mathrm{M}_{n}(\mathbb{F}), \cdot{ }^{\mathrm{T}}\right)$

'Unary version' of Volkov's Theorem

For a unary semigroup S, let $H(S)$ denote the Hermitian subsemigroup of S, generated by $a a^{*}$ for all $a \in S$.

'Unary version' of Volkov's Theorem

For a unary semigroup S, let $\mathrm{H}(S)$ denote the Hermitian subsemigroup of S, generated by $a a^{*}$ for all $a \in S$.

For a variety \mathbf{V} of unary semigroups, let $\mathrm{H}(\mathbf{V})$ be the subvariety of \mathbf{V} generated by all $\mathrm{H}(S), S \in \mathbf{V}$.

'Unary version' of Volkov's Theorem

For a unary semigroup S, let $H(S)$ denote the Hermitian subsemigroup of S, generated by $a a^{*}$ for all $a \in S$.

For a variety \mathbf{V} of unary semigroups, let $\mathrm{H}(\mathbf{V})$ be the subvariety of \mathbf{V} generated by all $\mathrm{H}(S), S \in \mathbf{V}$.

Furthermore, let K_{3} be the 10-element unary Rees matrix semigroup over a trivial group $E=\{e\}$ with the sandwich matrix

$$
\left(\begin{array}{lll}
e & e & e \\
e & e & 0 \\
e & 0 & e
\end{array}\right)
$$

while $(i, e, j)^{*}=(j, e, i)$ and $0^{*}=0$.

'Unary version' of Volkov's Theorem

For a unary semigroup S, let $H(S)$ denote the Hermitian subsemigroup of S, generated by $a a^{*}$ for all $a \in S$.

For a variety \mathbf{V} of unary semigroups, let $\mathrm{H}(\mathbf{V})$ be the subvariety of \mathbf{V} generated by all $\mathrm{H}(S), S \in \mathbf{V}$.

Furthermore, let K_{3} be the 10-element unary Rees matrix semigroup over a trivial group $E=\{e\}$ with the sandwich matrix

$$
\left(\begin{array}{lll}
e & e & e \\
e & e & 0 \\
e & 0 & e
\end{array}\right)
$$

while $(i, e, j)^{*}=(j, e, i)$ and $0^{*}=0$.
Fact
K_{3} generates the variety of all strict combinatorial regular ${ }^{*}$-semigroups (studied by K. Auinger in 1992).

'Unary version' of Volkov's Theorem

Theorem (K. Auinger, M. V. Volkov, cca. 1991/92)
Let S be a unary semigroup such that $\mathbf{V}=\operatorname{var} S$ contains K_{3}. If there exist a group G which belongs to \mathbf{V} but not to $\mathbf{H}(\mathbf{V})$, then S is NFB.

'Unary version' of Volkov's Theorem

Theorem (K. Auinger, M. V. Volkov, cca. 1991/92)
Let S be a unary semigroup such that $\mathbf{V}=\operatorname{var} S$ contains K_{3}. If there exist a group G which belongs to \mathbf{V} but not to $\mathbf{H}(\mathbf{V})$, then S is NFB.

Corollary
The following unary semigroups are NFB:

'Unary version' of Volkov's Theorem

Theorem (K. Auinger, M. V. Volkov, cca. 1991/92)
Let S be a unary semigroup such that $\mathbf{V}=\operatorname{var} S$ contains K_{3}. If there exist a group G which belongs to \mathbf{V} but not to $\mathbf{H}(\mathbf{V})$, then S is NFB.

Corollary
The following unary semigroups are NFB:

- the full involution semigroup of binary relations $\mathcal{R}_{n}^{\vee}(n \geq 2)$, endowed with relational converse

'Unary version' of Volkov's Theorem

Theorem (K. Auinger, M. V. Volkov, cca. 1991/92)
Let S be a unary semigroup such that $\mathbf{V}=\operatorname{var} S$ contains K_{3}. If there exist a group G which belongs to \mathbf{V} but not to $\mathbf{H}(\mathbf{V})$, then S is NFB.

Corollary

The following unary semigroups are NFB:

- the full involution semigroup of binary relations $\mathcal{R}_{n}^{\vee}(n \geq 2)$, endowed with relational converse
- matrix semigroups with transposition $\mathcal{M}_{n}(\mathbb{F})$, where \mathbb{F} is a finite field, $|\mathbb{F}| \geq 3$

‘Unary version' of Volkov's Theorem

Theorem (K. Auinger, M. V. Volkov, cca. 1991/92)
Let S be a unary semigroup such that $\mathbf{V}=\operatorname{var} S$ contains K_{3}. If there exist a group G which belongs to \mathbf{V} but not to $\mathrm{H}(\mathbf{V})$, then S is NFB.

Corollary

The following unary semigroups are NFB:

- the full involution semigroup of binary relations $\mathcal{R}_{n}^{\vee}(n \geq 2)$, endowed with relational converse
- matrix semigroups with transposition $\mathcal{M}_{n}(\mathbb{F})$, where \mathbb{F} is a finite field, $|\mathbb{F}| \geq 3$
- matrix semigroups $\left(\mathrm{M}_{2}(\mathbb{F}), \cdot,^{\dagger}\right)$, where \mathbb{F} is either a finite field such that $|\mathbb{F}| \equiv 3(\bmod 4)$, or a subfield of \mathbb{C} closed under complex conjugation, and ${ }^{\dagger}$ is the unary operation of taking the Moore-Penrose inverse.

However...

The Auinger-Volkov paper remained unpublished for >15 (that is, almost 20) years, because the following question remained unsettled.

However...

The Auinger-Volkov paper remained unpublished for >15 (that is, almost 20) years, because the following question remained unsettled.

Problem
Exactly which of the involution semigroups $\mathcal{M}_{n}(\mathbb{F})$ are NFB, $n \geq 2, \mathbb{F}$ is a finite field?

However...

The Auinger-Volkov paper remained unpublished for >15 (that is, almost 20) years, because the following question remained unsettled.

Problem
Exactly which of the involution semigroups $\mathcal{M}_{n}(\mathbb{F})$ are NFB, $n \geq 2, \mathbb{F}$ is a finite field?

Also, the following open problem was both intriguing and inviting.
Problem
Do finite INFB involution semigroups exist at all?

An algebra A is inherently nonfinitely based (INFB) if:

- A generates a locally finite variety, and
- any locally finite variety \mathbf{V} containing A is NFB.

An algebra A is inherently nonfinitely based (INFB) if:

- A generates a locally finite variety, and
- any locally finite variety \mathbf{V} containing A is NFB.

Said otherwise, for any finite set of identities Σ satisfied by A, the variety defined by Σ is not locally finite.

An algebra A is inherently nonfinitely based (INFB) if:

- A generates a locally finite variety, and
- any locally finite variety \mathbf{V} containing A is NFB.

Said otherwise, for any finite set of identities Σ satisfied by A, the variety defined by Σ is not locally finite.

Therefore, problems concerning INFB algebras are in fact Burnside-type problems.

An algebra A is inherently nonfinitely based (INFB) if:

- A generates a locally finite variety, and
- any locally finite variety \mathbf{V} containing A is NFB.

Said otherwise, for any finite set of identities Σ satisfied by A, the variety defined by Σ is not locally finite.

Therefore, problems concerning INFB algebras are in fact Burnside-type problems.

INFB algebras are a powerful tool for proving the NFB property; namely, the INFB property is "contagious":
if $\operatorname{var} A$ is locally finite and contains an INFB algebra B, then A is NFB.

An algebra A is inherently nonfinitely based (INFB) if:

- A generates a locally finite variety, and
- any locally finite variety \mathbf{V} containing A is NFB.

Said otherwise, for any finite set of identities Σ satisfied by A, the variety defined by Σ is not locally finite.

Therefore, problems concerning INFB algebras are in fact Burnside-type problems.

INFB algebras are a powerful tool for proving the NFB property; namely, the INFB property is "contagious":
if $\operatorname{var} A$ is locally finite and contains an INFB algebra B, then A is NFB.

In particular, B is NFB.

Finite INFB semigroups: a success story

M. V. Sapir, 1987: a full description of (finite) INFB semigroups.

Finite INFB semigroups: a success story

M. V. Sapir, 1987: a full description of (finite) INFB semigroups.

Zimin words: $Z_{1}=x_{1}$ and $Z_{n+1}=Z_{n} x_{n+1} Z_{n}$ for $n \geq 1$.

Finite INFB semigroups: a success story

M. V. Sapir, 1987: a full description of (finite) INFB semigroups.

Zimin words: $Z_{1}=x_{1}$ and $Z_{n+1}=Z_{n} x_{n+1} Z_{n}$ for $n \geq 1$.
Theorem (Sapir, 1987)
Let S be a finite semigroup. Then

$$
S \text { is } I N F B \Longleftrightarrow S \not \vDash Z_{n} \approx W
$$

for all $n \geq 1$ and all words $W \neq Z_{n}$.

Finite INFB semigroups: a success story

M. V. Sapir, 1987: a full description of (finite) INFB semigroups.

Zimin words: $Z_{1}=x_{1}$ and $Z_{n+1}=Z_{n} x_{n+1} Z_{n}$ for $n \geq 1$.
Theorem (Sapir, 1987)
Let S be a finite semigroup. Then

$$
S \text { is } I N F B \Longleftrightarrow S \not \vDash Z_{n} \approx W
$$

for all $n \geq 1$ and all words $W \neq Z_{n}$.
Sapir also found an effective structural description of finite INFB semigroups, thus proving
Theorem (Sapir, 1987)
It is decidable whether a finite semigroup is INFB or not.

Examples of finite INFB semigroups

The example: the 6 -element Brandt inverse monoid

$$
B_{2}^{1}=\left\langle a, b: a^{2}=b^{2}=0, a b a=a, b a b=b\right\rangle \cup\{1\} .
$$

Examples of finite INFB semigroups

The example: the 6 -element Brandt inverse monoid

$$
B_{2}^{1}=\left\langle a, b: a^{2}=b^{2}=0, a b a=a, b a b=b\right\rangle \cup\{1\} .
$$

B_{2}^{1} is representable by matrices (over any field):

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Examples of finite INFB semigroups

The example: the 6 -element Brandt inverse monoid

$$
B_{2}^{1}=\left\langle a, b: a^{2}=b^{2}=0, a b a=a, b a b=b\right\rangle \cup\{1\} .
$$

B_{2}^{1} is representable by matrices (over any field):
$\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.
B_{2}^{1} is obtained by adjoining an identity element to the Rees matrix semigroup over the trivial group $E=\{e\}$ with the sandwich matrix

$$
\left(\begin{array}{ll}
e & 0 \\
0 & e
\end{array}\right)
$$

Examples of finite INFB semigroups

Proposition
B_{2}^{1} fails to satisfy a nontrivial identity of the form $Z_{n} \approx W$. Hence, it is INFB.

Examples of finite INFB semigroups

Proposition

B_{2}^{1} fails to satisfy a nontrivial identity of the form $Z_{n} \approx W$. Hence, it is INFB.

Corollary
For any $n \geq 2$ and any (semi)ring R, the matrix semigroup $\mathcal{M}_{n}(R)$ is (I)NFB.

Examples of finite INFB semigroups

Proposition

B_{2}^{1} fails to satisfy a nontrivial identity of the form $Z_{n} \approx W$. Hence, it is INFB.

Corollary
For any $n \geq 2$ and any (semi)ring R, the matrix semigroup $\mathcal{M}_{n}(R)$ is (I)NFB.

Since $B_{2}^{1} \in \operatorname{var} A_{2}^{1}$, where A_{2} is the 5-element semigroup from Volkov's theorem, we have that A_{2}^{1} is (I)NFB as well.

Examples of finite INFB semigroups

Proposition

B_{2}^{1} fails to satisfy a nontrivial identity of the form $Z_{n} \approx W$. Hence, it is INFB.

Corollary
For any $n \geq 2$ and any (semi)ring R, the matrix semigroup $\mathcal{M}_{n}(R)$ is (I)NFB.

Since $B_{2}^{1} \in \operatorname{var} A_{2}^{1}$, where A_{2} is the 5-element semigroup from Volkov's theorem, we have that A_{2}^{1} is (I)NFB as well.
The same argument applies to $\mathcal{T}_{n}(n \geq 3), \mathcal{R}_{n}(n \geq 2)$, $\mathcal{P} \mathcal{T}_{n}(n \geq 2), \ldots$

What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?

What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?
For example, an involution * can be defined on B_{2}^{1} by $a^{*}=b$, $b^{*}=a$, the remaining 4 elements (which are idempotents:
$0,1, a b, b a)$ being fixed.

What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?
For example, an involution * can be defined on B_{2}^{1} by $a^{*}=b$,
$b^{*}=a$, the remaining 4 elements (which are idempotents:
$0,1, a b, b a)$ being fixed. This turns B_{2}^{1} into an inverse semigroup.

What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?
For example, an involution * can be defined on B_{2}^{1} by $a^{*}=b$, $b^{*}=a$, the remaining 4 elements (which are idempotents:
$0,1, a b, b a)$ being fixed. This turns B_{2}^{1} into an inverse semigroup.
Surprise...!!!

What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?
For example, an involution * can be defined on B_{2}^{1} by $a^{*}=b$,
$b^{*}=a$, the remaining 4 elements (which are idempotents:
$0,1, a b, b a)$ being fixed. This turns B_{2}^{1} into an inverse semigroup.
Surprise...!!!
Theorem (Sapir, 1993)
B_{2}^{1} is not INFB as an inverse semigroup.

What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?
For example, an involution * can be defined on B_{2}^{1} by $a^{*}=b$,
$b^{*}=a$, the remaining 4 elements (which are idempotents:
$0,1, a b, b a)$ being fixed. This turns B_{2}^{1} into an inverse semigroup.
Surprise...!!!
Theorem (Sapir, 1993)
B_{2}^{1} is not INFB as an inverse semigroup. In fact, there is no finite INFB inverse semigroup at al!!

What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?
For example, an involution * can be defined on B_{2}^{1} by $a^{*}=b$,
$b^{*}=a$, the remaining 4 elements (which are idempotents:
$0,1, a b, b a)$ being fixed. This turns B_{2}^{1} into an inverse semigroup.
Surprise...!!!
Theorem (Sapir, 1993)
B_{2}^{1} is not INFB as an inverse semigroup. In fact, there is no finite INFB inverse semigroup at al!!

Still, the inverse semigroup B_{2}^{1} is NFB (Kleiman, 1979).

What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?
For example, an involution * can be defined on B_{2}^{1} by $a^{*}=b$,
$b^{*}=a$, the remaining 4 elements (which are idempotents:
$0,1, a b, b a$) being fixed. This turns B_{2}^{1} into an inverse semigroup.
Surprise...!!!
Theorem (Sapir, 1993)
B_{2}^{1} is not INFB as an inverse semigroup. In fact, there is no finite INFB inverse semigroup at al!!

Still, the inverse semigroup B_{2}^{1} is NFB (Kleiman, 1979).
So, once again:
Problem
Do finite INFB involution semigroups exist at all?

An INFB criterion for involution semigroups

Yes!

An INFB criterion for involution semigroups

Yes!
Theorem (ID, cca. 2007/08)
Let S be an involution semigroup such that $\operatorname{var} S$ is locally finite. If S fails to satisfy any nontrivial identity of the form

$$
Z_{n} \approx W
$$

where W is an involutorial word (a word over the 'doubled' alphabet $\left.X \cup X^{*}\right)$, then S is INFB.

An INFB criterion for involution semigroups

Yes!
Theorem (ID, cca. 2007/08)
Let S be an involution semigroup such that $\operatorname{var} S$ is locally finite. If S fails to satisfy any nontrivial identity of the form

$$
Z_{n} \approx W
$$

where W is an involutorial word (a word over the 'doubled' alphabet $\left.X \cup X^{*}\right)$, then S is INFB.

How about a (finite) example?

'C'mon baby, let's do the twist...!'

Rescue: Luckily, B_{2}^{1} admits one more involution aside from the inverse one: define the nilpotents a, b (and, of course, 0,1) to be fixed by ${ }^{*}$, which results in $(a b)^{*}=b a$ and $(b a)^{*}=a b$.

'C'mon baby, let's do the twist...!'

Rescue: Luckily, B_{2}^{1} admits one more involution aside from the inverse one: define the nilpotents a, b (and, of course, 0,1) to be fixed by ${ }^{*}$, which results in $(a b)^{*}=b a$ and $(b a)^{*}=a b$.
In this way we obtain the twisted Brandt monoid $T B_{2}^{1}$.

'C'mon baby, let's do the twist...!'

Rescue: Luckily, B_{2}^{1} admits one more involution aside from the inverse one: define the nilpotents a, b (and, of course, 0,1) to be fixed by ${ }^{*}$, which results in $(a b)^{*}=b a$ and $(b a)^{*}=a b$.
In this way we obtain the twisted Brandt monoid $T B_{2}^{1}$.
Proposition
$T B_{2}^{1}$ fails to satisfy a nontrivial identity of the form $Z_{n} \approx W$. Hence, it is INFB.

'C'mon baby, let's do the twist...!'

Rescue: Luckily, B_{2}^{1} admits one more involution aside from the inverse one: define the nilpotents a, b (and, of course, 0,1) to be fixed by ${ }^{*}$, which results in $(a b)^{*}=b a$ and $(b a)^{*}=a b$.
In this way we obtain the twisted Brandt monoid $T B_{2}^{1}$.
Proposition
$T B_{2}^{1}$ fails to satisfy a nontrivial identity of the form $Z_{n} \approx W$. Hence, it is INFB.

Similarly to B_{2}^{1}, this little guy is quite powerful.

'C'mon baby, let's do the twist...!'

Rescue: Luckily, B_{2}^{1} admits one more involution aside from the inverse one: define the nilpotents a, b (and, of course, 0,1) to be fixed by ${ }^{*}$, which results in $(a b)^{*}=b a$ and $(b a)^{*}=a b$.
In this way we obtain the twisted Brandt monoid $T B_{2}^{1}$.
Proposition
$T B_{2}^{1}$ fails to satisfy a nontrivial identity of the form $Z_{n} \approx W$. Hence, it is INFB.

Similarly to B_{2}^{1}, this little guy is quite powerful.

Remark

Analogously, one can also define $T A_{2}^{1}$, the "involutorial version" of A_{2}^{1}, which is also INFB.

Examples of finite INFB involution semigroups

- \mathcal{R}_{n}^{\vee}, the involution semigroup of binary relations, is (I)NFB for all $n \geq 2$,

Examples of finite INFB involution semigroups

- \mathcal{R}_{n}^{\vee}, the involution semigroup of binary relations, is (I)NFB for all $n \geq 2$,
- Reason: $T B_{2}^{1}$ embeds into \mathcal{R}_{2}^{\vee}.

Examples of finite INFB involution semigroups

- \mathcal{R}_{n}^{\vee}, the involution semigroup of binary relations, is (I)NFB for all $n \geq 2$,
- Reason: $T B_{2}^{1}$ embeds into \mathcal{R}_{2}^{\vee}.
- $\mathcal{M}_{2}(\mathbb{F})$, provided $|\mathbb{F}| \not \equiv 3(\bmod 4)$,

Examples of finite INFB involution semigroups

- \mathcal{R}_{n}^{\vee}, the involution semigroup of binary relations, is (I)NFB for all $n \geq 2$,
- Reason: $T B_{2}^{1}$ embeds into \mathcal{R}_{2}^{\vee}.
- $\mathcal{M}_{2}(\mathbb{F})$, provided $|\mathbb{F}| \not \equiv 3(\bmod 4)$,
- Reason: This is precisely the case when -1 has a square root in \mathbb{F}, which is sufficient and necessary for $T B_{2}^{1}$ to embed into $\mathcal{M}_{2}(\mathbb{F})$.

Examples of finite INFB involution semigroups

- \mathcal{R}_{n}^{\vee}, the involution semigroup of binary relations, is (I)NFB for all $n \geq 2$,
- Reason: $T B_{2}^{1}$ embeds into \mathcal{R}_{2}^{\vee}.
- $\mathcal{M}_{2}(\mathbb{F})$, provided $|\mathbb{F}| \not \equiv 3(\bmod 4)$,
- Reason: This is precisely the case when -1 has a square root in \mathbb{F}, which is sufficient and necessary for $T B_{2}^{1}$ to embed into $\mathcal{M}_{2}(\mathbb{F})$.
- $\mathcal{M}_{n}(\mathbb{F})$ for all $n \geq 3$ and all finite fields \mathbb{F}.

Examples of finite INFB involution semigroups

- \mathcal{R}_{n}^{\vee}, the involution semigroup of binary relations, is (I)NFB for all $n \geq 2$,
- Reason: $T B_{2}^{1}$ embeds into \mathcal{R}_{2}^{\vee}.
- $\mathcal{M}_{2}(\mathbb{F})$, provided $|\mathbb{F}| \not \equiv 3(\bmod 4)$,
- Reason: This is precisely the case when -1 has a square root in \mathbb{F}, which is sufficient and necessary for $T B_{2}^{1}$ to embed into $\mathcal{M}_{2}(\mathbb{F})$.
- $\mathcal{M}_{n}(\mathbb{F})$ for all $n \geq 3$ and all finite fields \mathbb{F}.
- Reason: $T B_{2}^{1}$ embeds into $\mathcal{M}_{n}(\mathbb{F})$ as a consequence of the Chevalley-Warning theorem from algebraic number theory (!!!).

Examples of finite INFB involution semigroups

- \mathcal{R}_{n}^{\vee}, the involution semigroup of binary relations, is (I)NFB for all $n \geq 2$,
- Reason: $T B_{2}^{1}$ embeds into \mathcal{R}_{2}^{\vee}.
- $\mathcal{M}_{2}(\mathbb{F})$, provided $|\mathbb{F}| \not \equiv 3(\bmod 4)$,
- Reason: This is precisely the case when -1 has a square root in \mathbb{F}, which is sufficient and necessary for $T B_{2}^{1}$ to embed into $\mathcal{M}_{2}(\mathbb{F})$.
- $\mathcal{M}_{n}(\mathbb{F})$ for all $n \geq 3$ and all finite fields \mathbb{F}.
- Reason: $T B_{2}^{1}$ embeds into $\mathcal{M}_{n}(\mathbb{F})$ as a consequence of the Chevalley-Warning theorem from algebraic number theory (!!!).

So, what about $\mathcal{M}_{2}(\mathbb{F})$ if $|\mathbb{F}| \equiv 3(\bmod 4)$?
(We already know it is NFB.)

Non-INFB results

Theorem (ID, 2010)
Let S be a finite involution semigroup satisfying a nontrivial identity of the form $Z_{n} \approx W$ such that $B_{2}^{1} \notin \operatorname{var} S$. Then S is not INFB.

Non-INFB results

Theorem (ID, 2010)
Let S be a finite involution semigroup satisfying a nontrivial identity of the form $Z_{n} \approx W$ such that $B_{2}^{1} \notin \operatorname{var} S$. Then S is not INFB.

Proof idea: Either W is an ordinary semigroup word, or for any ${ }^{*}$-fixed idempotent e of S, var eSe consists of involution semilattices of Archimedean semigroups.

Non-INFB results

Theorem (ID, 2010)
Let S be a finite involution semigroup satisfying a nontrivial identity of the form $Z_{n} \approx W$ such that $B_{2}^{1} \notin \operatorname{var} S$. Then S is not INFB.

Proof idea: Either W is an ordinary semigroup word, or for any ${ }^{*}$-fixed idempotent e of S, var eSe consists of involution semilattices of Archimedean semigroups.

Theorem (ID, 2010)
Let S be a finite semigroup satisfying an identity of the form $Z_{n} \approx Z_{n} W$. Then S is not INFB.

Non-INFB results

Theorem (ID, 2010)

Let S be a finite involution semigroup satisfying a nontrivial identity of the form $Z_{n} \approx W$ such that $B_{2}^{1} \notin \operatorname{var} S$. Then S is not INFB.

Proof idea: Either W is an ordinary semigroup word, or for any ${ }^{*}$-fixed idempotent e of S, var eSe consists of involution semilattices of Archimedean semigroups.

Theorem (ID, 2010)

Let S be a finite semigroup satisfying an identity of the form $Z_{n} \approx Z_{n} W$. Then S is not INFB.

Proof idea: Stretching the approach of Margolis \& Sapir (1995) developed for finitely generated quasivarieties of semigroups to what seems to be the final limits of that method: certain semigroup quasiidentities can be "encoded" into unary semigroup identities.

Non-INFB results

Corollary
No finite regular *-semigroup is INFB.
(Namely, $x \approx x\left(x^{*} x\right)$ holds.)

Non-INFB results

Corollary
No finite regular *-semigroup is INFB.
(Namely, $x \approx x\left(x^{*} x\right)$ holds.)
Corollary (ID, 2010)
For any finite group G, the involution semigroup of subsets $\mathcal{P}_{G}^{*}=\left(\mathcal{P}(G), \cdot,{ }^{*}\right)$ is not INFB.

Non-INFB results

Corollary
No finite regular *-semigroup is INFB.
(Namely, $x \approx x\left(x^{*} x\right)$ holds.)
Corollary (ID, 2010)
For any finite group G, the involution semigroup of subsets
$\mathcal{P}_{G}^{*}=\left(\mathcal{P}(G), \cdot,{ }^{*}\right)$ is not INFB.
(Namely, \mathcal{P}_{G}^{*} satisfies $Z_{n} \approx Z_{n} x_{1}^{*} x_{1}$ for $n=|G|+2$.)

Non-INFB results

Corollary
No finite regular *-semigroup is INFB.
(Namely, $x \approx x\left(x^{*} x\right)$ holds.)
Corollary (ID, 2010)
For any finite group G, the involution semigroup of subsets
$\mathcal{P}_{G}^{*}=\left(\mathcal{P}(G), \cdot,{ }^{*}\right)$ is not INFB.
(Namely, \mathcal{P}_{G}^{*} satisfies $Z_{n} \approx Z_{n} x_{1}^{*} x_{1}$ for $n=|G|+2$.)
Remark
The ordinary power semigroup $\mathcal{P}_{G}=(\mathcal{P}(G), \cdot)$ is INFB if and only if G is not Dedekind.

Non-INFB results

Proposition (Crvenković, 1982)
If a finite involution semigroup S admits a Moore-Penrose inverse
${ }^{\dagger}$, then the inverse is term-definable in S.

Non-INFB results

Proposition (Crvenković, 1982)
If a finite involution semigroup S admits a Moore-Penrose inverse ${ }^{\dagger}$, then the inverse is term-definable in S.

In particular, such a semigroup satisfies $x \approx x \cdot w\left(x, x^{*}\right) \cdot x$ for some w

Non-INFB results

Proposition (Crvenković, 1982)
If a finite involution semigroup S admits a Moore-Penrose inverse ${ }^{\dagger}$, then the inverse is term-definable in S.

In particular, such a semigroup satisfies $x \approx x \cdot w\left(x, x^{*}\right) \cdot x$ for some $w \Longrightarrow$ it is not INFB.

Non-INFB results

Proposition (Crvenković, 1982)
If a finite involution semigroup S admits a Moore-Penrose inverse
\dagger, then the inverse is term-definable in S.
In particular, such a semigroup satisfies $x \approx x \cdot w\left(x, x^{*}\right) \cdot x$ for some $w \Longrightarrow$ it is not INFB.

Proposition

The involution semigroup of 2×2 matrices over a finite field \mathbb{F} with transposition admits a Moore-Penrose inverse if and only if $|\mathbb{F}| \equiv 3(\bmod 4)$.

Non-INFB results

Proposition (Crvenković, 1982)
If a finite involution semigroup S admits a Moore-Penrose inverse
\dagger, then the inverse is term-definable in S.
In particular, such a semigroup satisfies $x \approx x \cdot w\left(x, x^{*}\right) \cdot x$ for some $w \Longrightarrow$ it is not INFB.

Proposition

The involution semigroup of 2×2 matrices over a finite field \mathbb{F} with transposition admits a Moore-Penrose inverse if and only if $|\mathbb{F}| \equiv 3(\bmod 4)$.

This completes our classification!

Solution to the (I)NFB problem for matrix involution semigroups

Theorem (Auinger, ID, Volkov, 2008-10)
Let $n \geq 2$ and \mathbb{F} be a finite field. Then
(1) $\mathcal{M}_{n}(\mathbb{F})$ is not finitely based;
(2) $\mathcal{M}_{n}(\mathbb{F})$ is INFB if and only if either $n \geq 3$, or $n=2$ and $|\mathbb{F}| \not \equiv 3(\bmod 4)$.

The gap

Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property.

The gap

Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property. We don't know what to do with finite involution semigroups (if they exist) such that:

The gap

Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property. We don't know what to do with finite involution semigroups (if they exist) such that:
(a) $B_{2}^{1} \in \operatorname{var} S$,

The gap

Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property. We don't know what to do with finite involution semigroups (if they exist) such that:
(a) $B_{2}^{1} \in \operatorname{var} S$,
(b) S satisfies a nontrivial identity of the form $Z_{n} \approx W$,

The gap

Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property. We don't know what to do with finite involution semigroups (if they exist) such that:
(a) $B_{2}^{1} \in \operatorname{var} S$,
(b) S satisfies a nontrivial identity of the form $Z_{n} \approx W$,
(c) S, however, fails to satisfy an identity of the form $Z_{n} \approx Z_{n} W^{\prime}$.

The gap

Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property. We don't know what to do with finite involution semigroups (if they exist) such that:
(a) $B_{2}^{1} \in \operatorname{var} S$,
(b) S satisfies a nontrivial identity of the form $Z_{n} \approx W$,
(c) S, however, fails to satisfy an identity of the form $Z_{n} \approx Z_{n} W^{\prime}$.

This "gap" does not occur for ordinary semigroups, as (b) renders (a) impossible.

The gap

Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property. We don't know what to do with finite involution semigroups (if they exist) such that:
(a) $B_{2}^{1} \in \operatorname{var} S$,
(b) S satisfies a nontrivial identity of the form $Z_{n} \approx W$,
(c) S, however, fails to satisfy an identity of the form $Z_{n} \approx Z_{n} W^{\prime}$.

This "gap" does not occur for ordinary semigroups, as (b) renders (a) impossible. But this is no longer the case for involution semigroups!

The gap

Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property. We don't know what to do with finite involution semigroups (if they exist) such that:
(a) $B_{2}^{1} \in \operatorname{var} S$,
(b) S satisfies a nontrivial identity of the form $Z_{n} \approx W$,
(c) S, however, fails to satisfy an identity of the form $Z_{n} \approx Z_{n} W^{\prime}$.

This "gap" does not occur for ordinary semigroups, as (b) renders (a) impossible. But this is no longer the case for involution semigroups!
Test-Example
Is $x y x z x y x \approx x y x x^{*} x z x y x$ implying the non-INFB property?

THANK YOU!

Questions and comments to: dockie@dmi.uns.ac.rs

Preprints may be found at:
http://sites.dmi.rs/personal/dolinkai

