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ABSTRACT. We investigate H-distributions for sequences in the dual pairs of
Bessel spaces, (HY,H? [),s € R,qg > 1 and ¢ = p/(p — 1), by the use of un-
bounded multipliers, with the finite regularity, as test functions. The results
relating weak convergence, H-distributions and strong convergence are applied
in the analysis of strong convergence for a sequence of approximated solutions
to a class of differential equations P(x, D)un = fn, where P(z, D) is a differ-
ential operator of order k with coefficients in the Schwartz class and (fy) is
a strongly convergent sequence in an appropriate Bessel potential space. H-
distributions, weak and strong convergence, Bessel potential spaces, multipliers
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1. INTRODUCTION, NOTATION AND DEFINITIONS

The aim of this paper is to analyze H-distributions obtained by the use of a classes
of unbounded multipliers which provide smaller test function spaces for testing the
strong convergence of a weakly convergent sequence in Bessel potential spaces.
General results are used for the proof of the strong convergence of a sequence of
solutions extracted from a bounded set of solutions for a class of partial differential
equations of order k, with coefficients in the Schwartz space S(R%). In our analysis
we have considered finite order distribution spaces which enables us to use spaces
of multipliers with the finite type regularities of symbols. Especially, classes of
multipliers denoted by s’y are obtained, similarly as in the case of Sobolev space,
as completions of the respectlve normed spaces. Because of that in our investigation
there were many estimates to be analyzed in order to determine the finite regularity
of symbols.

H-measures and distributions are microlocal tools that can be used to investigate
the strong convergence of weakly convergent sequences in the Lebesgue and Bessel
potential spaces. H-measures, also known as microlocal defect measures, are associ-
ated to weakly convergent sequences in L?(R9). They are introduced independently
by Tartar, [14], and Gerard, [7], as functionals on product of continuous functions
compactly supported in R? and continuous functions on the unit sphere S, i.e.
on C.(R?) @ C(S%~1). More precisely, for a weakly convergent sequence u, — 0
in L2 _(R?) there exists a Radon measure u such that for every ¢r, s € C.(R9)
and every 1) € C(S%1), up to a subsequence (which means that there exists a
subsequence of (u,) denoted again by the same symbol),

tim [ F v Flomnu (167 )de = o122 90,

n—oo R4

where F denotes Fourier transform. The well-known example of oscillating sequence
ug(z) = ¥ (cf[7]) with the associated microlocal defect measure ju(z,&) =

Date: Received: date / Accepted: date.



2 JELENA ALEKSIC, STEVAN PILIPOVIC, IVANA VOJNOVIC

v(z) ®8(€ — &), where v is the Lebesgue measure on RY and § is the Dirac measure
on S, implies that the support of H-measure provides an information about the
set of points 2 € R? where the strong convergence is lost and its dependence on the
directions, frequencies, of oscillations (&g, in this example). The original concept
and its generalization for sequences of uncountable dimensions, given in [11], are
mainly applied to hyperbolic PDEs, see e.g. [3], where Ll (R%)-precompactness of
solutions to diffusion-dispersion approximation for a scalar conservation law was ob-
tained. Many improvements have been done in adopting applications of H-measures
to parabolic (e.g. [5]) and ultraparabolic (e.g. [12]) problems.

H-distributions from [6], resp. [4], generalize the concept of H-measures from
L*(R?) to LP(R?), p # 2 and Bessel potential spaces, respectively. Hoérmander-
Mikhlin’s theorem has to be fulfilled and test functions in £ have to be more regular,
namely 1) € C*(S?71), k = [d/2] + 1. For the later use, we recall:

Theorem 1 (Hérmander-Mikhlin theorem, cf. e.g. [10], Theorem 8.2). Let 1 <
p <00, k>d/2 and p € C*(RY). If¢p: RI\{0} — C satisfies |0%¢(&)| < Bl
for all |a] < Kk and & # 0, then there is a constant C' = C(d,p) such that

Ay (N)lle < CB|fllze, for all f € S(RY),
where F[Ay(f)] =y Ff.

In order to associate an H-distribution to a pair of sequences in the dual Bessel
potential spaces, the authors proposed the use of (non-local) test functions ¢ €
S(R?). 1In this way, H-distribution becomes a functional on S(RY) @ C*(S?~1)
belonging to the space denoted by SE’(R? x S9~1), whose topology is well described
in [4]. The existence theorem for H-distribution associated to a sequence in a
Bessel potential space reads as follows [4]: If u,, — 0 in W=5P(R?) and v, — 0
in Wk4(R?), then there exist subsequences (un), (vn) and a H-distribution p €
SE' (R x S4=1) such that for every 1,02 € S(RY) and every ¢ € C*(S471),

nliglm<«4w(<p1un/) s P20p) = n}gﬂoo@lun' ) A@(@QUW» = (1, p1P2 @ ).

Moreover, in [4] the strong convergence is tested on all v, — 0 in W4 (R?).

In this paper, in testing of strong convergence, we are confronting smaller test
spaces and larger spaces of multipliers, that is, ¢ is not bounded and can not be
the Fourier multiplier in the sense of Héormander-Mikhlin theorem. Therefore, we
use a class of pseudo-differential operators to ensure the boundedness of operator
Ay + WEEma(RY) — Wk4(R?), minimizing the assumptions on 1. Moreover, in
application to a class of differential equations the strong convergence of a sequence
u,, of solutions converging weakly to zero in W %7 (R9) is tested over all v,, — 0 in
Whtma(Rd) ¢ Wha(RY), if m > 0.

The paper is organized as follows. In Section 2 we present results related to a
class of pseudo-differential operators considering them as bilinear mappings and we
prove the continuity with respect to a certain class of symbols with the finite reg-
ularity conditions. The analysis of such symbols is based on the proof of Theorem
10.7 in [16]. We give in the Appendix A a complete proof of Theorem 2, since we
follow proof of quoted theorem in [16], with the explanations needed for the proof
of continuous bilinearity and the finiteness of regularity assumptions. Section 3
is devoted to a class of symbols depending only on &; the composition of a cor-
responding multiplier and an operator of multiplication is given. In the first part
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of Section 4 we give a theorem for a commutator important in the construction of
H-distributions and the analysis of their properties. Also, in Section 4 we consider
a class of symbols with respect to the L4 (Rd)—norm, q € [1,2], as well as the ex-
istence of the corresponding H-distributions. In Section 5 we apply the results to
a weakly convergent sequence of solutions of a class of partial differential equation
of order k € N with coefficients in S(R?).

2. NOTATION AND BILINEAR CONTINUITY

The Bessel potential space Hf(Rd), 1 <p< oo, s €R, is defined as a space
of all tempered distributions u such that Agy.u = F~'((1 + 1€12)*/2 Fu) is in
LP(RY). 1t is a Banach space with the norm [ulgzr = [ Aeul/rs. Moreover,
(HP(RY)) = H?,(R?), cf. [2]. Also, recall that for m € Ny and 1 < p < oo, the
Bessel potential spaces coincide with the Sobolev spaces, i.e. HE,(R?) = W™P(R?),
cf. [1].

V[Va]s use standard notation || = ay + - - - + g for multi-index o = (a1,...,aq) €
Nd, (€)° = (1 +|¢]?)%/%,s € R and d¢ :A(QW)’ddf,f € R?. The Fourier transform
of a function f € L*(R?) is defined as f(§) := [pu e f(z)dx. For z € R? with
(D) = V1 — A is denoted the pseudo-differential operator with symbol (£), hence
(D) f = [ei® (&) f(€)de. Actually, in the sequel, we will use even powers of (D)
and the corresponding Leibniz rule in the partial integration.

We define the space of symbols of pseudo-differential operators that we shall use.
Let m € R, N € Ny and o € OV (R? x R?). Then the symbol ¢ is an element of S¥
if for every a, 8 € N such that |a| < N, |3| < N the norm given by

sy 3= s, sup 106020 (m, Ol ™
NP1 g€

is finite. The space (S}, |-

sy ) is a Banach space. Define S™ = proj lim S3. Then
N —oc0

S™ is a Fréchet space. Function o € 8™ C C is a symbol of a pseudo-differential
operator of order m defined by

7)) = [ ot ie)ds, ue S®Y (1)

and it is defined as an oscillatory integral for u € S'(R?). Pseudo-differential op-
erators of order m can also be defined by (1) for symbols with finite regularity
o € 8% c CN. This is the subject of Theorem 2.

If additionally there exists bounded function ¢(z) — 0, as |z| — oo, such that

|o(z,§)| < co(2)(§)™, (2)

then the symbol o € S} belongs also to the class of symbols denoted by Sg"y (cf.,
[9] or [17]). It can be shown (cf. [9]) that if (2) holds for o € S}, then a similar
estimate can be achieved for all derivatives, i.e. for every a,3 € N¢ such that
la| < N,|8| < N there exists a bounded function c,5(z) = o(1) as |z| — oo, and

10800 (w2, )] < cap(a)(€)™ 1.

The operator T, defined in (1), with smooth symbol ¢ € S™, is linear and
continuous from HI(RY) to H? (R, s € R,1 < q < oo, cf. Theorem 11.9. in

s—m
[16]. This result is a generalization of Theorem 10.7. in [16], where m = s = 0.
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We extend this assertion twofold, considering T,u as a bilinear mapping and taking
o € SY,, for any integer N > 2d.

Theorem 2. Let N be integer such that N > 2d, 1 < p < oo and let the operator
T be defined by
T(o,u) = Tyu, 0 € S%, uec LP(RY).

Then T is a continuous bilinear operator from S x LP(RY) to LP(R?) and there
exists Cn > 0 such that

[Toullr < Cnlolsg llullzr-
The proof can be found in the Appendix A.

Corollary 3. Let 1 <p < oo, s,m € R, N > 2d and o € Sy;. Then there ezists
CnN > 0 such that the following estimate holds

IT (o, w)

wr = I Toullyy < Onlolsgllullm . we HL (®Y.  (3)

S¥
Proof: From the definition of norm on HP(R?) spaces it follows that
1 Toull gy = IF (&) F(Tig) -+ (Tig)-mow.e) (Tigymt=)))ll o

= To1 .0 Tigym+=u)lzr,

where o1 (z,¢) = (£) ™o (x, &) € S°. Applying Theorem 2 to (4) we obtain that for
any integer N > 2d there exists ¢y > 0 such that

(4)

[Toull e < enloilsg [Tigym+sullLe = enlolsg [lullmz , -

Since |o1|go < |<§>|S;,m,|0—|57]\7- < c|o|sy, we obtain estimate (3). a

3. MULTIPLIERS

3.1. Spaces of symbols with finite type regularities. In the sequel we shall
consider a class of symbols depending only on £ with finite smoothness, defined as
follows.

Let m € R, g € [1,00], N € Ng. Then, consider the space of all ¢» € CV(R?) for
which the norm

[Wlsgy = mase [ E(E)E) ™17 10 (5)

is finite. The completion of this space, with respect to this norm, is denoted by
(sqins |+ lsmy ). In the case when g = oo we already have Banach space of symbols,
i.e. the introduced space is the same as its completion. We consider operator Ty,
with symbol ¢ € 57"y, defined as in (1). Since ¢ depends only on { the operator
Ty is called multiplier operator. Note that

0°(E)] < [, [E171 al < N, ] > €l > 0,
ify € 3207 y and N > d/2. Therefore, by Theorem 1, we have the following result.

Corollary 4. Let N > d/2, 1 < p < oo. Then, Ay is a continuous bilinear
operator on 8207]\; x LP(RY), and

AW, WLy = [Ap(w)lr < Cllso | Nullze. (6)
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With (s%} y)o C sl x we denote the class of multipliers such that ¢ € (72 x)o

means that
aa
sup w =0, forall |a]<N. (7)
€] —oo (&)m e
Separability of symbol classes is important in the construction of H-distributions.
The following results hold.

Theorem 5. a) The space ((s3 ny1)os | |sm ) s separable.
b) Let 1 < q < oo. Then the space (s7'n, 1, |- |52”N) is separable.

Proof: a) We will prove that S(R) is dense in (s x_1)o, |- |sm )~ Since S(R9)
is separable, this implies separability of ((s7 nq1)o,| - [sm ). Let ¥ € (sZ niq)o-
Then by the standard arguments, one can prove that ¥,(§) = (¢ x ¢,)x(&/n)
converges to ¢ in the norm |- |sm ., where x € C2°, x(§) = 1 for [{] < 1 and
x(§) =0 for |£] > 2 and ¢, is standard sequence of mollifiers. In the proof the key
point is that for suitable constants,

€€ supp P\ = 1/ <1/n < Cy/, €] > |&], |al > 0.

b) The proof uses the same estimate as well as the well known properties of

Lebesgues spaces. a

3.2. Composition of multiplier and multiplication operators. Next we an-
alyze compactness properties of the operator A,T,. According to our previous
notation we denote the operator of multiplication with ¢ = ¢(z) € S(R?) as T,,.

Theorem 6. Let m € R, ¢ € S(R?). Then, AyT, is a compact operator from
HY (RY) into HY_(R?), for any e > 0 if

(1) Y €sln, N>3d+3;

(2) ves'y, N>d+3,1<qg<2.

Remark 7. In our proof of Theorem 6, in the first part, we use the operator (D,,)% =
(1 — A)* and partial integration. Because of that we need the assumption 2k =
d+ 1, for d odd and 2k = d + 2, for d even and in the first case we need that
N > 3d+ 1 and in the second that N > 3d + 2, since then we can use Theorem 2.
Because of that we assume that N is an integer such that N > 3d 4 3. Considering
the second part of the proof we have to apply again (1 — A)¥ so that & should be
integer equal to (d +1)/2 or (d + 2)/2. This implies, in both cases N > d + 3.

Proof: (1) We shall show that the symbol of the composition A, T,,, denoted
by o, is in Sg'_4_1, if d is odd or in Sy'y_,_o, if d is even. Recall, if
o1 € 8™ and oy € S™?, there exists o € S™ T2 guch that T,,T,, = T,
and

o, &) = / / W5y (2, +n)oa(z +y, )dydy, € € R

exists as an oscillatory integral. Therefore, we need to prove that for ¢ €
s n» N > 3d + 3 and for ¢ € S(R?) the symbol of the composition o,

given by o(z,£) = // e~ W€ + n)e(x + y)dydn, x,& € RY belongs to

the class Sy'y_q4_1, if d is odd or to the class Sy'y_g4_o, if d is even. We
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assume that d is odd. The proof is analogous in the case when d is even.
Using Peetre’s inequality we can estimate:

o)1 = | [ [ ) D, (1) 2o + D el +1) )y
//<y> 2 (1) "€ + )™ (Dy) 0z + 1)\ dydlny
< [ @ am @™ D, ot + y)ldydn < O

for 2k > d and 2] — |m| > d. Since d is odd we can choose 2k = d + 1.
Moreover, since ¢ € S(R?) it follows that for any M > 0 there exists
¢y > 0 such that
(Dy) oz +y) < enrz +y) M < Curla) M ()™,

Then,

lo(z, )] < ef€)™ (@)™, (®)
if we choose 0 < M < 1, since in that case 2k — M > d. Next we estimate
the derivatives of o(x f) We have

‘// %yﬂaa?/J (E+n)0Pp(x +y)dydn’ _
| / / €y) (D) () “HOEU(E + ) ) (D) Dol + y)dydn| <

e [ gl D, 02 ot + ldydn < el

Therefore, |3?850(:1:,£)| < c¢ymlel when 2k = d + 1, 21 > d + |m — |a].
Since 9 € s7} y, we have that |a| + 2k < N. Then, the assumption N >
3d+ 3, that is, N —d—1 > 2d, allow us to use Theorem 2 in the sequel. We
have proved that o € Sy_;_; for odd d and (8) implies that o € Sg"x_4_;-

The rest of the proof is similar to the proof of Theorem 3.2 in [17] which
claims that if o € SJ*, then T, : H% (R?) — H?_(R?) is a compact operator,
for m € R,;1 < ¢ < co. We apply similar techique to the one used in the
proof of Theorem 3.2 [17]. Take ¢ € C2°(R?) such that ¢(z) =1 for x| < 1

and ¢(z) = 0 for |z| > 2. For v € N let 0,(z,&) = (/5(%)0(1‘,5). Then,

T, = ¢,1,, for ¢,(x) = qu(E) The operator T, is compact because
v

T, is bounded from HY (R?) into L¢(R?) (Theorem 2) and the operator of
multiplication by ¢, is compact from L4(R¢) into H?_(R?), for any ¢ > 0.

If v € H(RY), 1 < ¢ < oo, then Theorem 2 implies that there exists ¢ > 0
such that

I(To, = To)ollge, < [(To, = To)vllra < clow —alsg_,_ [|vllmg,-

We estimate:

- 10807((¢(5) — Do (x,))]
lo, — olsm = max S —
Noamt ‘alvlﬁlgN*dflw §€Rd <€>m |Oz‘

12,25 ()0277(6(2) = 1)0g8)0 (x,€)]

sup < Cicay (V).
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Since o € Si'y_4_1, it follows that ¢, ,(v) = o(1) as v — oo. We conclude
that || T,, — To | c(zg, ey — 0 as v — oo, which implies that 7, is also a
compact operator.

We denote 9, (§) = gb(%)w(ﬁ), where ¢ € C°(R?) is introduced in the
same way as in part (1). We will show that A,T, : HZ (R?Y) — LI(R?).
Then, as in the previous part of the proof, T, T}, is a compact operator from

HE (R into H?_(R?). Therefore, we need to prove that Ty, T, — AyT,
in norm as v — co. We have that

T -se0lss = | (05) = 1)meten)], =
(/]R (¢(;) 1) /R eixéw(f)f(m)(f)dg‘qu)% -

</Rd (¢(7)-1) /Rd<L’56”“>w<s>f<sov>(f)ds\qu);,

v
where Le = (1 + |z|?)71(1 — A¢) and Lee™S = €6, After integration by
parts for k = |d/2] + 1, that is 2k = d + 1 for d odd or 2k = d + 2 for d
even it holds that

) _1) |q
Rd 1+|=’C|

/R it Z a,0" (1 (e)))d«sjqu)%

|7|=0

L 2 3 () o s

[r|=0 a+B=r
Since 2k > d, we can write 2k = d + &1 + €9, £; > 0,7 = 1, 2. This implies

B | PP

zER4 e

Putting hg = 2P it follows that
¢(3) —1
()=

1/p
y(@v)|lLa < csup
r€eRd

#(L) -1 melalis 1/p
Bt [ttty » )
Next, we use Peetre’s and Young’s inequality to conclude that || Ty, —qy (¢v)]| La

¢(3) —

Wl ([t o0iF )

= ¢ sup
zER4

[m—|al] m—lo

m /3 12 2
s oo | e \lwl JFEEHOa P «Fo©+- P
%) 2y el 5 Lm—jal]
<eswp [T it [Foc@10 4 1= F0 @ +1e?) )
A7) — 8 o Lm=lall
= L ACGIGIERN o INEP

1
< c1 sup ———[Y[sm [|v]l g, — 0, v — oo.

|z|> u<>
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Hence, AyT, is a limit of compact operators Ty, T, and the proof also implies
that AuT, 5 HO(RY) — LIRY). Since [Ty, —y(@0)lus. < [To—ulov)lso it
follows that AT, is a compact operator from HZ (R?) to H_(R?). a

4. H-DISTRIBUTIONS

From now on we assume that N is an integer such that N > 3d + 5. Actually,
because of the use of Theorem 2 we explained that N > 3d + 3 (cf. Remark 7).
We enlarge N because we need to assume that N —d — 3 > 2d, if d is odd and
N —d—4>2d,if d is even.

4.1. Compactness of the commutator C = [Ay, T,,].

Theorem 8. Let ¢ € s7} y, ¢ € S(RY), m € R. Then the commutator C =
Ay, T,) = AyT, — T, Ay is a compact opemtor from HI (R) into LY(RY). If p
denotes the symbol of C, then p € SO N a3, if dis odd or p € Sg?ﬁid_él, if d is
even.

Proof: Let ¢ € s7} v, N > 3d +5, d odd and ¢ € S(RY). The symbol of the

composition Ay T, is given by o(z,£) = [[ e~ 1€ + n)p(z + y)dydn, x,& € R
Using Taylor expansion, we obtain that o(z,§) = I1(x,§) + Iz(x, &), where

o) = 3 o [[ e mirog ot + vy

|a\<1
and I(z, &) = 2 Z // —iyng, / 1-6)? o¢ w(£+6‘n)d9) (x+y)dydn. Then,

Li(z,§) = Z aag V(&) Dy o(y)ly=- and similarly,

laf<1

(z,6) =2 Z // *Zw / (1—0)%0gp (& + on)d9> Dyo(x 4 y)dydn.

|\2

Since the symbol of T, Ay is ¢(2)1(§), the symbol of the commutator C is

P €)= 3 LUy + Da(a,),

lal=1
- 1 -
where I(z,§) := Z 58?¢(§)D3<p(y)|y:x. Clearly, I(z,§) € S(Tﬁil- Next,
lal=1
we need to estimate Iz(x,£). Note that Ir(x,§) = 2 Z / (1 —0)*I3(x, €)do

loa|= 2
where I3(z,&) = [ e=¥"9¢p(& + 0n) Dy (x + y)dydn. As in the proof of Theorem
6, we have:

(.91 < [ [ ) 2D (208 u(e + 0m) D, [Dye(o + )] dud

< O™ x)™M,
for 2k =d+1,0< M < 1,2l >d+ |n:L — 2|. Also, from the proof of Theorem
6 it follows that Iy € S(%szf?,. Since I (z,§) € Sg?]§1_1 C Sg}];lfdf?, and I, €
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Se'NZ a3 C Si'NLa_s it follows that p € Sg'y1, 5. Now we apply the proof of
Theorem 6, part 1, to conclude that C = T}, is a compact operator from Hgl(]Rd)
into LY(R%). The proof is analogous in the case when d is even. a
Corollary 9. Let ¢ € s, y, ¢ € S(R?), m,s € R. Then the commutator C =
[Ty, T,) = TyT, — T,Ty is a compact operator from HE . (RY) into HI(RY). If p
denotes the symbol of C, then p € SNt s, if d is odd or p € Sy’ . 4, if d is
even.

Proof: Note that AT, is a compact operator from HY,, (R?) to HI _(R?) for
YESY N PE S(RY) , ¢ > 0. This easily follows from the proof of Theorem 6 and
Corollary 3. Thus, the proof of Theorem 8 implies the claim. a
4.2. H-distributions with ¢ € (s7} n;)o. Note that the completion of the ten-

sor product S(R?) ® (556, n+1)o0 is the same for both the £ and the 7 topology, since

S(R?) is nuclear ([15], Theorem 50.1). We use the notation S(RYG(sZ ny1)o for
the completion.

Theorem 10. Let u,, — 0 in L?(R?) and v, — 0 in H(R?), m € R. Then, up
to subsequences, there exists a distribution p € (S(Rd)é@(sgéwﬂ)o)’ such that for

all @1, 02 € S(RY) and all ¥ € (s y.11)o,
Jim {p1un, Ag(@2vn)) = (1t pr92 @ ).

Proof: Since ¢ € (s3} yi1)o C she ny We have that Ay (pav,) € LY(R%). We write

$(§) = Y1()¥2(8), ¥1(§) = (O™ € s ni1s $2(8) = (©)T(E) € (5% ny1)o-

Hence, using (6), it follows

[AG(pon)llze < clalso,  NAG(pon)llze < arllsz Neovnllng,-

In the last inequality we have used the estimate

[alae, , = & 9O, < CUE ™|,

1/}|5£1N < Cl‘w‘sg’;w-

Using Peetre’s inequality and the exchange formula for the inverse Fourier transform
of convolution, we have

oo, N

vl = ([ |71+ 168 F g an)”
<([Lraasrpof|Een s pnle)
< sup |F (1 + 16 F ) Il

z€R

1
<C [ am e Bl < O™

Recall that for S(R?) we have a plenty of equivalent sequences of norms among
which we can use

ol = sup [{€)* ¢ ()]l k € No.

| <k
Therefore,

un A= (v, )dx
[ w5

< Cllsm Nelaritrimn- ()
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For fixed ¢ € S(R?), the mapping v — pin (0, %) = [pa un Az (vn)dz is linear
and continuous, and for fixed 1) € (s7% xy1)o, the mapping ¢ — pn(p,9) is anti-
linear and continuous. The rest of the proof follows the standard steps for proving
the existence of H-distributions, as was done in the proof of Theorem 2.1. in [4].

Fix ¢ € S(R?) and consider a sequence of mappings

7 = (0, ¥).

Thus ®¢ € ((sZ y1)o) and we can apply Sequential Banach Alaoglu theorem to
extract weakly star convergent subsequence ®¥-> &%, since ((sZ}) Ne1)os | - |821N)
is separable. More precisely, for every fixed ¢ € S(RY) we construct a linear
mapping ®% such that (®7,¢) — (®¥,1), v — oo and P € (T x41)o. Actually,
by diagonalization we find a sequence (®¥) converging on a dense countable subset
of (s y+1)o and by the Banach - Steinhaus theorem we extend it to (s5} ny1)o-
Then, for fixed ¢ € (5 y41)o, the mapping ¢ — (@7, 1)) is a pointwise bounded
sequence in S’(RY) which converges on a dense set M C S(R9); this is again
obtained by diagonalization procedure. By the Banach-Steinhaus theorem, see [8,
p. 169], (®¥, 1) converges to (@, 1) on S(RY). In this way we show that for every
o € S(RY) and every ¢ € (s x41)o,

lim (®F, ¢) = (2%, ).

V—r 00
Moreover, by (9),
(%, )| < clelmmiraril¥lsm -

By the kernel theorem ( [15][Part III, Chap. 50, Proposition 50.7, p. 524]) we have
that there exists p € (S(]Rd)®(s£7N+1)0)’ defined as

(i, €).0la)0(€) = tim (F,0) = lim [, AsTu,

V—00
for all ¢ € S(RY), o € (856, n+1)0, Where u,, is a subsequence of u,, and v, is a
subsequence of v,. Since every ¢ € S (Rd) can be written as ¢ = ;2 for some
01,02 € S(R?) ([13]), we have that (i, ) = lim /uVAJ(Elgogv,,)dx. Using
vV—00
Theorem 8, we obtain that for every @1, 02 € S(R?) and ¥ € (52 n.41)o,

(, Prp2) = 1im/ golul,AE(gogvl,)dac.
v—00 Rd
This completes the proof.

0

Remark 11. Let 1o € s3} . The above proof implies that fi,(-,10),n € N is a
bounded sequence of linear mappings on S(R?). Thus, it has a convergent subse-
quence fi, (+,%o) converging to (-, ) in S’ (RY). If we choose another v, € S0 N
we can find subsequence of pi,, (-,%1) denoted by p;(-,1;) converging in S'(R%).
We do not have the same sequence for all ¢ € s7} . Because of that we need to
introduce separable class of symbols (s x)o-
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Corollary 12. Let u, — 0 in H” (R?) and v, — 0 in H?

s+m

(RY), s,m € R.
Then, up to subsequences, there exists p € (S(Rd)@é(sg"m“)o)’ such that for all
w1,02 €S and all Y € (SZS,N+1)0’

Jim (prun, Ag(@2vn)) = (1, 0122 © ).

Proof: We consider the sequence of functionals ji, (¢, 1) = (A(e)-» (u”)7W>_
Let 11 (£) = (£)~° and ¥2(§) = (£)*¥(€). Then,

im0 ) < (| Ap, (un)ll o | A, (Pvn)llLe < elblsm [eladrosfimers)r-

Notice that lim,, o0 fin (0, ¥) = limy,— 00 (U, Aa(govn». Applying the proof of The-
orem 10 and using Corollary 9, we obtain the assertion. a

Theorem 13. Let u, — 0 in LP(RY). If for every sequence v, — 0 in HY (R?),
m € R it holds that

lim (w,, Agym (ovn)) =0, (10)

n—o0

then for every 6 € S(R?), Qu,, — 0 strongly in LP(R?), n — oo.
Proof: We will prove that for all § € S(R?) and every bounded B C L(R?),
sup{(Quy,,d) : ¢ € B} =0, n — cc.

Assume the opposite, i.e. that there exist # € S(R?), a bounded set By in
LY(R%), an g9 > 0 and a subsequence fu,, of fu, such that

supq{|(Qu,, p)| : ¢ € By} > o, for every v € N.

Choose ¢, € By such that |[(fu,,d,)| > €9/2. Since ¢, € By and By is bounded
in LY(RY), then (¢,) is weakly precompact in LY(R%), i.e. up to a subsequence,
¢, — ¢p in L7 (Rd). Moreover, since ¢y is fixed, we have (u,, ¢g) — 0 and

€0

[(Ous, p — do)| > Vv (11)
Applying (10) on u, — 0 in L?(R?) and Aey-m(¢p—do) = 0in HY (R%), we obtain

that for every ¢ € S(RY)
Jim (uy, Agym (A (g)—m (60 = d0))) = 0. (12)

Choosing ¢ = 6 and using Theorem 8, we get lim,_, o (Qu,, ¢, — ¢g) = 0, which
contradicts (11). Q

Following the proof of Theorem 13 and using Corollary 12, it is easy to prove
the next corollary.

Corollary 14. Let u, — 0 in Hfs(Rd), m,s € R. If for every sequence v,, — 0
in HY,_ (RY) it holds that limy, o0 (tn, Aggym (0Un)) = 0, then Ou, — 0 strongly in

s+m

H” (RY), n — oo, for every 0 € S(R?).
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4.3. H-distributions with ¥ € sgne1 < q < 2. As in the case of symbols in
the class s3; y, we need to prove that C(pavn) = Ty, Ay (p20n) — Ay Ty, (92vn) — 0
in L9(R%), if v, — 0 in HY (R?). The following theorem holds.

Theorem 15. Let 1,02 € S(R?), ¥ € siv, 1 < g <2, N>2d+4, meR.
Then, (T, Ay — AyT,, )T, is a compact operator from HE,(R?) to LI(RY).

Proof: Denote by p(x,&) the symbol of T,, Ay, — AyT,,. Then,

P,6) = 3 VDS W)lyms +1(5:)

|a]=1

where

Pleg=2% - /1_ // g (¢ + 6n) Dy (z + y)dydide.

\|2

As in the proof of Theorem 8, we will approximate 7}, by the sequence of compact
operators T, () = ¢(x/v)T,(x), where ¢ is constructed as in the proof of Theorem
6, part (1). We will first show that T},T,, : HL (RY) — H{(R?). Then multiplying
with ¢ implies that T, T, : HL (R?) — H{__(R?) is a compact operator for every
£> 0,50 Ty, T,, : HL,(RY) — LY(R?) is a compact operator.

1 . .
Let p*(z,&) = Z aagw(g)D;‘%(yny:m. Since ¢ € sy, it follows that 1, (§) :=

la|=1

ogp(§) € 52’?&1_1, because |a| = 1, i.e. (5) holds for m — 1. If v € H%(R?) and
©2 € S(R?), it follows that Ay, (p2v) € HY(R?). Indeed,

[ Ay, (p20) [l gs = A g) (Ay, (920) e = [ Ay, &) () (920) ]| La-

Because 9, (§) 1= Jg9(€) € sgf](,l_l, it follows that ¥ (§)(€) € sy'y_;, which is easy

to derive from the definition (5). Since pyv € HY (RY), and N —1 > d 4+ 3, we have

that Ay, (¢) ) (w2v) € L9(R?) (this property is shown in the proof of Theorem 6).

Eherefofe, Ay, (20) g < 00 and | T, (p2v)ll g < 1 Tpr (20) g + 1Tp2 (p20) || 1y
ence,

[ Tp1 (p20) || e < Z |T8aw(g)Dw1(y)|y . (920)|| fra
|a|= 1

= Z *H Dy e1(y)ly=2)Togw(e) (920)) lmg-
|a|=1 .
Let Dgo1(y)ly=s = ¢F(x) € S(RY). Then, [|of (2)Asgye) (020)ll e = ll¢f (@)va (@) me,
where vq (%) = Aggy () (P2v) € H{(R%). Therefore,
67 () Agg (o) (020) e < 7 (@) |pllva (@)l a2,

where | ()], is a semi-norm of function ¢§ € S(RY) for some p € N. So we have
proved that

1Tyt (p20)llee < le Mpllva (@)l g < oo
la=1 ol
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Next, we want to prove that T2 (¢2v) € H{(R?). By the definition, [|T}2(2v) s =
| Ay Tp2 (02v)]lq. Therefore,

AgTaloan)@) = [ ] [[ e e mittot o, da'tn] Flew) (@)

R

Let o(z,&) = // e E 4 ) p?(x + o', €)da’ dn. Tt follows that

[Tl = ([ | ]
/ / e [<£+n>p2(af+x'7£)]dm’dn
Rd JRE,

1t .,
=2 — 1— 2 —ix'n I ’ ’
Z a!/o (1-6) /R% /Rd/e (€ +mlo(z + 2',§)dx'dndo,

lee|=2

o, O Fpa) e 'ar)

d
3

Moreover, we have

where Ip(z + 2/, ¢) = / / e*i@ﬁagw(g + 07)Dg o1 (x + o' + §)dydn. Tt follows
RE JRY
n Y

that for large enough I, I'e No,
/ / e E 4 )y (x + 2, §)da’dny
RI/R,

= [ [ ey D) [ e 4 ] Dot + o €)'
R JRE,
Repeating the same procedure, we have

/ d / TR (€ + 07) (Do) D (1 + ' + )i
Rﬁ R;}

—ign 1 " 9 S\ /e — a ~\ 1~ 1
= [ [ e s (D) o0 ) (DD D (a-a' )i
77 Ry
Since ¢, € S, it follows that for every M € Ny there exists C' > 0 so that
(D) (Do) Dy pr(a + 2’ +§)| < Cla + 2’ + )~ M.

Then, applying Peetre’s inequality we have that C(z+2'+7) =M < Cy(2')M (x) =M (g)M.
Hence, by choosing large enough M € Ny, i.e. it is enough to assume that M = d+1
and k' = d + 1, we have || ATy (p20n)|za <

1 ! M , ~\ M ~ o
= Cl(/Rg @;Mq‘/o -6 /]Rg,/]Ri, éx’>>2" & /Rg <<§>>2k/ v /Rg, (D)™ [<§<7;;2?>}an

" /d<Dﬁ>2k/ {<ﬁ>72ka?¢(£ I gﬁ)] dﬁ]:(wvn)(g)dfd@‘qu)l/q -
R

C/JRg /R% (Dn>2l’ [<'5<7;f>'27l7>}dn /01(1_9)2/Rg<D’7>2k/ {W}dﬁde}-(@wn)(ﬁ)’d@

So, we have

(D)2 [y~ + m)] | < cat) m)=2+7,
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and
, 2k’ aa-{-rq/} + 07
o [ ag e + o] < et 30 L TRt

2k’ 6a+r 07
< ea(i)) Z W<£>m‘2"”<ﬁ>m‘2"’““.

|r|=0
Hence,

¢ /R | /R d<Dn>2”(<§<,;27>)dn /0 (1- 0y /R (D3 [%W diid0 F (0)(€)|de

JOF T YEF D] o it )~ _
< 05/ 2k /g |Zo§+9nm2lrl<£> ity Im=2 =Wl F(pgu) () | dédiy

< ol ()™ T Fp20) (€ Lr < o0

We have proved that T,T,, : HZ(RY) — H{(R?). Tt remains to prove that
T, Ty, — T,T,, in norm, as v — oo. We have

Ty, —p(20)|| 1o = H(¢(§) . 1)Tp(<p2u)\ .

<) =)t + [(¢(5) 1) Tt

((b(f) — 1)Tp1 (gOQU)HL we apply the same procedure as in the proof
14 a

m

5Taara IE ™ THF (020) ()l Lo < coltlspr,,

La

Then, for

of Theorem 6, part 2 to conclude that H( (E) — 1)Tp1 Pov H — 0,v — oo. For

H( ( ) ) s (20 H we can apply previous proof and obtain that H ( (%) —

1>sz (‘P?U)HLq — 0,v — oo, as well. O

Corollary 16. Let 1,02 € S(RY), Y Esyy, 1<q<2, N>2d+4, m,s R,

Then, (Tp, Ay — AyT,,)T,, is a compact operator from HY . (R?) to HI(R?).

m+s

Proof: Proof of Theorem 6, part (2) implies that AT, is a compact opera-
tor from HZ . (RY) to HL _(R?), for any ¢ > 0 and ¢ € S(R?). Indeed, if
Y € sy, then (§)°) € 323{,5. Therefore, if v € HY (RY), then || Ay(pv)| e =
Ay ey: (9v)||La < co. Hence, for weakly convergent sequence v, — 0 in H?  (R?)
we have that

1Ay (vn)llms_ < [lAw(pon)

s—e

K :||.A¢ gm}n)HLq%O n — o9,

which follows from Theorem 6, part (2), i.e. Ty )T}, is a compact operator from
H . (R?) into HY_, if (§)% € SZL;\';S. If we apply the proof of Theorem 15, we
(R to HI(RY).

can conclude the compactness of (T, Ay — AypT,, )T, from HY
a
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Theorem 17. Letu, — 0 in LP(R?), v, — 0 in HL(RY), 1 < ¢ <2, m € R. Then,
up to subsequences, there exists u € (S(]Rd)®sng)’ such that for all o1, ps € S(R?)
and all P € sy,

lim (p1un, Ag(p2vn)) = (1, 0192 ® V).

n—oo

Proof: As in the proof of Theorem 6, for ¢ € s’y and ¢ € S(R%), we have

Mutonlie = ([

N r o\ m=lol 8
<l 3 larl 3 (1)I0+ 167 A (i) o) Ol

|r|=0 a+p=r

/ 260 €) Flou) (e[ dr) " =
o

< g, [FOH@ @ +1eR) | <o
Therefore,
intip ) = | [ gTovnda] < fuall Az ) s <
< el || FOA @1+ 16P) 5| | < el |FRO + 163 F a1

< alYlsm |@lko,s
for some kg € N. Further on, the proof is analogous to the proof of Theorem 10

and we use commutation result, i.e. Theorem 15. a

Corollary 18. Let u, — 0 in H” (R?), v, — 0 in HE_ (RY), 1 < ¢ < 2,

m,s € R. Then, up to subsequences, there exists j1 € (S(Rd)®sng)' such that for
all 1,2 € S(RY) and all ¢ € sy,

lim (p1un, Az (p2vn)) = (1, 0192 @ ¥).

n—oo

Proof: We define a sequence of functionals i, (¢, V) = (Agy—s (un), Aw(gavn)>.

Then the claim follows from Theorem 17 and Corollary 16 . a

5. APPLICATIONS

Let u,, — 0 in Hfs(Rd), s €R, 1 < p < oo such that the following sequence of
equations is satisfied

Z An(2)0%up () = gn(x), (13)

ol <k
where A, € S(R?) and (g,,), is a sequence of temperate distributions such that
@gn — 0in H? __, (R), for every ¢ € S(R?). (14)
The following theorem holds.

Theorem 19. Let u,, — 0 in H?(RY),s € R, 1 < p < oo. Then, @u, — 0 strongly
in H?__(RY) for any e >0, ¢ € S(RY).
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Proof: Denote by B; the open ball centered at the origin with radius [ € N.
Rellich lemma implies that H?(B;) is compactly embedded in H? _(B;), for any
e > 0. Since u, — 0 in H?(By), by the diagonalization procedure, we can extract
a subsequence (not relabeled) such that for all I € N

ou, — 01in H? _(B)), ¢ € S(R?). (15)

Choose smooth cutoff functions x; such that y;(x) = 1 for x € B; and y;(z) = 0
for . € RN\ Byy;. Then, ¢ = x;0 + (1 — x1)¢ and

lpunllmr_ < [avunllar_ + (1= x)punllr_ <

s—e

< lhaspunll_, + sup leleolln sz,

|[>
where by |p|y, is denoted semi-norm for function ¢ € S(R?). Notice that (15)
implies |[Xipun||gr _ — 0 as n — co. Since u, — 0 in HP(RY), there is a constant

M > 0 such that [|u,||g» < M. Let e > 0. Since ¢ € S(R?), there exists [y € N such

that for all [ > ly we have estimate sup |p|r, < €/2M. Hence, for given € > 0, there
|z]|>1

exists ng € N such that [pu,|/gr < e, for n > ng, ie. pu, — 0in HP__(RY),
which completes the proof. a

Lemma 20. Let (13) and (14) hold. Then, there exists a sequence (f,,) in H” ,_, (R

such that
S 0 (Aa(@)un()) = fule) (16)
|a|=k
and
©fn — 0in H? __,(RY), for every ¢ € S(RY). (17)

Proof: We rewrite equation (13) in the divergence form,
> 0 (Aa(@)un(x)) = gn(x)— > Aal (@)+ > Z( )a@ B A00Pun(z).
Jal=k lal<k lal=k f<a
Put

fle) = (o) = ¥ Au@un(e)+ X5 (504007000

|a|<k la|=k B<a

Since u, — 0 in H? (R?), then 9%u,, — 0 in H?
19, ©0%u, — 0 in Hgsf\odfa
is possible because |a| < k, we conclude that ¢d%u, — 0 in H”_, (R?). Hence,
¢fn — 0in H? __, (R?), as we claimed. a

s—\a|(R ). Therefore, by Theorem
(Rd)v for any € > 0. Choosing ¢ = k — |a\, which

Theorem 21. Let u, — 0 in H? (R?), s € R, satisfies (13), (14) and ) € s™ 5

Then, for any v, — 0 in HI

4w (RY) | the corresponding distribution p, € S'(R?)
satisfies

[0}

Z Aa(x)éycud, =0 inS'(RY). (18)

la] <k
Moreover, if 1 = (§)™ and (18) implies jrieym = 0 we have the strong convergence
Ou,, — 0, in H? (RY), for every 6 € S(R?).
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Proof: Let v, — 0in HI_ (R?), ¢1 € S(RY), 2 € S(RY) and ¢ € soe n- We

have to prove that, up to a subsequence,

nlgréo Z <unAa501 ) A\i/,, (@2vn)> + nlgréo Z <unA04901 ) A\I;a (902'Un)> ) (19)

|a|<k |a|=k
_ & & _
=Y (mAa@er02 5 0(©) ) + D (1 Aaproz 5 ¥(6) ) =0,
(© = (€
lal<k la|=k
where ¥, = ¢ (€). Since ¥, € sgfj\l,a‘_k, it follows from Theorem 6 that Ag_

(©F

is a compact operator from HY,, (R?) into Hg—\a|+k—s(Rd)’ for any € > 0. Then
Ag, (p2vn) = 0in H?

57|a|+k7€(Rd), for any € > 0. Therefore, when |a < k we
can choose € = k — |a| and this implies Ayg_(p2v,) — 0 strongly in H4(R?). Since
u, — 0 in H? ((R%), we conclude that

nll—>n<;lo |Z <'U/nAa(pl ) A\I/a (4102UTL)> = 0.
al<k

It remains to prove that lim Z (unAapr , Ag, (p2v,)) = 0. We will prove that

n— o0
lee| =k

lim Z (unAa , Ag_(pvn)) =0,

n—oo
la|=k

for every ¢ € S(R?). Since we can write ¢ = 1P, for ¢1, s € S(R?), Theorem 8
implies

lim Z <unAa , Ag, (<pvn)> = lim Z <unAa901 , .A\j,a(gﬁg’l}n)>.

n—oo n— oo

|| =k || =k
Since Ay, = Aik o Ay and A% = 0%Ag)—+, it follows that
© ©
. ~ _ 1yl o -
nlgl;o |Zk (unda , Ag_(pvn)) nl;néo |Zk( D05 (unAa) ; Ay (00n)) -
a|=RK o=

Then Agy-ry(ovn) € HY , (R?), and because of the Lemma 20, i.e. (17), we have
that

n11—>120 Zl_:k <unAa<p1 , Ag (<p2vn)> =0.
Therefore, we have proved (18).
If f1¢ym = 0, then Corollary 14 implies fu,, — 0 in H” (R?), for every § € S(R?).
a

Theorem 22. Let u, — 0 in H” (R%), v, — 0 in HL,, (R?) and o € 57, y,

Y € s N, s,m, T € R Assume that Asuy, = fr, — 0 strongly in H”, (RY). Then

—8—T

M‘Z&(fr)w =0 n Sl(Rd). (20)
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Proof: The assumption implies that A gy -+ (Aeuy) = Agey—r (fn) — 0in H? (R?).
It follows that

<A(§>—T(Agun)7,4$(<pvn)> — 0, n— 00, p € S(RY).

Using the factorization property (¢ = P1¢2) and Corollary 9, we have that for
every ¢1,ps € S(R?),

Jim (prun, AZyg=rg(w20n)) =0,

i.e for every ¢1,po € S(R?) H-distribution o, satisfies <‘ug(.s)w,901@> = 0.
© @

Therefore, (20) holds. a

APPENDIX A. LP-BOUNDEDNESS THEOREM

Theorem 23. Let N be an integer such that N > 2d, 1 < p < o0 and T :
S x LP(R?) — LP(R?) be defined by

T(o,u) = Tyu.

Then, T is a continuous bilinear operator and there exists cy > 0 such that the
following estimate holds

[ToullLr < enlolsg [lullzr- (21)

Proof: Steps of the proof are the same as in the proof of Theorem 10.7 from
[16]. For the sake of completeness, we will focus ourselves on constants appearing
in the estimates of Theorem 10.7, which will imply continuity with respect to o.
We represent R? as a union of cubes, i.e. R? = Uieze Qi, where Qg is the cube
with centre at [, with edges parallel to coordinate axes and of length one. Further
on, we introduce n € C2°(R%) such that n(z) = 1 for = € Qy and define o;(z,£) =
n(z —Do(z,€), z,6 € R, 1 € Z%. Then T(0y,-) = T,, = n(z — )T, and

(@l < [ (Tap)@lPds, ¢ e SE) (22)
Qu R4

Next,

(o)) = (2) [

R

cefen [ etnnop@da, e

where 6;(\, §) = / e~ Moy (x, €)dx for A, € € R The proof of Lemma 10.9 in [16]
Rd
gives that for all a, 8 € N¢,

(=N 0gai A\ < ep(&)1 sup |90 a(a, €)](€).

v<B,x,E€RY

Moreover, for all a € Ng and for all positive integers n there is a ¢, > 0 such that

920l < enl@ M+ )T supjogale(@,Ol©).  (24)

[BI<n,z,EER?

Hence, for any integer N > d/2 we conclude from (24) that |9¢6:(A, §)| < Bg|~ 1o
for €] > & and |a| < N, where

B=cy(1+\)™™ max sup |9¢0%0(x, lal,
SUE D™ s swp (920000, €)1(E)
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Therefore, we can use Theorem 1 with w(ﬁ (A, &) and B =cen(1+]|A])~ N\a|5§)v
to conclude that the operator (T;x¢)( / e TGN, €)@(€)de, p € S(RY)
can be extended to a bounded operator on LP (Rd ) so that with a suitable ¢ > 0

ITiaelly < cen(X+ M) Nolsg lellp, ¢ € LP(RY). (25)
Then, by (23), there exists (new) ¢ > 0 such that

175 llp < cenlolse, ll@llp /Rd(l +[A) N, (26)

Then, (26) and (22), for integer N > d, imply that there exists ¢ > 0, independent
on [, so that

(Top)()|Pdz < e (lofsg )Pl ellp, o € S(RY). (27)

According to [16], Lemma 10.10, for ¢ € S(R?) vanishing in a neighborhood of fixed
x € R, we have that (T,¢)(z) = (2r)~%/? Jpa K (x, 2 — 2)p(2)dz, where K(x,z) =

(27r)_d/2/ e o(x,€)de, x, 2 € R, in the sense of distributions. Following the
R4
proof of Lemma 10.10, we have that for every integer k > d there exists Cy > 0

such that
K (2, 2)] < Cilsl o]y, = #0. (28)
Next, we construct cubes Q; and Q;* as in the proof of Theorem 10.7 in [16].
More precisely, Q;* is the double of @; and @} has the same center [ as @); and
and Q C QF C Q. Then ¢ € C°(R?) is introduced so that its support
isin @*, 0 < ¢(x) <1 and ¢(z) = 1 in a neighborhood of @Q)f. Then we write
T,p = Tc,cpl + T,¢2, where 1 = 1 and w2 = (1 — ¥)p. We introduce notation

I :/ [(To)(x)|Pdz and J; :/ |(Top2)(2)|[Pdx. Using (27) we get

1 Q1

I < 22 (olsg )l 12 + 27 (29)
By (28) we have that for every integer k > d there is a C' > 0 such that

|(Top2)(z)| < CClo|so /d\ |z — 2[*lpa(2)|dz, @ € Q1,2 € RN\Q;.
R\ Q*

1

Next, following [16] ((10.13),(10.14) and (10.15) , Theorem 10.7) and taking 1/p +
1/qg = 1, we obtain, with a new constant C' > 0:

(1 + |z — 2)7F/2|pa(2)]
nep (u+ |l —2)FF)

where z € @, z € Rd\Q77 W= \/(3/2 + 1. Then, by Minkowski’s and Holder’s
inequality:

’ de b pa(2)Pdz N3
Topa|Pd < CC 0 -z e e
(/QJ P2 l‘) < CCklo]so </]Rd\sz(M +]1 - z|)k/2) (/Rd\Q;(u Iy Z|)k/2)

We conclude, with a new constant C' and for k/2 > d, that

Pdz
J <Ccp p/ |302(Z)‘ )
I > k(|0-‘52) RA\Q? (M+ |l — Z|)k/2

(Tope)(@)] < CCulolsy | 2,
R

(30)
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By (29) and (30), there exists C; > 0 such that:

Pdz
To‘ Pd <Ccp p / Pd / % .
@olds < ol ([ letlrde+ [ | o ET)

Summing over all [ € Z¢, we get:

L@@ < Caelsyr (1+ Y i) [ lelrd.

lezd
Therefore, with £k = N > 2d, we obtain the desired estimate:

[ @@ < exlols ) [ ot
R R4
Extending by density both sides to u € LP(R?), we obtain (21). a
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