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Abstract. We investigate H-distributions for sequences in the dual pairs of

Bessel spaces, (Hq
s , H

p
−s), s ∈ R, q > 1 and q = p/(p − 1), by the use of un-

bounded multipliers, with the finite regularity, as test functions. The results
relating weak convergence, H-distributions and strong convergence are applied

in the analysis of strong convergence for a sequence of approximated solutions
to a class of differential equations P (x,D)un = fn, where P (x,D) is a differ-

ential operator of order k with coefficients in the Schwartz class and (fn) is

a strongly convergent sequence in an appropriate Bessel potential space. H-
distributions, weak and strong convergence, Bessel potential spaces, multipliers
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1. Introduction, notation and definitions

The aim of this paper is to analyze H-distributions obtained by the use of a classes
of unbounded multipliers which provide smaller test function spaces for testing the
strong convergence of a weakly convergent sequence in Bessel potential spaces.
General results are used for the proof of the strong convergence of a sequence of
solutions extracted from a bounded set of solutions for a class of partial differential
equations of order k, with coefficients in the Schwartz space S(Rd). In our analysis
we have considered finite order distribution spaces which enables us to use spaces
of multipliers with the finite type regularities of symbols. Especially, classes of
multipliers denoted by smq,N are obtained, similarly as in the case of Sobolev space,
as completions of the respective normed spaces. Because of that in our investigation
there were many estimates to be analyzed in order to determine the finite regularity
of symbols.

H-measures and distributions are microlocal tools that can be used to investigate
the strong convergence of weakly convergent sequences in the Lebesgue and Bessel
potential spaces. H-measures, also known as microlocal defect measures, are associ-
ated to weakly convergent sequences in L2(Rd). They are introduced independently
by Tartar, [14], and Gerard, [7], as functionals on product of continuous functions
compactly supported in Rd and continuous functions on the unit sphere Sd−1, i.e.
on Cc(Rd) ⊗ C(Sd−1). More precisely, for a weakly convergent sequence un ⇀ 0
in L2

loc(Rd) there exists a Radon measure µ such that for every ϕ1, ϕ2 ∈ Cc(Rd)
and every ψ ∈ C(Sd−1), up to a subsequence (which means that there exists a
subsequence of (un) denoted again by the same symbol),

lim
n→∞

∫
Rd
F(ϕ1un)F(ϕ2un)ψ

( ξ
|ξ|

)
dξ = 〈µ, ϕ1ϕ̄2 ⊗ ψ〉,

where F denotes Fourier transform. The well-known example of oscillating sequence
uk(x) = eikxξ0 (cf.[7]) with the associated microlocal defect measure µ(x, ξ) =
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ν(x)⊗δ(ξ−ξ0), where ν is the Lebesgue measure on Rd and δ is the Dirac measure
on Sd−1, implies that the support of H-measure provides an information about the
set of points x ∈ Rd where the strong convergence is lost and its dependence on the
directions, frequencies, of oscillations (ξ0, in this example). The original concept
and its generalization for sequences of uncountable dimensions, given in [11], are
mainly applied to hyperbolic PDEs, see e.g. [3], where L1

loc(Rd)-precompactness of
solutions to diffusion-dispersion approximation for a scalar conservation law was ob-
tained. Many improvements have been done in adopting applications of H-measures
to parabolic (e.g. [5]) and ultraparabolic (e.g. [12]) problems.

H-distributions from [6], resp. [4], generalize the concept of H-measures from
L2(Rd) to Lp(Rd), p 6= 2 and Bessel potential spaces, respectively. Hörmander-
Mikhlin’s theorem has to be fulfilled and test functions in ξ have to be more regular,
namely ψ ∈ Cκ(Sd−1), κ = [d/2] + 1. For the later use, we recall:

Theorem 1 (Hörmander-Mikhlin theorem, cf. e.g. [10], Theorem 8.2). Let 1 <
p <∞, κ > d/2 and ψ ∈ Cκ(Rd). If ψ : Rd\{0} → C satisfies |∂αψ(ξ)| ≤ B|ξ|−|α|,
for all |α| ≤ κ and ξ 6= 0, then there is a constant C = C(d, p) such that

‖Aψ(f)‖Lp ≤ CB‖f‖Lp , for all f ∈ S(Rd),

where F [Aψ(f)] = ψFf .

In order to associate an H-distribution to a pair of sequences in the dual Bessel
potential spaces, the authors proposed the use of (non-local) test functions ϕ ∈
S(Rd). In this way, H-distribution becomes a functional on S(Rd) ⊗ Cκ(Sd−1)
belonging to the space denoted by SE ′(Rd×Sd−1), whose topology is well described
in [4]. The existence theorem for H-distribution associated to a sequence in a
Bessel potential space reads as follows [4]: If un ⇀ 0 in W−k,p(Rd) and vn ⇀ 0
in W k,q(Rd), then there exist subsequences (un′), (vn′) and a H-distribution µ ∈
SE ′(Rd × Sd−1) such that for every ϕ1, ϕ2 ∈ S(Rd) and every ψ ∈ Cκ(Sd−1),

lim
n′→∞

〈Aψ(ϕ1un′) , ϕ2vn′〉 = lim
n′→∞

〈ϕ1un′ , Aψ(ϕ2vn′)〉 = 〈µ, ϕ1ϕ̄2 ⊗ ψ〉.

Moreover, in [4] the strong convergence is tested on all vn ⇀ 0 in W k,q(Rd).
In this paper, in testing of strong convergence, we are confronting smaller test

spaces and larger spaces of multipliers, that is, ψ is not bounded and can not be
the Fourier multiplier in the sense of Hörmander-Mikhlin theorem. Therefore, we
use a class of pseudo-differential operators to ensure the boundedness of operator
Aψ : W k+m,q(Rd) → W k,q(Rd), minimizing the assumptions on ψ. Moreover, in
application to a class of differential equations the strong convergence of a sequence
un of solutions converging weakly to zero in W−k,p(Rd) is tested over all vn ⇀ 0 in
W k+m,q(Rd) ⊂W k,q(Rd), if m > 0.

The paper is organized as follows. In Section 2 we present results related to a
class of pseudo-differential operators considering them as bilinear mappings and we
prove the continuity with respect to a certain class of symbols with the finite reg-
ularity conditions. The analysis of such symbols is based on the proof of Theorem
10.7 in [16]. We give in the Appendix A a complete proof of Theorem 2, since we
follow proof of quoted theorem in [16], with the explanations needed for the proof
of continuous bilinearity and the finiteness of regularity assumptions. Section 3
is devoted to a class of symbols depending only on ξ; the composition of a cor-
responding multiplier and an operator of multiplication is given. In the first part
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of Section 4 we give a theorem for a commutator important in the construction of
H-distributions and the analysis of their properties. Also, in Section 4 we consider
a class of symbols with respect to the Lq(Rd)−norm, q ∈ [1, 2], as well as the ex-
istence of the corresponding H-distributions. In Section 5 we apply the results to
a weakly convergent sequence of solutions of a class of partial differential equation
of order k ∈ N with coefficients in S(Rd).

2. Notation and bilinear continuity

The Bessel potential space Hp
s (Rd), 1 ≤ p < ∞, s ∈ R, is defined as a space

of all tempered distributions u such that A〈ξ〉su := F−1((1 + |ξ|2)s/2Fu) is in

Lp(Rd). It is a Banach space with the norm ‖u‖Hps = ‖A〈ξ〉su‖Lp . Moreover,

(Hp
s (Rd))′ = Hq

−s(Rd), cf. [2]. Also, recall that for m ∈ N0 and 1 ≤ p < ∞, the

Bessel potential spaces coincide with the Sobolev spaces, i.e. Hp
m(Rd) = Wm,p(Rd),

cf. [1].
We use standard notation |α| = α1 + · · ·+αd for multi-index α = (α1, . . . , αd) ∈

Nd0, 〈ξ〉s = (1 + |ξ|2)s/2, s ∈ R and d̄ξ = (2π)−ddξ, ξ ∈ Rd. The Fourier transform

of a function f ∈ L1(Rd) is defined as f̂(ξ) :=
∫
Rd e

−ixξf(x)dx. For x ∈ Rd with

〈Dx〉 =
√

1−∆ is denoted the pseudo-differential operator with symbol 〈ξ〉, hence

〈Dx〉f =
∫
eixξ〈ξ〉f̂(ξ)d̄ξ. Actually, in the sequel, we will use even powers of 〈Dx〉

and the corresponding Leibniz rule in the partial integration.
We define the space of symbols of pseudo-differential operators that we shall use.

Let m ∈ R, N ∈ N0 and σ ∈ CN (Rd×Rd). Then the symbol σ is an element of SmN
if for every α, β ∈ Nd0 such that |α| ≤ N, |β| ≤ N the norm given by

|σ|SmN := max
|α|,|β|≤N

sup
x,ξ∈Rd

|∂αξ ∂βxσ(x, ξ)|〈ξ〉−m+|α|

is finite. The space (SmN , |·|SmN ) is a Banach space. Define Sm = proj lim
N→∞

SmN . Then

Sm is a Fréchet space. Function σ ∈ Sm ⊂ C∞ is a symbol of a pseudo-differential
operator of order m defined by

Tσ(u)(x) :=

∫
Rd
eixξσ(x, ξ)û(ξ)d̄ξ, u ∈ S(Rd) (1)

and it is defined as an oscillatory integral for u ∈ S ′(Rd). Pseudo-differential op-
erators of order m can also be defined by (1) for symbols with finite regularity
σ ∈ SmN ⊂ CN . This is the subject of Theorem 2.

If additionally there exists bounded function c0(x)→ 0, as |x| → ∞, such that

|σ(x, ξ)| ≤ c0(x)〈ξ〉m, (2)

then the symbol σ ∈ SmN belongs also to the class of symbols denoted by Sm0,N (cf.,
[9] or [17]). It can be shown (cf. [9]) that if (2) holds for σ ∈ SmN , then a similar
estimate can be achieved for all derivatives, i.e. for every α, β ∈ Nd0 such that
|α| ≤ N, |β| ≤ N there exists a bounded function cαβ(x) = o(1) as |x| → ∞, and

|∂αξ ∂βxσ(x, ξ)| ≤ cαβ(x)〈ξ〉m−|α|.

The operator Tσ, defined in (1), with smooth symbol σ ∈ Sm, is linear and
continuous from Hq

s (Rd) to Hq
s−m(Rd), s ∈ R, 1 < q < ∞, cf. Theorem 11.9. in

[16]. This result is a generalization of Theorem 10.7. in [16], where m = s = 0.
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We extend this assertion twofold, considering Tσu as a bilinear mapping and taking
σ ∈ S0

N , for any integer N > 2d.

Theorem 2. Let N be integer such that N > 2d, 1 < p < ∞ and let the operator
T be defined by

T (σ, u) = Tσu, σ ∈ S0
N , u ∈ Lp(Rd).

Then T is a continuous bilinear operator from S0
N × Lp(Rd) to Lp(Rd) and there

exists CN > 0 such that

‖Tσu‖Lp ≤ CN |σ|S0
N
‖u‖Lp .

The proof can be found in the Appendix A.

Corollary 3. Let 1 < p < ∞, s,m ∈ R, N > 2d and σ ∈ SmN . Then there exists
CN > 0 such that the following estimate holds

‖T (σ, u)‖Hps = ‖Tσu‖Hps ≤ CN |σ|SmN ‖u‖Hpm+s
, u ∈ Hp

m+s(Rd). (3)

Proof: From the definition of norm on Hp
s (Rd) spaces it follows that

‖Tσu‖Hps = ‖F−1(〈ξ〉sF(T〈ξ〉−s(T〈ξ〉−mσ(x,ξ)(T〈ξ〉m+su)))‖Lp
= ‖Tσ1(x,ξ)(T〈ξ〉m+su)‖Lp ,

(4)

where σ1(x, ξ) = 〈ξ〉−mσ(x, ξ) ∈ S0. Applying Theorem 2 to (4) we obtain that for
any integer N > 2d there exists cN > 0 such that

‖Tσu‖Hps ≤ cN |σ1|S0
N
‖T〈ξ〉m+su‖Lp = cN |σ1|S0

N
‖u‖Hpm+s

.

Since |σ1|S0
N
≤ |〈ξ〉|S−mN |σ|SmN ≤ c|σ|SmN , we obtain estimate (3). 2

3. Multipliers

3.1. Spaces of symbols with finite type regularities. In the sequel we shall
consider a class of symbols depending only on ξ with finite smoothness, defined as
follows.

Let m ∈ R, q ∈ [1,∞], N ∈ N0. Then, consider the space of all ψ ∈ CN (Rd) for
which the norm

|ψ|smq,N := max
|α|≤N

‖∂αξ ψ(ξ)〈ξ〉−m+|α|‖Lq (5)

is finite. The completion of this space, with respect to this norm, is denoted by
(smq,N , | · |smq,N ). In the case when q =∞ we already have Banach space of symbols,

i.e. the introduced space is the same as its completion. We consider operator Tψ
with symbol ψ ∈ smq,N , defined as in (1). Since ψ depends only on ξ the operator
Tψ is called multiplier operator. Note that

|∂αψ(ξ)| ≤ |ψ|s0∞,N |ξ|
−|α|, |α| ≤ N, |ξ| > |ξ0| > 0,

if ψ ∈ s0
∞,N and N > d/2. Therefore, by Theorem 1, we have the following result.

Corollary 4. Let N > d/2, 1 < p < ∞. Then, Aψ is a continuous bilinear

operator on s0
∞,N × Lp(Rd), and

‖A(ψ, u)‖Lp = ‖Aψ(u)‖Lp ≤ C|ψ|s0∞,N ‖u‖Lp . (6)
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With (sm∞,N )0 ⊂ sm∞,N we denote the class of multipliers such that ψ ∈ (sm∞,N )0

means that

sup
|ξ|→∞

|∂αξ ψ(ξ)|
〈ξ〉m−|α|

= 0, for all |α| ≤ N. (7)

Separability of symbol classes is important in the construction of H-distributions.
The following results hold.

Theorem 5. a) The space ((sm∞,N+1)0, | · |sm∞,N ) is separable.

b) Let 1 ≤ q <∞. Then the space (smq,N+1, | · |smq,N ) is separable.

Proof: a) We will prove that S(Rd) is dense in ((sm∞,N+1)0, | · |sm∞,N ). Since S(Rd)
is separable, this implies separability of ((sm∞,N+1)0, | · |sm∞,N ). Let ψ ∈ (sm∞,N+1)0.

Then by the standard arguments, one can prove that ψn(ξ) = (ψ ∗ φn)χ(ξ/n)
converges to ψ in the norm | · |sm∞,N , where χ ∈ C∞c , χ(ξ) = 1 for |ξ| ≤ 1 and

χ(ξ) = 0 for |ξ| ≥ 2 and φn is standard sequence of mollifiers. In the proof the key
point is that for suitable constants,

ξ ∈ supp ψ(α)
n ⇒ C1/ξ ≤ 1/n ≤ C2/ξ, |ξ| > |ξ0|, |α| > 0.

b) The proof uses the same estimate as well as the well known properties of

Lebesgues spaces. 2

3.2. Composition of multiplier and multiplication operators. Next we an-
alyze compactness properties of the operator AψTϕ. According to our previous
notation we denote the operator of multiplication with ϕ = ϕ(x) ∈ S(Rd) as Tϕ.

Theorem 6. Let m ∈ R, ϕ ∈ S(Rd). Then, AψTϕ is a compact operator from

Hq
m(Rd) into Hq

−ε(Rd), for any ε > 0 if

(1) ψ ∈ sm∞,N , N ≥ 3d+ 3;
(2) ψ ∈ smq,N , N ≥ d+ 3, 1 ≤ q ≤ 2.

Remark 7. In our proof of Theorem 6, in the first part, we use the operator 〈Dη〉2k =
(1−∆)k and partial integration. Because of that we need the assumption 2k =
d + 1, for d odd and 2k = d + 2, for d even and in the first case we need that
N > 3d+ 1 and in the second that N > 3d+ 2, since then we can use Theorem 2.
Because of that we assume that N is an integer such that N ≥ 3d+ 3. Considering
the second part of the proof we have to apply again (1−∆)k so that k should be
integer equal to (d+ 1)/2 or (d+ 2)/2. This implies, in both cases N ≥ d+ 3.

Proof: (1) We shall show that the symbol of the composition AψTϕ, denoted
by σ, is in Sm0,N−d−1, if d is odd or in Sm0,N−d−2, if d is even. Recall, if

σ1 ∈ Sm1 and σ2 ∈ Sm2 , there exists σ ∈ Sm1+m2 such that Tσ1
Tσ2

= Tσ
and

σ(x, ξ) =

∫∫
e−iyησ1(x, ξ + η)σ2(x+ y, ξ)dyd̄η, x, ξ ∈ Rd

exists as an oscillatory integral. Therefore, we need to prove that for ψ ∈
sm∞,N , N ≥ 3d + 3 and for ϕ ∈ S(Rd) the symbol of the composition σ,

given by σ(x, ξ) =

∫∫
e−iyηψ(ξ + η)ϕ(x + y)dyd̄η, x, ξ ∈ Rd belongs to

the class Sm0,N−d−1, if d is odd or to the class Sm0,N−d−2, if d is even. We
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assume that d is odd. The proof is analogous in the case when d is even.
Using Peetre’s inequality we can estimate:

|σ(x, ξ)| =
∣∣∣ ∫∫ e−iyη〈y〉−2k〈Dη〉2k

(
〈η〉−2lψ(ξ + η)〈Dy〉2lϕ(x+ y)

)
dyd̄η

∣∣∣
≤
∫∫
〈y〉−2k〈η〉−2l〈ξ + η〉m|〈Dy〉2lϕ(x+ y)|dyd̄η

≤ c
∫∫
〈y〉−2k〈η〉−2l〈ξ〉m〈η〉|m||〈Dy〉2lϕ(x+ y)|dyd̄η ≤ C〈ξ〉m,

for 2k > d and 2l − |m| > d. Since d is odd we can choose 2k = d + 1.
Moreover, since ϕ ∈ S(Rd) it follows that for any M > 0 there exists
cM > 0 such that

〈Dy〉2lϕ(x+ y) ≤ cM 〈x+ y〉−M ≤ CM 〈x〉−M 〈y〉M .
Then,

|σ(x, ξ)| ≤ c〈ξ〉m〈x〉−M , (8)

if we choose 0 < M < 1, since in that case 2k −M > d. Next we estimate
the derivatives of σ(x, ξ). We have∣∣∣ ∫∫ e−iyη∂αξ ψ(ξ + η)∂βxϕ(x+ y)dyd̄η

∣∣∣ =∣∣∣ ∫∫ e−iyη〈y〉−2k〈Dη〉2k
(
〈η〉−2l∂αξ ψ(ξ + η)

)
〈Dy〉2l∂βxϕ(x+ y)dyd̄η

∣∣∣ ≤
c

∫∫
〈y〉−2k〈η〉−2l〈ξ〉m−|α|〈η〉|m−|α|||〈Dy〉2l∂βxϕ(x+ y)|dyd̄η ≤ c〈ξ〉m−|α|.

Therefore, |∂αξ ∂βxσ(x, ξ)| ≤ c〈ξ〉m−|α| when 2k = d + 1, 2l > d + |m − |α||.
Since ψ ∈ sm∞,N , we have that |α| + 2k ≤ N . Then, the assumption N ≥
3d+3, that is, N −d−1 > 2d, allow us to use Theorem 2 in the sequel. We
have proved that σ ∈ SmN−d−1 for odd d and (8) implies that σ ∈ Sm0,N−d−1.

The rest of the proof is similar to the proof of Theorem 3.2 in [17] which
claims that if σ ∈ Sm0 , then Tσ : Hq

m(Rd)→ Hq
−ε(Rd) is a compact operator,

for m ∈ R, 1 < q < ∞. We apply similar techique to the one used in the
proof of Theorem 3.2 [17]. Take φ ∈ C∞c (Rd) such that φ(x) = 1 for |x| ≤ 1

and φ(x) = 0 for |x| ≥ 2. For ν ∈ N let σν(x, ξ) = φ
(x
ν

)
σ(x, ξ). Then,

Tσν = φνTσ, for φν(x) = φ
(x
ν

)
. The operator Tσν is compact because

Tσ is bounded from Hq
m(Rd) into Lq(Rd) (Theorem 2) and the operator of

multiplication by φν is compact from Lq(Rd) into Hq
−ε(Rd), for any ε > 0.

If v ∈ Hq
m(Rd), 1 < q <∞, then Theorem 2 implies that there exists c > 0

such that

‖(Tσν − Tσ)v‖Hq−ε ≤ ‖(Tσν − Tσ)v‖Lq ≤ c|σν − σ|SmN−d−1
‖v‖Hqm .

We estimate:

|σν − σ|SmN−d−1
= max
|α|,|β|≤N−d−1

sup
x,ξ∈Rd

|∂αξ ∂βx ((φ(xν )− 1)σ(x, ξ))|
〈ξ〉m−|α|

≤ max
|α|,|β|≤N−d−1

sup
|x|≥ν,ξ∈Rd

|
∑
γ≤β

(
β
γ

)
∂β−γx (φ(xν )− 1)∂αξ ∂

γ
xσ(x, ξ)|

〈ξ〉m−|α|
≤ C1cα,γ(ν).
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Since σ ∈ Sm0,N−d−1, it follows that cα,γ(ν) = o(1) as ν →∞. We conclude

that ‖Tσν − Tσ‖L(Hqm,H
q
−ε)
→ 0 as ν → ∞, which implies that Tσ is also a

compact operator.

(2) We denote ψν(ξ) = φ
(x
ν

)
ψ(ξ), where φ ∈ C∞c (Rd) is introduced in the

same way as in part (1). We will show that AψTϕ : Hq
m(Rd) → Lq(Rd).

Then, as in the previous part of the proof, TψνTϕ is a compact operator from

Hq
m(Rd) into Hq

−ε(Rd). Therefore, we need to prove that TψνTϕ → AψTϕ
in norm as ν →∞. We have that

‖Tψν−ψ(ϕv)‖Lq =
∥∥∥(φ(x

ν

)
− 1
)
Tψ(ϕv)

∥∥∥
Lq

=

(∫
Rd

∣∣∣(φ(x
ν

)
− 1
)∫

Rd
eixξψ(ξ)F(ϕv)(ξ)d̄ξ

∣∣∣qdx) 1
q

=

(∫
Rd

∣∣∣(φ(x
ν

)
− 1
)∫

Rd
(Lkξe

ixξ)ψ(ξ)F(ϕv)(ξ)d̄ξ
∣∣∣qdx) 1

q

,

where Lξ = (1 + |x|2)−1(1 − ∆ξ) and Lξe
ixξ = eixξ. After integration by

parts for k = bd/2c + 1, that is 2k = d + 1 for d odd or 2k = d + 2 for d
even it holds that

‖Tψν−ψ(ϕv)‖Lq =
(∫

Rd

|(φ(xν )− 1)|q

(1 + |x|2)kq

∣∣∣ ∫
Rd
eixξ

2k∑
|r|=0

ar∂
r(ψ(ξ)F(ϕv)(ξ)))dξ

∣∣∣qdx) 1
q

=
(∫

Rd

|(φ(xν )− 1)|q

〈x〉2kq
∣∣∣ ∫

Rd
eixξ

2k∑
|r|=0

ar
∑

α+β=r

(
r

α

)
∂αψ(ξ)〈ξ〉m−|α|

〈ξ〉m−|α|
∂βF(ϕv)(ξ)dξ

∣∣∣qdx) 1
q

Since 2k > d, we can write 2k = d+ ε1 + ε2, εi > 0, i = 1, 2. This implies

‖Tψν−ψ(ϕv)‖Lq ≤ c sup
x∈Rd

∣∣∣φ(xν )− 1

〈x〉ε1
∣∣∣|ψ|smq,N∥∥∥F((−ix)βϕv)(ξ)〈ξ〉m−|α|

∥∥∥
Lp
.

Putting hβ = xβϕ it follows that

‖Tψν−ψ(ϕv)‖Lq ≤ c sup
x∈Rd

∣∣∣φ(xν )− 1

〈x〉ε1
∣∣∣|ψ|smq,N(∫

Rd
〈ξ〉p(m−|α|)|F(hβv)(ξ)|pdξ

)1/p

= c sup
x∈Rd

∣∣∣φ(xν )− 1

〈x〉ε1
∣∣∣|ψ|smq,N(∫

Rd
〈ξ〉p(m−|α|)|ĥβ ∗ v̂|pdξ

)1/p

Next, we use Peetre’s and Young’s inequality to conclude that ‖Tψν−ψ(ϕv)‖Lq

≤ c sup
x∈Rd

∣∣∣φ(xν )− 1

〈x〉ε1
∣∣∣|ψ|smq,N∥∥∥F(hβ)(·)(1 + | · |2)

|m−|α||
2 ∗ Fv(ξ)(1 + | · |2)

m−|α|
2

∥∥∥
Lp

≤ c sup
x∈Rd

∣∣∣φ(xν )− 1

〈x〉ε1
∣∣∣|ψ|smq,N∥∥∥Fv(ξ)|(1 + |ξ|2)

m−|α|
2

∥∥∥
Lp

∥∥∥F(hβ)(1 + |ξ|2)
|m−|α||

2

∥∥∥
L1

≤ c sup
x∈Rd

∣∣∣φ(xν )− 1

〈x〉ε1
∣∣∣|ψ|smq,N∥∥∥F(hβ)(ξ)(1 + |ξ|2)

|m−|α||
2

∥∥∥
L1
‖v‖Hqm

≤ c1 sup
|x|≥ν

1

〈x〉ε1
|ψ|smq,N ‖v‖Hqm → 0, ν →∞.
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Hence, AψTϕ is a limit of compact operators TψνTϕ and the proof also implies

that AψTϕ : Hq
m(Rd) → Lq(Rd). Since ‖Tψν−ψ(ϕv)‖Hq−ε ≤ ‖Tψν−ψ(ϕv)‖Lq it

follows that AψTϕ is a compact operator from Hq
m(Rd) to Hq

−ε(Rd). 2

4. H-distributions

From now on we assume that N is an integer such that N ≥ 3d + 5. Actually,
because of the use of Theorem 2 we explained that N ≥ 3d + 3 (cf. Remark 7).
We enlarge N because we need to assume that N − d − 3 > 2d, if d is odd and
N − d− 4 > 2d, if d is even.

4.1. Compactness of the commutator C = [Aψ, Tϕ].

Theorem 8. Let ψ ∈ sm∞,N , ϕ ∈ S(Rd), m ∈ R. Then the commutator C =

[Aψ, Tϕ] = AψTϕ − TϕAψ is a compact operator from Hq
m(Rd) into Lq(Rd). If p

denotes the symbol of C, then p ∈ Sm−1
0,N−d−3, if d is odd or p ∈ Sm−1

0,N−d−4, if d is
even.

Proof: Let ψ ∈ sm∞,N , N ≥ 3d + 5, d odd and ϕ ∈ S(Rd). The symbol of the

composition AψTϕ is given by σ(x, ξ) =
∫∫
e−iyηψ(ξ + η)ϕ(x + y)dyd̄η, x, ξ ∈ Rd.

Using Taylor expansion, we obtain that σ(x, ξ) = I1(x, ξ) + I2(x, ξ), where

I1(x, ξ) =
∑
|α|≤1

1

α!

∫∫
e−iyηηα∂αξ ψ(ξ)ϕ(x+ y)dyd̄η

and I2(x, ξ) = 2
∑
|α|=2

1

α!

∫∫
e−iyηηα

(∫ 1

0

(1−θ)2∂αξ ψ(ξ+θη)dθ
)
ϕ(x+y)dyd̄η. Then,

I1(x, ξ) =
∑
|α|≤1

1

α!
∂αξ ψ(ξ)Dα

yϕ(y)|y=x and similarly,

I2(x, ξ) = 2
∑
|α|=2

1

α!

∫∫
e−iyη

(∫ 1

0

(1− θ)2∂αξ ψ(ξ + θη)dθ
)
Dα
yϕ(x+ y)dyd̄η.

Since the symbol of TϕAψ is ϕ(x)ψ(ξ), the symbol of the commutator C is

p(x, ξ) =
∑
|α|=1

1

α!
∂αξ ψ(ξ)Dα

yϕ(y)|y=x + I2(x, ξ),

where Ĩ1(x, ξ) :=
∑
|α|=1

1

α!
∂αξ ψ(ξ)Dα

yϕ(y)|y=x. Clearly, Ĩ1(x, ξ) ∈ Sm−1
0,N−1. Next,

we need to estimate I2(x, ξ). Note that I2(x, ξ) = 2
∑
|α|=2

1

α!

∫ 1

0

(1 − θ)2I3(x, ξ)dθ,

where I3(x, ξ) =
∫∫
e−iyη∂αξ ψ(ξ + θη)Dα

yϕ(x+ y)dyd̄η. As in the proof of Theorem
6, we have:

|I3(x, ξ)| ≤
∫∫
〈y〉−2k〈Dη〉2k

(
〈η〉−2l∂αξ ψ(ξ + θη)

)
〈Dy〉l

[
Dα
yϕ(x+ y)

]
dyd̄η

≤ C〈ξ〉m−2〈x〉−M ,
for 2k = d + 1, 0 < M < 1, 2l > d + |m − 2|. Also, from the proof of Theorem

6 it follows that I2 ∈ Sm−2
0,N−d−3. Since Ĩ1(x, ξ) ∈ Sm−1

0,N−1 ⊂ Sm−1
0,N−d−3 and I2 ∈
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Sm−2
0,N−d−3 ⊂ Sm−1

0,N−d−3 it follows that p ∈ Sm−1
0,N−d−3. Now we apply the proof of

Theorem 6, part 1, to conclude that C = Tp is a compact operator from Hq
m(Rd)

into Lq(Rd). The proof is analogous in the case when d is even. 2

Corollary 9. Let ψ ∈ sm∞,N , ϕ ∈ S(Rd), m, s ∈ R. Then the commutator C =

[Tψ, Tϕ] = TψTϕ − TϕTψ is a compact operator from Hq
m+s(Rd) into Hq

s (Rd). If p

denotes the symbol of C, then p ∈ Sm−1
0,N−d−3, if d is odd or p ∈ Sm−1

0,N−d−4, if d is
even.

Proof: Note that AψTϕ is a compact operator from Hq
m+s(Rd) to Hq

s−ε(Rd) for

ψ ∈ sm∞,N , ϕ ∈ S(Rd) , ε > 0. This easily follows from the proof of Theorem 6 and

Corollary 3. Thus, the proof of Theorem 8 implies the claim. 2

4.2. H-distributions with ψ ∈ (sm∞,N+1)0. Note that the completion of the ten-

sor product S(Rd)⊗ (sm∞,N+1)0 is the same for both the ε and the π topology, since

S(Rd) is nuclear ([15], Theorem 50.1). We use the notation S(Rd)⊗̂(sm∞,N+1)0 for
the completion.

Theorem 10. Let un ⇀ 0 in Lp(Rd) and vn ⇀ 0 in Hq
m(Rd), m ∈ R. Then, up

to subsequences, there exists a distribution µ ∈ (S(Rd)⊗̂(sm∞,N+1)0)′ such that for

all ϕ1, ϕ2 ∈ S(Rd) and all ψ ∈ (sm∞,N+1)0,

lim
n→∞

〈ϕ1un,Aψ̄(ϕ2vn)〉 = 〈µ, ϕ1ϕ̄2 ⊗ ψ〉.

Proof: Since ψ ∈ (sm∞,N+1)0 ⊂ sm∞,N we have that Aψ̄(ϕ2vn) ∈ Lq(Rd). We write

ψ(ξ) = ψ1(ξ)ψ2(ξ), ψ1(ξ) = 〈ξ〉m ∈ sm∞,N+1, ψ2(ξ) = 〈ξ〉−mψ(ξ) ∈ (s0
∞,N+1)0.

Hence, using (6), it follows

‖Aψ(ϕvn)‖Lq ≤ c|ψ2|s0∞,N ‖Aψ1
(ϕvn)‖Lq ≤ c1|ψ|sm∞,N ‖ϕvn‖Hqm .

In the last inequality we have used the estimate

|ψ2|s0∞,N = |〈ξ〉−mψ(ξ)|s0∞,N ≤ C|〈ξ〉
−m|s−m∞,N |ψ|sm∞,N ≤ C1|ψ|sm∞,N .

Using Peetre’s inequality and the exchange formula for the inverse Fourier transform
of convolution, we have

‖ϕvn‖Hqm =
(∫

Rd

∣∣∣F−1((1 + |ξ|2)
m
2 ϕ̂ ? v̂n)

∣∣∣qdx) 1
q

≤
(∫

Rd

∣∣∣F−1(v̂n(1 + | · |2)
m
2 )
∣∣∣q∣∣∣(F−1(ϕ̂(1 + | · |2)

m
2 )
∣∣∣qdx) 1

q

≤ C sup
x∈Rd

∣∣∣F−1((1 + |ξ|2)
m
2 ϕ̂)

∣∣∣‖vn‖Hqm
≤ C

∫
Rd

1

〈ξ〉d+1
‖〈ξ〉d+1+mϕ̂‖∞dξ ≤ C‖〈ξ〉d+1+mϕ̂‖∞.

Recall that for S(Rd) we have a plenty of equivalent sequences of norms among
which we can use

|ϕ|k = sup
|α|≤k

‖〈ξ〉kϕ̂(α)(ξ)‖∞, k ∈ N0.

Therefore, ∣∣∣∣∫
Rd
unAψ(ϕvn)dx

∣∣∣∣ ≤ C|ψ|sm∞,N |ϕ|d+1+d|m|e. (9)
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For fixed ϕ ∈ S(Rd), the mapping ψ 7→ µn(ϕ,ψ) :=
∫
Rd unAψ(ϕvn)dx is linear

and continuous, and for fixed ψ ∈ (sm∞,N+1)0, the mapping ϕ 7→ µn(ϕ,ψ) is anti-
linear and continuous. The rest of the proof follows the standard steps for proving
the existence of H-distributions, as was done in the proof of Theorem 2.1. in [4].

Fix ϕ ∈ S(Rd) and consider a sequence of mappings

Φϕn : ψ 7→ µn(ϕ,ψ).

Thus Φϕn ∈ ((sm∞,N+1)0)′ and we can apply Sequential Banach Alaoglu theorem to

extract weakly star convergent subsequence Φϕν
∗
⇀Φϕ, since ((sm∞,N+1)0, | · |sm∞,N )

is separable. More precisely, for every fixed ϕ ∈ S(Rd) we construct a linear
mapping Φϕ such that 〈Φϕν , ψ〉 → 〈Φϕ, ψ〉, ν → ∞ and ψ ∈ (sm∞,N+1)0. Actually,

by diagonalization we find a sequence (Φϕν ) converging on a dense countable subset
of (sm∞,N+1)0 and by the Banach - Steinhaus theorem we extend it to (sm∞,N+1)0.

Then, for fixed ψ ∈ (sm∞,N+1)0, the mapping ϕ 7→ 〈Φϕν , ψ〉 is a pointwise bounded

sequence in S ′(Rd) which converges on a dense set M ⊂ S(Rd); this is again
obtained by diagonalization procedure. By the Banach-Steinhaus theorem, see [8,
p. 169], 〈Φϕν , ψ〉 converges to 〈Φϕ, ψ〉 on S(Rd). In this way we show that for every
ϕ ∈ S(Rd) and every ψ ∈ (sm∞,N+1)0,

lim
ν→∞

〈Φϕν , ψ〉 = 〈Φϕ, ψ〉.

Moreover, by (9),

|〈Φϕ, ψ〉| ≤ c|ϕ|dme+d+1|ψ|sm∞,N .

By the kernel theorem ( [15][Part III, Chap. 50, Proposition 50.7, p. 524]) we have
that there exists µ ∈ (S(Rd)⊗̂(sm∞,N+1)0)′ defined as

〈µ(x, ξ), ϕ(x)ψ(ξ)〉 = lim
ν→∞

〈Φϕν , ψ〉 = lim
ν→∞

∫
uνAψ(ϕvν)dx,

for all ϕ ∈ S(Rd), ψ ∈ (sm∞,N+1)0, where uν is a subsequence of un and vν is a

subsequence of vn. Since every ϕ ∈ S(Rd) can be written as ϕ = ϕ1ϕ2 for some

ϕ1, ϕ2 ∈ S(Rd) ([13]), we have that 〈µ, ϕψ〉 = lim
ν→∞

∫
uνAψ(ϕ1ϕ2vν)dx. Using

Theorem 8, we obtain that for every ϕ1, ϕ2 ∈ S(Rd) and ψ ∈ (sm∞,N+1)0,

〈µ, ϕ1ϕ2ψ〉 = lim
ν→∞

∫
Rd
ϕ1uνAψ(ϕ2vν)dx.

This completes the proof.

2

Remark 11. Let ψ0 ∈ sm∞,N . The above proof implies that µn(·, ψ0), n ∈ N is a

bounded sequence of linear mappings on S(Rd). Thus, it has a convergent subse-
quence µnk(·, ψ0) converging to µ(·, ψ0) in S ′(Rd). If we choose another ψ1 ∈ sm∞,N
we can find subsequence of µnk(·, ψ1) denoted by µl(·, ψ1) converging in S ′(Rd).
We do not have the same sequence for all ψ ∈ sm∞,N . Because of that we need to

introduce separable class of symbols (sm∞,N+1)0.
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Corollary 12. Let un ⇀ 0 in Hp
−s(Rd) and vn ⇀ 0 in Hq

s+m(Rd), s,m ∈ R.

Then, up to subsequences, there exists µ ∈ (S(Rd)⊗̂(sm∞,N+1)0)′ such that for all
ϕ1, ϕ2 ∈ S and all ψ ∈ (sm∞,N+1)0,

lim
n→∞

〈ϕ1un,Aψ(ϕ2vn)〉 = 〈µ, ϕ1ϕ2 ⊗ ψ〉.

Proof: We consider the sequence of functionals µn(ϕ,ψ) = 〈A〈ξ〉−s(un),A〈ξ〉sψ(ϕvn)〉.
Let ψ1(ξ) = 〈ξ〉−s and ψ2(ξ) = 〈ξ〉sψ(ξ). Then,

|µn(ϕ,ψ)| ≤ ‖Aψ1
(un)‖Lp‖Aψ̄2

(ϕvn)‖Lq ≤ c|ψ|sm∞,N |ϕ|2d+2+d|m+s|e.

Notice that limn→∞ µn(ϕ,ψ) = limn→∞〈un,Aψ(ϕvn)〉. Applying the proof of The-

orem 10 and using Corollary 9, we obtain the assertion. 2

Theorem 13. Let un ⇀ 0 in Lp(Rd). If for every sequence vn ⇀ 0 in Hq
m(Rd),

m ∈ R it holds that

lim
n→∞

〈un,A〈ξ〉m(ϕvn)〉 = 0, (10)

then for every θ ∈ S(Rd), θun → 0 strongly in Lp(Rd), n→∞.

Proof: We will prove that for all θ ∈ S(Rd) and every bounded B ⊆ Lq(Rd),

sup{〈θun, φ〉 : φ ∈ B} → 0, n→∞.

Assume the opposite, i.e. that there exist θ ∈ S(Rd), a bounded set B0 in
Lq(Rd), an ε0 > 0 and a subsequence θuν of θun such that

sup{|〈θuν , φ〉| : φ ∈ B0} ≥ ε0, for every ν ∈ N.

Choose φν ∈ B0 such that |〈θuν , φν〉| > ε0/2. Since φν ∈ B0 and B0 is bounded
in Lq(Rd), then (φν) is weakly precompact in Lq(Rd), i.e. up to a subsequence,
φν ⇀ φ0 in Lq(Rd). Moreover, since φ0 is fixed, we have 〈uν , φ0〉 → 0 and

|〈θuν , φν − φ0〉| >
ε0

4
, ν > ν0. (11)

Applying (10) on uν ⇀ 0 in Lp(Rd) and A〈ξ〉−m(φν−φ0) ⇀ 0 in Hq
m(Rd), we obtain

that for every ϕ ∈ S(Rd)

lim
ν→∞

〈uν ,A〈ξ〉m(ϕA〈ξ〉−m((φν − φ0))〉 = 0. (12)

Choosing ϕ = θ and using Theorem 8, we get limν→∞ 〈θuν , φν − φ0〉 = 0, which

contradicts (11). 2

Following the proof of Theorem 13 and using Corollary 12, it is easy to prove
the next corollary.

Corollary 14. Let un ⇀ 0 in Hp
−s(Rd), m, s ∈ R. If for every sequence vn ⇀ 0

in Hq
s+m(Rd) it holds that limn→∞〈un,A〈ξ〉m(ϕvn)〉 = 0, then θun → 0 strongly in

Hp
−s(Rd), n→∞, for every θ ∈ S(Rd).
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4.3. H-distributions with ψ ∈ smq,N , 1 < q ≤ 2. As in the case of symbols in

the class sm∞,N , we need to prove that C(ϕ2vn) = Tϕ1
Aψ(ϕ2vn)−AψTϕ1

(ϕ2vn)→ 0

in Lq(Rd), if vn ⇀ 0 in Hq
m(Rd). The following theorem holds.

Theorem 15. Let ϕ1, ϕ2 ∈ S(Rd), ψ ∈ smq,N , 1 ≤ q ≤ 2, N ≥ 2d + 4, m ∈ R.

Then, (Tϕ1
Aψ −AψTϕ1

)Tϕ2
is a compact operator from Hq

m(Rd) to Lq(Rd).

Proof: Denote by p(x, ξ) the symbol of Tϕ1Aψ −AψTϕ1 . Then,

p(x, ξ) =
∑
|α|=1

1

α!
∂αξ ψ(ξ)Dα

yϕ1(y)|y=x + p2(x, ξ),

where

p2(x, ξ) = 2
∑
|α|=2

1

α!

∫ 1

0

(1− θ)2

∫∫
e−iyη∂αξ ψ(ξ + θη)Dα

yϕ1(x+ y)dyd̄ηdθ.

As in the proof of Theorem 8, we will approximate Tp by the sequence of compact
operators Tpν (x) = φ(x/ν)Tp(x), where φ is constructed as in the proof of Theorem

6, part (1). We will first show that TpTϕ2
: Hq

m(Rd)→ Hq
1 (Rd). Then multiplying

with φ implies that TpνTϕ2 : Hq
m(Rd)→ Hq

1−ε(R
d) is a compact operator for every

ε > 0, so TpνTϕ2
: Hq

m(Rd)→ Lq(Rd) is a compact operator.

Let p1(x, ξ) =
∑
|α|=1

1

α!
∂αξ ψ(ξ)Dα

yϕ1(y)|y=x. Since ψ ∈ smq,N , it follows that ψα(ξ) :=

∂αξ ψ(ξ) ∈ sm−1
q,N−1, because |α| = 1, i.e. (5) holds for m − 1. If v ∈ Hq

m(Rd) and

ϕ2 ∈ S(Rd), it follows that Aψα(ϕ2v) ∈ Hq
1 (Rd). Indeed,

‖Aψα(ϕ2v)‖Hq1 = ‖A〈ξ〉(Aψα(ϕ2v))‖Lq = ‖Aψα(ξ)〈ξ〉(ϕ2v)‖Lq .

Because ψα(ξ) := ∂αξ ψ(ξ) ∈ sm−1
q,N−1, it follows that ψα(ξ)〈ξ〉 ∈ smq,N−1, which is easy

to derive from the definition (5). Since ϕ2v ∈ Hq
m(Rd), and N − 1 ≥ d+ 3, we have

that Aψα(ξ)〈ξ〉(ϕ2v) ∈ Lq(Rd) (this property is shown in the proof of Theorem 6).
Therefore, ‖Aψα(ϕ2v)‖Hq1 <∞ and ‖Tp(ϕ2v)‖Hq1 ≤ ‖Tp1(ϕ2v)‖Hq1 +‖Tp2(ϕ2v)‖Hq1 .
Hence,

‖Tp1(ϕ2v)‖Hq1 ≤
∑
|α|=1

1

α!
‖T∂αξ ψ(ξ)Dαy ϕ1(y)|y=x(ϕ2v)‖Hq1

=
∑
|α|=1

1

α!
‖((Dα

yϕ1(y)|y=x)T∂αξ ψ(ξ)(ϕ2v))‖Hq1 .

LetDα
yϕ1(y)|y=x =: ϕα1 (x) ∈ S(Rd). Then, ‖ϕα1 (x)A∂αξ ψ(ξ)(ϕ2v)‖Hq1 = ‖ϕα1 (x)vα(x)‖Hq1 ,

where vα(x) = A∂αξ ψ(ξ)(ϕ2v) ∈ Hq
1 (Rd). Therefore,

‖ϕα1 (x)A∂αξ ψ(ξ)(ϕ2v)‖Hq1 ≤ |ϕ
α
1 (x)|p‖vα(x)‖Hq1 ,

where |ϕα1 (x)|p is a semi-norm of function ϕα1 ∈ S(Rd) for some p ∈ N. So we have
proved that

‖Tp1(ϕ2v)‖Hq1 ≤
∑
|α|=1

1

α!
|ϕα1 (x)|p‖vα(x)‖Hq1 <∞.
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Next, we want to prove that Tp2(ϕ2v) ∈ Hq
1 (Rd). By the definition, ‖Tp2(ϕ2v)‖Hq1 =

‖A〈ξ〉Tp2(ϕ2v)‖q. Therefore,

A〈ξ〉Tp2(ϕ2v)(x) =

∫
Rd
eixξ

[ ∫∫
e−ix

′η〈ξ + η〉p2(x+ x′, ξ)dx′d̄η
]
F(ϕ2v)(ξ)d̄ξ.

Let σ(x, ξ) =

∫∫
e−ix

′η〈ξ + η〉p2(x+ x′, ξ)dx′d̄η. It follows that

‖A〈ξ〉Tp2(ϕ2v)‖q =
(∫

Rdx

∣∣∣ ∫
Rdξ
eixξσ(x, ξ)F(ϕ2v)(ξ)d̄ξ

∣∣∣qdx)1/q

.

Moreover, we have ∫
Rdη

∫
Rd
x′

e−ix
′η
[
〈ξ + η〉p2(x+ x′, ξ)

]
dx′d̄η

= 2
∑
|α|=2

1

α!

∫ 1

0

(1− θ)2

∫
Rdη

∫
Rd
x′

e−ix
′η〈ξ + η〉Iθ(x+ x′, ξ)dx′d̄ηdθ,

where Iθ(x + x′, ξ) =

∫
Rdη̃

∫
Rdỹ
e−iỹη̃∂αξ ψ(ξ + θη̃)Dα

ỹϕ1(x + x′ + ỹ)dỹd̄η̃. It follows

that for large enough l, l′ ∈ N0,∫
Rdη

∫
Rd
x′

e−ix
′η〈ξ + η〉Iθ(x+ x′, ξ)dx′dη

=

∫
Rdη

∫
Rd
x′

e−ix
′η〈x′〉−2l′〈Dη〉2l

′
[
〈η〉−2l〈ξ + η〉

]
〈Dx′〉2lIθ(x+ x′, ξ)dx′dη.

Repeating the same procedure, we have∫
Rdη̃

∫
Rdỹ
e−iỹη̃∂αξ ψ(ξ + θη̃)〈Dx′〉2lDα

ỹϕ1(x+ x′ + ỹ)dỹdη̃

=

∫
Rdη̃

∫
Rdỹ
e−iỹη̃

1

〈ỹ〉2k′
〈Dη̃〉2k

′
[
∂αξ ψ(ξ+θη̃)〈η̃〉−2k

]
〈Dỹ〉2k〈Dx′〉2lDα

ỹϕ1(x+x′+ỹ)dỹdη̃.

Since ϕ1 ∈ S, it follows that for every M ∈ N0 there exists C > 0 so that

|〈Dỹ〉2k〈Dx′〉2lDα
ỹϕ1(x+ x′ + ỹ)| ≤ C〈x+ x′ + ỹ〉−M .

Then, applying Peetre’s inequality we have that C〈x+x′+ỹ〉−M ≤ C1〈x′〉M 〈x〉−M 〈ỹ〉M .
Hence, by choosing large enough M ∈ N0, i.e. it is enough to assume that M = d+1
and k′ = d+ 1, we have ‖A〈ξ〉Tp2(ϕ2vn)‖Lq ≤

≤ C1

(∫
Rdx

1

〈x〉Mq

∣∣∣ ∫ 1

0

(1−θ)2

∫
Rd
ξ′

∫
Rd
x′

〈x′〉M

〈x′〉2l′
dx′
∫
Rdỹ

〈ỹ〉M

〈ỹ〉2k′
dỹ

∫
Rdη
〈Dη〉2l

′
[ 〈ξ + η〉
〈η〉2l

]
dη×

×
∫
Rdη̃
〈Dη̃〉2k

′
[
〈η̃〉−2k∂αξ ψ(ξ + θη̃)

]
dη̃F(ϕ2vn)(ξ)dξdθ

∣∣∣qdx)1/q

≤

c

∫
Rdξ

∣∣∣ ∫
Rdη
〈Dη〉2l

′
[ 〈ξ + η〉
〈η〉2l

]
dη

∫ 1

0

(1−θ)2

∫
Rdη̃
〈Dη̃〉2k

′
[∂αξ ψ(ξ + θη̃)

〈η̃〉2k
]
dη̃dθF(ϕ2vn)(ξ)

∣∣∣dξ.
So, we have ∣∣∣〈Dη〉2l

′
[
〈η〉−2l〈ξ + η〉

]∣∣∣ ≤ c2〈ξ〉〈η〉−2l+1,
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and∣∣∣〈Dη̃〉2k
′
[
〈η̃〉−2k∂αξ ψ(ξ + θη̃)

]∣∣∣ ≤ c3〈η̃〉−2k
2k′∑
|r|=0

∂α+r
ξ ψ(ξ + θη̃)

〈ξ + θη̃〉m−2−|r| 〈ξ + θη̃〉m−2−|r|

≤ c4〈η̃〉−2k
2k′∑
|r|=0

∂α+r
ξ ψ(ξ + θη̃)

〈ξ + θη̃〉m−2−|r| 〈ξ〉
m−2−|r|〈η̃〉|m−2−|r||.

Hence,

c

∫
Rdξ

∣∣∣ ∫
Rdη
〈Dη〉2l

′
( 〈ξ + η〉
〈η〉2l

)
dη

∫ 1

0

(1− θ)2

∫
Rdη̃
〈Dη̃〉2k

′
[∂αξ ψ(ξ + θη̃)

〈η̃〉2k
]
dη̃dθF(ϕ2v)(ξ)

∣∣∣d̄ξ

≤ c5
∫
Rdη̃
〈η̃〉−2k

∫
Rdξ

2k′∑
|r|=0

|∂α+r
ξ ψ(ξ + θη̃)|
〈ξ + θη̃〉m−2−|r| 〈ξ〉

m−2−|r|+1〈η̃〉|m−2−|r|||F(ϕ2v)(ξ)|d̄ξdη̃

≤ c6|ψ|smq,2d+4
‖〈ξ〉m−1|F(ϕ2v)(ξ)|‖Lp ≤ c6|ψ|smq,N ‖〈ξ〉

m−1F(ϕ2v)(ξ)‖Lp <∞.

We have proved that TpTϕ2
: Hq

m(Rd) → Hq
1 (Rd). It remains to prove that

TpνTϕ2
→ TpTϕ2

in norm, as ν →∞. We have

‖Tpν−p(ϕ2v)‖Lq =
∥∥∥(φ(x

ν

)
− 1
)
Tp(ϕ2v)

∥∥∥
Lq

≤
∥∥∥(φ(x

ν

)
− 1
)
Tp1(ϕ2v)

∥∥∥
Lq

+
∥∥∥(φ(x

ν

)
− 1
)
Tp2(ϕ2v)

∥∥∥
Lq
.

Then, for
∥∥∥(φ(x

ν

)
− 1
)
Tp1(ϕ2v)

∥∥∥
Lq

we apply the same procedure as in the proof

of Theorem 6, part 2 to conclude that
∥∥∥(φ(x

ν

)
− 1
)
Tp1(ϕ2v)

∥∥∥
Lq
→ 0, ν →∞. For∥∥∥(φ(x

ν

)
− 1
)
Tp2(ϕ2v)

∥∥∥
Lq

we can apply previous proof and obtain that
∥∥∥(φ(x

ν

)
−

1
)
Tp2(ϕ2v)

∥∥∥
Lq
→ 0, ν →∞, as well. 2

Corollary 16. Let ϕ1, ϕ2 ∈ S(Rd), ψ ∈ smq,N , 1 ≤ q ≤ 2, N ≥ 2d + 4, m, s ∈ R.

Then, (Tϕ1Aψ −AψTϕ1)Tϕ2 is a compact operator from Hq
m+s(Rd) to Hq

s (Rd).

Proof: Proof of Theorem 6, part (2) implies that AψTϕ is a compact opera-

tor from Hq
m+s(Rd) to Hq

s−ε(Rd), for any ε > 0 and ϕ ∈ S(Rd). Indeed, if

ψ ∈ smq,N , then 〈ξ〉sψ ∈ sm+s
q,N . Therefore, if v ∈ Hq

m+s(Rd), then ‖Aψ(ϕv)‖Hqs =

‖Aψ〈ξ〉s(ϕv)‖Lq <∞. Hence, for weakly convergent sequence vn ⇀ 0 in Hq
m+s(Rd)

we have that

‖Aψ(ϕvn)‖Hqs−ε ≤ ‖Aψ(ϕvn)‖Hqs = ‖Aψ〈ξ〉s(ϕvn)‖Lq → 0, n→∞,

which follows from Theorem 6, part (2), i.e. Tψ〈ξ〉sTϕ is a compact operator from

Hq
m+s(Rd) into Hq

−ε, if 〈ξ〉sψ ∈ sm+s
q,N . If we apply the proof of Theorem 15, we

can conclude the compactness of (Tϕ1
Aψ−AψTϕ1

)Tϕ2
from Hq

m+s(Rd) to Hq
s (Rd).

2
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Theorem 17. Let un ⇀ 0 in Lp(Rd), vn ⇀ 0 in Hq
m(Rd), 1 < q ≤ 2, m ∈ R. Then,

up to subsequences, there exists µ ∈ (S(Rd)⊗̂smq,N )′ such that for all ϕ1, ϕ2 ∈ S(Rd)
and all ψ ∈ smq,N ,

lim
n→∞

〈ϕ1un,Aψ(ϕ2vn)〉 = 〈µ, ϕ1ϕ2 ⊗ ψ〉.

Proof: As in the proof of Theorem 6, for ψ ∈ smq,N and ϕ ∈ S(Rd), we have

‖Aψ(ϕvn)‖Lq =
(∫

Rd

∣∣∣ ∫
Rd
eixξψ(ξ)F(ϕvn)(ξ)dξ

∣∣∣qdx) 1
q

=

≤ c|ψ|smq,N
N∑
|r|=0

|ar|
∑

α+β=r

(
r

α

)
‖(1 + |ξ|2)

m−|α|
2 F((−ix)βϕvn)(ξ)‖Lp ,

≤ c|ψ|smq,N
∥∥∥F(hβ)(ξ)(1 + |ξ|2)

|m−|α||
2

∥∥∥
L1
<∞.

Therefore,

|µn(ϕ,ψ)| :=
∣∣∣ ∫

Rd
unAψ(ϕvn)dx

∣∣∣ ≤ ‖un‖Lp‖Aψ(ϕvn)‖Lq ≤

≤ c|ψ|smq,N
∥∥∥F(hβ)(ξ)(1 + |ξ|2)

|m−|α||
2

∥∥∥
L1
≤ c|ψ|smq,N |F(hβ)(ξ)(1 + |ξ|2)

|m−|α||
2 |d+1,S

≤ c1|ψ|smq,N |ϕ|k0,S ,

for some k0 ∈ N. Further on, the proof is analogous to the proof of Theorem 10

and we use commutation result, i.e. Theorem 15. 2

Corollary 18. Let un ⇀ 0 in Hp
−s(Rd), vn ⇀ 0 in Hq

m+s(Rd), 1 < q ≤ 2,

m, s ∈ R. Then, up to subsequences, there exists µ ∈ (S(Rd)⊗̂smq,N )′ such that for

all ϕ1, ϕ2 ∈ S(Rd) and all ψ ∈ smq,N ,

lim
n→∞

〈ϕ1un,Aψ(ϕ2vn)〉 = 〈µ, ϕ1ϕ2 ⊗ ψ〉.

Proof: We define a sequence of functionals µn(ϕ,ψ) = 〈A〈ξ〉−s(un),A〈ξ〉sψ(ϕvn)〉.
Then the claim follows from Theorem 17 and Corollary 16 . 2

5. Applications

Let un ⇀ 0 in Hp
−s(Rd), s ∈ R, 1 < p < ∞ such that the following sequence of

equations is satisfied ∑
|α|≤k

Aα(x)∂αun(x) = gn(x), (13)

where Aα ∈ S(Rd) and (gn)n is a sequence of temperate distributions such that

ϕgn → 0 in Hp
−s−k(Rd), for every ϕ ∈ S(Rd). (14)

The following theorem holds.

Theorem 19. Let un ⇀ 0 in Hp
s (Rd), s ∈ R, 1 < p <∞. Then, ϕun → 0 strongly

in Hp
s−ε(Rd) for any ε > 0, ϕ ∈ S(Rd).
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Proof: Denote by Bl the open ball centered at the origin with radius l ∈ N.
Rellich lemma implies that Hp

s (Bl) is compactly embedded in Hp
s−ε(Bl), for any

ε > 0. Since un ⇀ 0 in Hp
s (Bl), by the diagonalization procedure, we can extract

a subsequence (not relabeled) such that for all l ∈ N

ϕun → 0 in Hp
s−ε(Bl), ϕ ∈ S(Rd). (15)

Choose smooth cutoff functions χl such that χl(x) = 1 for x ∈ Bl and χl(x) = 0
for x ∈ Rd\Bl+1. Then, ϕ = χlϕ+ (1− χl)ϕ and

‖ϕun‖Hps−ε ≤ ‖χlϕun‖Hps−ε + ‖(1− χl)ϕun‖Hps−ε ≤

≤ ‖χlϕun‖Hps−ε + sup
|x|>l
|ϕ|k0‖un‖Hps ,

where by |ϕ|k0 is denoted semi-norm for function ϕ ∈ S(Rd). Notice that (15)
implies ‖χlϕun‖Hps−ε → 0 as n→∞. Since un ⇀ 0 in Hp

s (Rd), there is a constant

M > 0 such that ‖un‖Hps ≤M . Let ε > 0. Since ϕ ∈ S(Rd), there exists l0 ∈ N such
that for all l ≥ l0 we have estimate sup

|x|>l
|ϕ|k0 < ε/2M. Hence, for given ε > 0, there

exists n0 ∈ N such that ‖ϕun‖Hps−ε < ε, for n > n0, i.e. ϕun → 0 in Hp
s−ε(Rd),

which completes the proof. 2

Lemma 20. Let (13) and (14) hold. Then, there exists a sequence (fn) in Hp
−s−k(Rd)

such that ∑
|α|=k

∂α(Aα(x)un(x)) = fn(x) (16)

and

ϕfn → 0 in Hp
−s−k(Rd), for every ϕ ∈ S(Rd). (17)

Proof: We rewrite equation (13) in the divergence form,∑
|α|=k

∂α(Aα(x)un(x)) = gn(x)−
∑
|α|<k

Aα(x)∂αun(x)+
∑
|α|=k

∑
β<α

(
α

β

)
∂α−βAα∂

βun(x).

Put

fn(x) := gn(x)−
∑
|α|<k

Aα(x)∂αun(x) +
∑
|α|=k

∑
β<α

(
α

β

)
∂α−βAα∂

βun(x).

Since un ⇀ 0 in Hp
−s(Rd), then ∂αun ⇀ 0 in Hp

−s−|α|(R
d). Therefore, by Theorem

19, ϕ∂αun → 0 in Hp
−s−|α|−ε(R

d), for any ε > 0. Choosing ε = k − |α|, which

is possible because |α| < k, we conclude that ϕ∂αun → 0 in Hp
−s−k(Rd). Hence,

ϕfn → 0 in Hp
−s−k(Rd), as we claimed. 2

Theorem 21. Let un ⇀ 0 in Hp
−s(Rd), s ∈ R, satisfies (13), (14) and ψ ∈ sm∞,N .

Then, for any vn ⇀ 0 in Hq
s+m(Rd) , the corresponding distribution µψ ∈ S ′(Rd)

satisfies ∑
|α|≤k

Aα(x)
ξα

〈ξ〉k
µψ = 0 in S ′(Rd). (18)

Moreover, if ψ = 〈ξ〉m and (18) implies µ〈ξ〉m = 0 we have the strong convergence

θun → 0, in Hp
−s(Rd), for every θ ∈ S(Rd).
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Proof: Let vn ⇀ 0 in Hq
s+m(Rd), ϕ1 ∈ S(Rd), ϕ2 ∈ S(Rd) and ψ ∈ sm∞,N . We

have to prove that, up to a subsequence,

lim
n→∞

∑
|α|<k

〈
unAαϕ1 , AΨ̄α(ϕ2vn)

〉
+ lim
n→∞

∑
|α|=k

〈
unAαϕ1 , AΨ̄α(ϕ2vn)

〉
, (19)

=
∑
|α|<k

〈
µ,Aα(x)ϕ1ϕ2

ξα

〈ξ〉k
ψ(ξ)

〉
+
∑
|α|=k

〈
µ,Aαϕ1ϕ2

ξα

〈ξ〉k
ψ(ξ)

〉
= 0,

where Ψα =
ξα

〈ξ〉k
ψ(ξ). Since Ψα ∈ sm+|α|−k

∞,N , it follows from Theorem 6 that AΨ̄α

is a compact operator from Hq
s+m(Rd) into Hq

s−|α|+k−ε(R
d), for any ε > 0. Then

AΨ̄α(ϕ2vn) → 0 in Hq
s−|α|+k−ε(R

d), for any ε > 0. Therefore, when |α| < k we

can choose ε = k − |α| and this implies AΨ̄α(ϕ2vn)→ 0 strongly in Hq
s (Rd). Since

un ⇀ 0 in Hp
−s(Rd), we conclude that

lim
n→∞

∑
|α|<k

〈
unAαϕ1 , AΨ̄α(ϕ2vn)

〉
= 0.

It remains to prove that lim
n→∞

∑
|α|=k

〈
unAαϕ1 , AΨ̄α(ϕ2vn)

〉
= 0. We will prove that

lim
n→∞

∑
|α|=k

〈
unAα , AΨ̄α(ϕvn)

〉
= 0,

for every ϕ ∈ S(Rd). Since we can write ϕ = ϕ1ϕ̄2 for ϕ1, ϕ2 ∈ S(Rd), Theorem 8
implies

lim
n→∞

∑
|α|=k

〈
unAα , AΨ̄α(ϕvn)

〉
= lim
n→∞

∑
|α|=k

〈
unAαϕ1 , AΨ̄α(ϕ2vn)

〉
.

Since AΨ̄α = A ξα

〈ξ〉k
◦ Aψ and A ξα

〈ξ〉k
= ∂αA〈ξ〉−k , it follows that

lim
n→∞

∑
|α|=k

〈
unAα , AΨ̄α(ϕvn)

〉
= lim
n→∞

∑
|α|=k

(−1)|α|
〈
∂αx (unAα) , A〈ξ〉−kψ(ϕvn)

〉
.

Then A〈ξ〉−kψ(ϕvn) ∈ Hq
s+k(Rd), and because of the Lemma 20, i.e. (17), we have

that

lim
n→∞

∑
|α|=k

〈
unAαϕ1 , AΨ̄α(ϕ2vn)

〉
= 0.

Therefore, we have proved (18).
If µ〈ξ〉m = 0, then Corollary 14 implies θun → 0 in Hp

−s(Rd), for every θ ∈ S(Rd).
2

Theorem 22. Let un ⇀ 0 in Hp
−s(Rd), vn ⇀ 0 in Hq

s+m(Rd) and σ ∈ sr∞,N ,

ψ ∈ sm∞,N , s,m, r ∈ R. Assume that Aσun = fn → 0 strongly in Hp
−s−r(Rd). Then

µ σ(ξ)
〈ξ〉r ψ

= 0 in S ′(Rd). (20)
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Proof: The assumption implies thatA〈ξ〉−r (Aσun) = A〈ξ〉−r (fn)→ 0 inHp
−s(Rd).

It follows that

〈A〈ξ〉−r (Aσun),Aψ(ϕvn)〉 → 0, n→∞, ϕ ∈ S(Rd).

Using the factorization property (ϕ = ϕ1ϕ2) and Corollary 9, we have that for
every ϕ1, ϕ2 ∈ S(Rd),

lim
n→∞

〈ϕ1un,Aσ(ξ)〈ξ〉−rψ(ϕ2vn)〉 = 0,

i.e for every ϕ1, ϕ2 ∈ S(Rd) H-distribution µ σ(ξ)
〈ξ〉r ψ

satisfies 〈µ σ(ξ)
〈ξ〉r ψ

, ϕ1ϕ2〉 = 0.

Therefore, (20) holds. 2

Appendix A. Lp-boundedness theorem

Theorem 23. Let N be an integer such that N > 2d, 1 < p < ∞ and T :
S0
N × Lp(Rd)→ Lp(Rd) be defined by

T (σ, u) = Tσu.

Then, T is a continuous bilinear operator and there exists cN > 0 such that the
following estimate holds

‖Tσu‖Lp ≤ cN |σ|S0
N
‖u‖Lp . (21)

Proof: Steps of the proof are the same as in the proof of Theorem 10.7 from
[16]. For the sake of completeness, we will focus ourselves on constants appearing
in the estimates of Theorem 10.7, which will imply continuity with respect to σ.
We represent Rd as a union of cubes, i.e. Rd =

⋃
l∈Zd Ql, where Ql is the cube

with centre at l, with edges parallel to coordinate axes and of length one. Further
on, we introduce η ∈ C∞c (Rd) such that η(x) = 1 for x ∈ Q0 and define σl(x, ξ) =
η(x− l)σ(x, ξ), x, ξ ∈ Rd, l ∈ Zd. Then T (σl, ·) = Tσl = η(x− l)Tσ and∫

Ql

|(Tσϕ)(x)|pdx ≤
∫
Rd
|(Tσlϕ)(x)|pdx, ϕ ∈ S(Rd). (22)

Next,

(Tσlϕ)(x) = (2π)−d
∫
Rd
eixλ

[
(2π)−d

∫
Rd
eixξσ̂l(λ, ξ)ϕ̂(ξ)dξ

]
dλ, (23)

where σ̂l(λ, ξ) =

∫
Rd
e−iλxσl(x, ξ)dx for λ, ξ ∈ Rd. The proof of Lemma 10.9 in [16]

gives that for all α, β ∈ Nd0,

|(−iλ)β∂αξ σ̂l(λ, ξ)| ≤ cβ〈ξ〉−|α| sup
γ≤β,x,ξ∈Rd

|∂αξ ∂γxσ(x, ξ)|〈ξ〉|α|.

Moreover, for all α ∈ Nd0 and for all positive integers n there is a cn > 0 such that

|∂αξ σ̂l(λ, ξ)| ≤ cn〈ξ〉−|α|(1 + |λ|)−n
(

sup
|β|≤n,x,ξ∈Rd

|∂αξ ∂βxσ(x, ξ)|〈ξ〉|α|
)
. (24)

Hence, for any integer N > d/2 we conclude from (24) that |∂αξ σ̂l(λ, ξ)| ≤ B|ξ|−|α|
for |ξ| > ξ0 and |α| ≤ N , where

B = cN (1 + |λ|)−N max
|α|,|β|≤N

sup
x,ξ∈Rd

|∂αξ ∂βxσ(x, ξ)|〈ξ〉|α|.
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Therefore, we can use Theorem 1 with ψ(ξ) = σ̂l(λ, ξ) and B = cN (1+ |λ|)−N |σ|S0
N

to conclude that the operator (T̃l,λϕ)(x) = (2π)−d
∫
Rd
eixξσ̂l(λ, ξ)ϕ̂(ξ)dξ, ϕ ∈ S(Rd)

can be extended to a bounded operator on Lp(Rd) so that with a suitable c > 0

‖T̃l,λϕ‖p ≤ ccN (1 + |λ|)−N |σ|S0
N
‖ϕ‖p, ϕ ∈ Lp(Rd). (25)

Then, by (23), there exists (new) c > 0 such that

‖Tσlϕ‖p ≤ ccN |σ|S0
N
‖ϕ‖p

∫
Rd

(1 + |λ|)−Ndλ. (26)

Then, (26) and (22), for integer N > d, imply that there exists c > 0, independent
on l, so that ∫

Ql

|(Tσϕ)(x)|pdx ≤ ccpN (|σ|S0
N

)p‖ϕ‖pp, ϕ ∈ S(Rd). (27)

According to [16], Lemma 10.10, for ϕ ∈ S(Rd) vanishing in a neighborhood of fixed
x ∈ Rd, we have that (Tσϕ)(x) = (2π)−d/2

∫
Rd K(x, x− z)ϕ(z)dz, where K(x, z) =

(2π)−d/2
∫
Rd
eizξσ(x, ξ)dξ, x, z ∈ Rd, in the sense of distributions. Following the

proof of Lemma 10.10, we have that for every integer k > d there exists Ck > 0
such that

|K(x, z)| ≤ Ck|z|−k|σ|S0
k
, z 6= 0. (28)

Next, we construct cubes Q∗l and Q∗∗l as in the proof of Theorem 10.7 in [16].
More precisely, Q∗∗l is the double of Ql and Q∗l has the same center l as Ql and
Q∗∗l and Ql ⊂ Q∗l ⊂ Q∗∗l . Then ψ ∈ C∞c (Rd) is introduced so that its support
is in Q∗∗l , 0 ≤ ψ(x) ≤ 1 and ψ(x) = 1 in a neighborhood of Q∗l . Then we write
Tσϕ = Tσϕ1 + Tσϕ2, where ϕ1 = ψϕ and ϕ2 = (1 − ψ)ϕ. We introduce notation

Il =

∫
Ql

|(Tσϕ)(x)|pdx and Jl =

∫
Ql

|(Tσϕ2)(x)|pdx. Using (27) we get

Il ≤ c2pcpN (|σ|S0
N

)p‖ϕ1‖pp + 2pJl. (29)

By (28) we have that for every integer k > d there is a C > 0 such that

|(Tσϕ2)(x)| ≤ CCk|σ|S0
k

∫
Rd\Q∗l

|x− z|−k|ϕ2(z)|dz, x ∈ Ql, z ∈ Rd\Q∗l .

Next, following [16] ((10.13), (10.14) and (10.15) , Theorem 10.7) and taking 1/p+
1/q = 1, we obtain, with a new constant C > 0:

|(Tσϕ2)(x)| ≤ CCk|σ|S0
k

∫
Rd\Q∗l

(µ+ |x− z|)−k/2|ϕ2(z)|
(µ+ |l − z|)

k
2 ( 1
p+ 1

q )
dz,

where x ∈ Ql, z ∈ Rd\Q∗l , µ =
√
d/2 + 1. Then, by Minkowski’s and Hölder’s

inequality:(∫
Ql

|Tσϕ2|pdx
) 1
p ≤ CCk|σ|S0

k

(∫
Rd\Q∗l

dz

(µ+ |l − z|)k/2
) 1
q
(∫

Rd\Q∗l

|ϕ2(z)|pdz
(µ+ |l − z|)k/2

) 1
p

We conclude, with a new constant C and for k/2 > d, that

Jl ≤ CCpk(|σ|S0
k
)p
∫
Rd\Q∗l

|ϕ2(z)|pdz
(µ+ |l − z|)k/2

. (30)
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By (29) and (30), there exists C1 > 0 such that:∫
Ql

|(Tσϕ)(x)|pdx ≤ C1C
p
k(|σ|S0

k
)p
(∫

Q∗∗l

|ϕ(x)|pdx+

∫
Rd\Q∗l

|ϕ2(z)|pdz
(µ+ |l − z|)k/2

)
.

Summing over all l ∈ Zd, we get:∫
Rd
|(Tσ(ϕ)(x))|pdx ≤ C2(|σ|S0

k
)p
(

1 +
∑
l∈Zd

1

(1 + |l|)k/2
)∫

Rd
|ϕ(x)|pdx.

Therefore, with k = N > 2d, we obtain the desired estimate:∫
Rd
|(Tσ(ϕ)(x))|pdx ≤ CN (|σ|S0

N
)p
∫
Rd
|ϕ(x)|pdx.

Extending by density both sides to u ∈ Lp(Rd), we obtain (21). 2

References

[1] Abels, H. Pseudodifferential and singular integral operators. An introduction with applications.
De Gruyter, Berlin, 2012

[2] Adams, R. A. Sobolev spaces. Pure and Applied Mathematics, Vol. 65. Academic Press, New

York-London, 1975.
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