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1. Introduction

Our first aim in this paper is to study the defect distributions which corre-
spond to the space of quasi-elliptic symbols which are determined by related
weight functions, for example of the form

Λ :=

√√√√1 +

d∑
i=1

ξ2mi
i , ξ ∈ Rd, (1.1)

where m = (m1, . . . ,md) ∈ Nd and min1≤i≤dmi ≥ 1. In particular, 〈ξ〉 =(
1 +

d∑
i=1

ξ2
i

) 1
2

is a weight function of this form. We recall the properties of

the spaces of symbols Mm
ρ,Λ, the spaces of multipliers smρ,Λ and consider such

symbols with the finite order of regularity and those which vanish at infinity.
Then, by testing weakly convergent sequences in the corresponding weighted
Bessel potential spaces H−s,pΛ (Rd), s ∈ R, p ∈ (1,∞), and their duals, we
present consequences related to the introduced defect distributions.
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Our second aim is the use of defect distributions in the analysis of a
class of linear differential equations involving appropriate weights as symbols
and prove the existence of strong distributional solutions for such equations.

Microlocal defect distributions (also called H-distributions) are intro-
duced in [6] as an extension of H-measures (introduced in [12] and [19]) and
further developed in [2], for weakly convergent sequences in Sobolev spaces,
W−k,p(Rd) = Hp

−k(Rd), k ∈ N0, p ∈ (1,∞). Always, the motivation has been
the existence of a solution for an equation with a sequence of weak solutions
which corresponds to the sequence of approximating equations.

H-measures were applied to hyperbolic problems, in [1] as well as to
parabolic problems in [4]. Fractional H-measures were introduced in [15] in
order to treat problems with fractional derivatives. Classical H-measures were
adapted for problems where all partial derivatives are of the same order. Para-
bolic variants are applicable to problems where the ratio between derivatives
is a rational number, for example 1 : 2 in [4] and 1 : 4 in [8]. In [9] fractional
H-measures with orthogonality property were introduced and application of
localisation principle to fractional equation was presented.

Among many applications of the microlocal tools we emphasize possi-
bility of testing strong convergence of weakly convergent sequences. Recall
[2], Theorem 3.2:

Let un ⇀ 0 in W−k,p(Rd), k ∈ N0, 1 < p <∞ and q = p
p−1 . If for every

sequence vn ⇀ 0 in W k,q(Rd) the corresponding H-distribution is zero, then
for every θ ∈ S(Rd), θun → 0 strongly in W−k,p(Rd).
(In the sequel, we skip ”n → ∞”. Moreover, recall, S(Rd) is the space of
rapidly decreasing functions.) Similar theorem can be found in [3], for se-
quences in Bessel potential spaces. Recall [2] that an H-distribution µ is
associated to a pair of sequences (un, vn) in dual pairing W−k,p −W k,q, k ∈
N0, and acts on test functions ϕ ∈ S(Rd) and ψ ∈ Cκ(Sd−1) in a sense that,
up to a subsequences, for all test functions we obtain the following limit

〈µ, ϕψ〉 := lim
n→∞

〈ϕ1un,Aψ(ϕ2vn)〉,

where Aψ is a Fourier multiplier operator with symbol ψ and Sd−1 denotes
the unit sphere in Rd. We have used the fact that any ϕ ∈ S(Rd) can be
written in the form ϕ = ϕ1ϕ2, ϕ1, ϕ2 ∈ S(Rd), cf. [18]. We have shown in
[2] that a strong convergence of a weakly convergent sequence in W−k,p, k ∈
N0, p ∈ (1,∞) can be tested on all weakly convergent sequences in the dual
space W k,q. Moreover, such a sequence can be tested on W k+m,q ⊂W k,q, for
m ∈ N, but with the use of pseudo-differential operators of higher order m
(cf. [3]). Also, in [3], results were given for sequences in Hp

s (Rd), s ∈ R, 1 <
p <∞. These results were applied in [3] to solutions un ∈ Hp

−s(Rd) of linear
equations of the type ∑

|α|≤k

Aα(x)∂αun(x) = gn(x),

with assumption that ϕgn → 0 in Hp
−s−k(Rd) for all ϕ ∈ S(Rd).
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Recent developments in hypoellipticity theory, cf. [7, 10, 16, 17], suggest
the use of more general weight functions Λ(ξ), instead of the usual one 〈ξ〉.
Such weight functions are useful in various applications, they can be cho-
sen in appropriate manner in order to get better estimates for solutions of
Schrödinger type differential operator, cf. [7, 17].

In this paper we associate a microlocal defect distribution to a pair
of sequences un ∈ Lp(Rd) and vn ∈ Hs,q

Λ (Rd), where Hs,q
Λ (Rd) denotes the

weighted Bessel space:

Hs,q
Λ (Rd) = {u ∈ S ′(Rd) | F−1(Λs(ξ)Fu) ∈ Lq(Rd)}, s ∈ R, q ∈ (1,∞),

with a general weight function Λ given in Definition 2.1. It is a Banach space
with respect to the norm

‖u‖Hs,qΛ
:= ‖F−1(Λ(ξ)sFu)‖Lq .

Here F denotes Fourier transform, i.e. Ff(ξ) :=

∫
Rd
e−ixξf(x)dx, ξ ∈ Rd, f ∈

S(Rd).
An associated distribution, denoted by µ and called HΛ-distribution,

acts on S(Rd)⊗̂(smΛ,N+1)0, the completion of the tensor product of spaces of

test functions in the Schwartz space (regarding to the space variable x) and
Hörmander type symbol classes (smΛ,N+1)0,m ∈ R, which will be introduced
below, adapted to Lp boundedness property (regarding to the frequency vari-
able ξ). Since S(Rd) is nuclear the completion is the same for the π and the ε
topologies and therefore we use notation S(Rd)⊗̂(smΛ,N+1)0. Our main interest
in this paper is to apply results to linear partial differential equations.

The paper is organized as follows. In Section 2 we introduce notation
and definition of weight function. Symbol classes and multipliers with fi-
nite regularity are introduced and results regarding boundedness of pseudo-
differential operators on Hs,p

Λ (Rd) are given, where s ∈ R, 1 < p < ∞. In
Section 3 we prove compactness of commutator, then in Section 4 existence
of HΛ-distributions. In Section 4 we also analyze possible strong convergence
of weakly convergent sequence in Theorem 4.5 and in Corollary 4.6. Finally,
Section 5 is devoted to applications of previous results to linear partial dif-
ferential equations.

2. Weight functions, symbols, multipliers

In this section all the definitions and assertions are taken from [7, 10, 11, 16,
17]. Only, we consider symbols and multipliers with the properties of their
derivatives up to N , that is, with a limited regularity. Recall the definition
of weight function:

Definition 2.1. ([7]) Positive function Λ ∈ C∞(Rd) is a weight function if the
following assumptions are satisfied:

1. There exist positive constants 1 ≤ µ0 ≤ µ1 and c0 < c1 such that

c0〈ξ〉µ0 ≤ Λ(ξ) ≤ c1〈ξ〉µ1 , ξ ∈ Rd;
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2. There exists ω ≥ µ1 such that for any α ∈ Nd0 and γ ∈ K ≡ {0, 1}d

|ξγ∂α+γΛ(ξ)| ≤ Cα,γΛ(ξ)1− 1
ω |α|, ξ ∈ Rd.

Constant ω is called the order of Λ.

If Λ is a weight function, then (cf. [7], p. 30) there exists C > 0 such
that

Λ(z)m ≤ CΛ(ζ)m〈z − ζ〉|m|ω, m ∈ R, z, ζ ∈ Rd. (2.1)

It is well-known, if Λ is a weight function, then for any m ∈ R, α ∈ Nd0, γ ∈ K,

|ξγ∂γ+α
ξ Λ(ξ)m| ≤ Cα,γΛ(ξ)m−

1
ω |α|, ξ ∈ Rd.

We recall the well-known examples. Quasi-elliptic smooth functions
Pm = Λ and their powers, where Λ is given by (1.1), are examples of weight
functions which satisfy conditions of Definition 2.1 (cf. [16]).

More general weights are defined by (cf. [11, 17])

ΛP(ξ) =
( ∑
α∈V (P)

ξ2α
) 1

2

, ξ ∈ Rd,

where P is a given complete polyhedron with the set of vertices V (P). Recall
that a complete polyhedron is a convex polyhedron P ⊂ (R+ ∪ {0})d with
the following properties: V (P) ⊂ Nd0, 0 ∈ V (P), V (P) 6= {0}, N0(P) =
{e1, . . . , ed} and N1(P) ⊂ Rd+. Here

P = {z ∈ Rd : ν · z ≥ 0, ∀ν ∈ N0(P)} ∩ {z ∈ Rd : ν · z ≤ 1, ν ∈ N1(P)},
and N0(P) and N1(P) ⊂ Rd are finite sets such that for all ν ∈ N0(P), |ν| =
1. We have that 〈ξ〉µ0 ≤ CΛ(ξ) ≤ C1〈ξ〉µ1 , ξ ∈ Rd, with µ0 = min

α∈V (P)\{0}
|α|

and µ1 = max
α∈V (P)

|α|. The formal order of P is given by ω = max
{

1
νj

: j =

1 . . . d, ν ∈ N1(P)
}
. Notice that 1 ≤ µ0 ≤ µ1 ≤ ω.

2.1. Symbols

First, we recall the classical notions and assertions. Then we list the defini-
tions of the symbols with finite regularity for which the same estimates hold,
but with the careful choice of the regularity. Such results, concerning the
commutator lemma are given in the next section.

Let Λ be a weight function of order ω, m ∈ R and ρ ∈ (0, 1/ω]. Spaces
Smρ,Λ, ρ ∈ (0, 1/ω] and SmΛ = Sm1/ω,Λ were defined in quoted papers (cf. [10,

p. 88]). We recall that the spaces of Λ-symbols are connected with standard
Hörmander’s spaces Smρ̃,δ, m ∈ R, 0 ≤ δ ≤ ρ̃ ≤ 1:

Shρµ1,0 ⊂ S
m
ρ,Λ ⊂ Skρµ0,0,

where h := min{mµ0,mµ1}, k := max{mµ0,mµ1} and ρ ∈ (0, 1/ω]. When P
is the polyhedron with set of vertices {0} ∪ {ei : 1 ≤ i ≤ d}, then ω = 1 and
Smρ,Λ = Sm, where Sm = Sm1,0 is the standard Hörmander’s space of symbols.
In this case we have that ΛP(ξ) = 〈ξ〉.
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Pseudo-differential operator Ta with a symbol a ∈ Smρ,Λ is defined in a
usual manner,

Tau(x) :=

∫
Rd
eix·ξa(x, ξ)û(ξ) d̄ξ, x ∈ Rd, u ∈ S(Rd),

where d̄ξ = (2π)−ddξ. In general, these operators are unbounded on
Lp(Rd), p 6= 2. Namely, considering Smρ̃,δ spaces for 0 ≤ δ < ρ̃ ≤ 1 it is

known that pseudo-differential operators of order zero are L2 bounded and
the same is true when δ = ρ̃ 6= 1. In the case δ = ρ̃ = 1, L2 continuity does
not hold in general. When m = 0, ρ̃ = 1 and 0 ≤ δ < 1 we have Lp bound-
edness for 1 < p <∞. If ρ̃ 6= 1, i.e. if ρ̃ < 1 we do not have Lp boundedness
in general (for more details see [10]).

Since, S0
ρ,Λ ⊂ S0

ρµ0,0 and ρµ0 ≤ µ0/ω ≤ 1, operators with symbols in

S0
ρ,Λ can be unbounded on Lp. The Lp-boundedness holds with the use of

symbols Mm
ρ,Λ (cf. [10, p. 88]). One has [11, Proposition 5.3]: Let a ∈ Mm

ρ,Λ,
m, s ∈ R, ρ ∈ (0, 1/ω] and 1 < p <∞. Then,

Ta : Hs+m,p
Λ (Rd)→ Hs,p

Λ (Rd)
is a linear, continuous operator.

Now we recall the definitions but with the differentiation up to N ∈ N.

Definition 2.2. Let m ∈ R, ρ ∈ (0, 1/ω] and N ∈ N0. We denote by Sm,Nρ,Λ the

space of functions a ∈ CN (R2d) such that for all |α|, |β| ≤ N ,

|∂αξ ∂βxa(x, ξ)| ≤ Cα,βΛ(ξ)m−ρ|α|, x, ξ ∈ Rd.

We denote by Mm,N
ρ,Λ the space of functions a ∈ CN (R2d) such that for

every γ ∈ K and for all |α|, |β| ≤ N,

ξγ∂γξ a(x, ξ) ∈ Sm,Nρ,Λ . (2.2)

As before, when ρ = 1/ω we denote Sm,NΛ = Sm,N1/ω,Λ and Mm,N
Λ = Mm,N

1/ω,Λ.

Condition (2.2) is equivalent to

|ξγ∂γ+α
ξ ∂βxa(x, ξ)| ≤ Cα,β,γΛ(ξ)m−ρ|α|, x, ξ ∈ Rd,

for all |α|, |β| ≤ N , γ ∈ K. Then:

|a|Mm,N
ρ,Λ

:= max
|γ|,γ∈K

max
|α|,|β|≤N

sup
x,ξ∈Rd

|ξγ∂γ+α
ξ ∂βxa(x, ξ)|Λ(ξ)−m+ρ|α|

is the norm on Mm,N
ρ,Λ .

One can prove, as in Theorem 13 in [3], that Ta is a bounded operator
if N > 2d.

Theorem 2.3. Let a ∈Mm,N
ρ,Λ , N > 2d, s,m ∈ R, ρ ∈ (0, 1/ω] and 1 < p <∞.

Then
Ta : Hs+m,p

Λ (Rd)→ Hs,p
Λ (Rd)

is a linear, continuous operator and there exists cN > 0 such that

‖Tau‖Hs,pΛ (Rd) ≤ cN |a|Mm,N
ρ,Λ
‖u‖Hs+m,pΛ (Rd).
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As in [3], following [13], we define Mm,N
ρ,Λ,0 space.

Definition 2.4. Let m ∈ R, ρ ∈ (0, 1/ω] and N ∈ N0. We denote by Mm,N
ρ,Λ,0

the space of functions a ∈ CN (R2d) such that a ∈Mm,N
ρ,Λ and for every γ ∈ K

and for all |α|, |β| ≤ N,

|ξγ∂γ+α
ξ ∂βxa(x, ξ)| ≤ cα,β,γ(x)Λ(ξ)m−ρ|α|, x, ξ ∈ Rd (2.3)

where cα,β,γ(x) is a bounded function and lim|x|→∞ cα,β,γ(x) = 0.

We introduce spaces of multipliers, following definitions of Sm,Nρ,Λ and

Mm,N
ρ,Λ spaces.

Definition 2.5. Let m ∈ R, ρ ∈ (0, 1/ω] , N ∈ N0. Then sm,Nρ,Λ (Rd) is the space

of all ψ ∈ CN (Rd) for which the norm

|ψ|sm,Nρ,Λ
:= max
|γ|:γ∈K

max
|α|≤N

sup
ξ∈Rd

|ξγ∂α+γ
ξ ψ(ξ)|Λ(ξ)−m+ρ|α| <∞.

If ρ = 1/ω, then we denote sm,NΛ = sm,N1/ω,Λ.

We will need the Lizorkin-Marcinkiewicz theorem:

Theorem 2.6. ([14]) Let ψ be a continuous function such that ∂γψ(ξ), ξ ∈ Rd
are also continuous for all γ ∈ K. If there exists B > 0 such that

|ξγ∂γψ(ξ)| ≤ B, ξ ∈ Rd, γ ∈ K,

then for every 1 < p < ∞ there exists C > 0 depending only on p,B and d
such that

‖Aψu‖Lp ≤ C‖u‖Lp .

If ψ ∈ s0,N
ρ,Λ (Rd), then |ξγ∂γψ(ξ)| ≤ B, γ ∈ K, ξ 6= 0. Therefore, by

Theorem 2.6, we have the following result.

Corollary 2.7. Let ψ ∈ s0,N
ρ,Λ (Rd),ρ ∈ (0, 1/ω], N > d and 1 < p < ∞. Then,

Aψ is a continuous linear operator on Lp(Rd) and

‖Aψ(u)‖Lp ≤ C|ψ|s0,Nρ,Λ ‖u‖Lp . (2.4)

3. Compactness of a commutator

First we prove a version of the Rellich theorem, which will be used in the
sequel.

Lemma 3.1. Let ϕ ∈ C∞c (Rd), un ⇀ 0 in Lq(Rd) and Λ be a weight function.

Then ϕun → 0 strongly in H−ε,qΛ (Rd), for any ε > 0.
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Proof. We have to show that AΛ(ξ)−ε(ϕun) → 0, in Lq(Rd), where Λ is a
weight function satisfying properties from the Definition 2.1. Applying the
Rellich theorem for the weight 〈ξ〉 it follows that A〈ξ〉−ε(ϕun)→ 0 in Lq(Rd),
for any ε > 0. Notice that AΛ(ξ)−ε(ϕun) = A〈ξ〉εΛ(ξ)−εA〈ξ〉−ε(ϕun). In order
to apply Theorem 2.6, we will show that there exists B > 0 such that

|ξγ∂γ(〈ξ〉εΛ(ξ)−ε)| ≤ B, ξ ∈ Rd, γ ∈ K.
There holds:

|ξγ∂γ(〈ξ〉εΛ(ξ)−ε)| =
∣∣∣ξγ∑

β≤γ

∂γ−β〈ξ〉ε∂βΛ(ξ)−ε
∣∣∣ =

∣∣∣∑
β≤γ

ξγ−β∂γ−β〈ξ〉εξβ∂βΛ(ξ)−ε
∣∣∣ ≤∑

β≤γ

|ξ||γ|−|β||∂γ−β〈ξ〉ε||ξβ∂βΛ(ξ)−ε| ≤

C〈ξ〉εΛ(ξ)−ε ≤ Λ(ξ)
ε
µ0 Λ(ξ)−ε = Λ(ξ)ε(

1
µ0
−1) ≤ B,

since β ∈ K, Λ is weight function and µ0 ≥ 1. Theorem 2.6 implies that
A〈ξ〉εΛ(ξ)−ε maps continuously Lq(Rd) into Lq(Rd). Since A〈ξ〉−ε(ϕun) → 0,

in Lq(Rd) it follows that A〈ξ〉εΛ(ξ)−εA〈ξ〉−ε(ϕun)→ 0 in Lq(Rd) and the proof
is complete. �

In the sequel with 〈Dx〉 =
√

1−∆x we denote the pseudo-differential

operator with symbol 〈ξ〉, i.e. 〈Dx〉f =

∫
eixξ〈ξ〉f̂(ξ)d̄ξ, x ∈ Rd. We use

powers of 〈Dx〉 and the partial integration.
The proofs of the assertions of this section are similar to the ones that

we have given in our paper [3]. For the sake of completeness of the paper, we
give all the details.

Theorem 3.2. Let m ∈ R, ρ ∈ (0, 1/ω], ϕ ∈ S(Rd) and ψ ∈ sm,Nρ,Λ (Rd), N ≥
3d + 3. Then, AψTϕ is a compact operator from Hm,q

Λ (Rd) into H−ε,qΛ (Rd),
for any ε > 0.

Proof. We will show that the symbol of the composition AψTϕ, denoted by

σ, is in Mm,N−d−1
ρ,Λ,0 , for odd d, or Mm,N−d−2

ρ,Λ,0 for even d.

We need to prove that for ψ ∈ sm,Nρ,Λ (Rd) and for ϕ ∈ S(Rd) the symbol
of the composition σ, given by

σ(x, ξ) =

∫∫
e−iyηψ(ξ + η)ϕ(x+ y)dy d̄η, x, ξ ∈ Rd,

belongs to the space Mm,N
Λ,0 . Using (2.1) it follows:

Λ(ξ + η)m ≤ cΛ(ξ)m〈η〉|m|ω, x, ξ ∈ Rd, m ∈ R.
We estimate (x, ξ ∈ Rd):

|σ(x, ξ)| =
∣∣∣ ∫∫ e−iyη〈y〉−2k〈Dη〉2k

(
〈η〉−2lψ(ξ + η)〈Dy〉2lϕ(x+ y)

)
dy d̄η

∣∣∣
≤
∫∫
〈y〉−2k〈η〉−2lΛ(ξ + η)m|〈Dy〉2lϕ(x+ y)|dy d̄η
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≤ c
∫∫
〈y〉−2k〈η〉−2lΛ(ξ)m〈η〉|m|ω|〈Dy〉2lϕ(x+ y)|dy d̄η ≤ CΛ(ξ)m,

for 2k > d and 2l−|m|ω > d. In the case when d is odd, we choose 2k = d+1.
Since ϕ ∈ S(Rd), it follows that for any M > 0 there exists cM > 0 such that

〈Dy〉2lϕ(x+ y) ≤ cM 〈x+ y〉−M ≤ CM 〈x〉−M 〈y〉M , x, y ∈ Rd.

Then,

|σ(x, ξ)| ≤ cΛ(ξ)m〈x〉−M , x, ξ ∈ Rd, (3.1)

where we choose 0 < M < 1, so that 2k −M > d.
Next, we estimate ξγ∂γ+α

ξ ∂βxσ(x, ξ). We have∣∣∣ ∫∫ e−iyηξγ∂α+γ
ξ ψ(ξ + η)∂βxϕ(x+ y)dy d̄η

∣∣∣ =∣∣∣ ∫∫ e−iyη〈y〉−2k〈Dη〉2k
(
〈η〉−2lξγ∂α+γ

ξ ψ(ξ + η)
)
〈Dy〉2l∂βxϕ(x+ y)dy d̄η

∣∣∣ ≤
c

∫∫
Λ(ξ)m−ρ|α|

〈y〉2k〈η〉2l
〈η〉(|m−ρ|α||)ω|〈Dy〉2l∂βxϕ(x+ y)|dy d̄η ≤ c〈x〉−MΛ(ξ)m−ρ|α|,

where 0 < M < 1. Therefore,

|ξγ∂α+γ
ξ ∂βxσ(x, ξ)| ≤ c〈x〉−MΛ(ξ)m−ρ|α|, x, ξ ∈ Rd,

for 2l−|m−ρ|α||ω > d, 2k = d+1. Hence, if we assume that N−d−1 > 2d we

can apply Theorem 2.3. We have proved that σ ∈Mm,N−d−1
ρ,Λ,0 for odd d. If d

is even we choose 2k = d+2 and then we need to assume that N−d−2 > 2d.
Therefore, in both cases, it is enough to assume that N ≥ 3d+ 3.

In the rest of the proof we apply an idea used in the proof of Theorem
3.2 [20], following also steps from the proof of Theorem 4 in our paper [3].
Take φ ∈ C∞c (Rd) such that φ(x) = 1 for |x| ≤ 1 and φ(x) = 0 for |x| ≥ 2

and let σν(x, ξ) = φ
(x
ν

)
σ(x, ξ), x, ξ ∈ Rd, ν ∈ N. Then, Tσν = φνTσ, for

φν(x) = φ
(x
ν

)
.

The operator Tσν is compact because Tσ is bounded from Hm,q
Λ (Rd) into

Lq(Rd) and the operator of multiplication by φν is compact from Lq(Rd) into

H−ε,qΛ (Rd), for any ε > 0 (Lemma 3.1).

If v ∈ Hm,q
Λ (Rd), 1 < q <∞, then Theorem 2.3 implies that there exists

c > 0 such that

‖(Tσν − Tσ)v‖H−ε,qΛ
≤ ‖(Tσν − Tσ)v‖Lq ≤ c|σν − σ|Mm,N−d−1

ρ,Λ
‖v‖Hm,qΛ

.

We estimate:

|σν − σ|Mm,N−d−1
ρ,Λ

= max
|γ|,γ∈K

max
|α|,|β|≤N−d−1

sup
x,ξ∈Rd

|∂α+γ
ξ ∂βx ((φ(xν )− 1)σ(x, ξ))|

Λ(ξ)m−ρ|α|

≤ max
|γ|,γ∈K

max
|α|,|β|≤N−d−1

sup
|x|≥ν,ξ∈Rd

|
∑
γ≤β

(
β
γ

)
∂β−γx (φ(xν )− 1)∂α+γ

ξ ∂γxσ(x, ξ)|
Λ(ξ)m−ρ|α|

≤ Ccα,γ(ν).
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Since σ ∈Mm,N−d−1
ρ,Λ,0 , it follows that cα,γ(ν) = o(1) as ν →∞. We conclude

that ‖Tσν − Tσ‖L(Hm,qΛ ,H−ε,qΛ ) → 0 as ν →∞, which implies that Tσ is also a

compact operator.
�

Corollary 3.3. Let ϕ ∈ C∞c (Rd) and un ⇀ 0 in Hm,q
Λ (Rd), m ∈ R. Then

ϕun → 0 strongly in Hm−ε,q
Λ (Rd), for any ε > 0.

Proof. We have to show that AΛ(ξ)m−ε(ϕun) → 0, n → ∞ in Lq(Rd).
Since Λ(ξ)m ∈ sm,NΛ and un ⇀ 0 in Hm,q

Λ (Rd), Theorem 3.2 implies that

AΛ(ξ)m(ϕun)→ 0 in H−ε,qΛ . This is equivalent with AΛ(ξ)−εAΛ(ξ)m(ϕun)→ 0

in Lq(Rd). The proof is completed.
�

Theorem 3.4. Let ψ ∈ sm,Nρ,Λ , ϕ ∈ S(Rd), m ∈ R and ρ ∈ (0, 1/ω], N ≥ 3d+5.

Then the commutator C = [Aψ, Tϕ] = AψTϕ − TϕAψ is a compact operator

from Hm,q
Λ (Rd) into Hρ−ε,q

Λ (Rd), ε > 0. If p denotes the symbol of C, then

p ∈Mm−ρ
ρ,Λ,N−d−3,0, if d is odd, or p ∈Mm−ρ

ρ,Λ,N−d−4,0, if d is even.

Proof. The proof is analogous to the proof of Theorem 5 in [3]. Let ψ ∈ sm,Nρ,Λ ,

N ≥ 3d + 5, d odd and ϕ ∈ S(Rd). The symbol of the composition AψTϕ is
given by σ(x, ξ) =

∫∫
e−iyηψ(ξ + η)ϕ(x+ y)dy d̄η, x, ξ ∈ Rd. Using Taylor’s

expansion, we obtain that
σ(x, ξ) = I1(x, ξ) + I2(x, ξ), where

I1(x, ξ) =
∑
|α|≤1

1

α!

∫∫
e−iyηηα∂αξ ψ(ξ)ϕ(x+ y)dy d̄η

and I2(x, ξ) = 2
∑
|α|=2

1

α!

∫∫
e−iyηηα

(∫ 1

0

(1 − θ)2∂αξ ψ(ξ + θη)dθ
)
ϕ(x +

y)dy d̄η. Then, I1(x, ξ) =
∑
|α|≤1

1

α!
∂αξ ψ(ξ)Dα

yϕ(y)|y=x and similarly,

I2(x, ξ) = 2
∑
|α|=2

1

α!

∫∫
e−iyη

(∫ 1

0

(1− θ)2∂αξ ψ(ξ + θη)dθ
)
Dα
yϕ(x+ y)dy d̄η.

Since the symbol of TϕAψ equals ϕ(x)ψ(ξ), the symbol of commutator C is

of the form p(x, ξ) = Ĩ1(x, ξ) + I2(x, ξ), where

Ĩ1(x, ξ) :=
∑
|α|=1

1

α!
∂αξ ψ(ξ)Dα

yϕ(y)|y=x.

Therefore Ĩ1(x, ξ) ∈Mm−ρ,N−1
ρ,Λ,0 . We need to estimate I2(x, ξ). Note that

I2(x, ξ) = 2
∑
|α|=2

1

α!

∫ 1

0

(1− θ)2I3(x, ξ)dθ,
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where I3(x, ξ) =
∫∫
e−iyη∂αξ ψ(ξ + θη)Dα

yϕ(x + y)dy d̄η. From the proof of
Theorem 3.2 it follows that

|I3(x, ξ)| ≤
∫∫
〈y〉−2k〈Dη〉2k

(
〈η〉−2l∂αξ ψ(ξ + θη)

)
〈Dy〉l

[
Dα
yϕ(x+ y)

]
dy d̄η

≤ CΛ(ξ)m−2ρ〈x〉−M ,
for 2k = d+ 1, 0 < M < 1, 2l > d+ |m− 2ρ|ω. Also, from the proof of Theo-

rem 3.2 it follows that I2 ∈ Mm−2ρ,N−d−3
ρ,Λ,0 . Since Ĩ1(x, ξ) ∈ Mm−ρ,N−1

ρ,Λ,0 ⊂
Mm−ρ,N−d−3
ρ,Λ,0 and I2 ∈ Mm−2ρ,,N−d−3

ρ,Λ,0 ⊂ Mm−ρ,,N−d−3
ρ,Λ,0 it follows that

p ∈Mm−ρ,N−d−3
ρ,Λ,0 . Now we apply the proof of Theorem 3.2 to conclude that

C = Tp is a compact operator from Hm,q
Λ (Rd) into Hρ−ε,q

Λ (Rd). The proof
is analogous in the case when d is even. In order to apply Theorem 3.2 we
assume that N ≥ 3d+ 5. �

The proof of the next corollary is a direct consequence of Corollary 3.3
and Theorem 3.4.

Corollary 3.5. Let ψ ∈ sm,Nρ,Λ , ϕ ∈ S(Rd), m, s ∈ R and ρ ∈ (0, 1/ω], N ≥
3d + 5. Then the commutator C = [Aψ, Tϕ] = AψTϕ − TϕAψ is a compact

operator from Hm+s,q
Λ (Rd) into Hρ+s−ε,q

Λ (Rd), ε > 0. If p denotes the symbol

of C, then p ∈Mm−ρ
ρ,Λ,N−d−3,0, if d is odd or p ∈Mm−ρ

ρ,Λ,N−d−4,0, if d is even.

4. Existence of HΛ-distributions

We denote by (sm,Nρ,Λ )0 ⊂ sm,Nρ,Λ the space of multipliers ψ ∈ (sm,Nρ,Λ )0 such that

for all |α| ≤ N, γ ∈ K

lim
n→∞

sup
|ξ|≥n

|ξγ∂α+γψ(ξ)|
Λ(ξ)m−ρ|α|

= 0.

We need separability and completeness of the symbol spaces for the existence
theorem of HΛ-distributions. The following theorem holds since S(Rd) is

dense in (sm,Nρ,Λ )0 (for the proof see [3]).

Theorem 4.1. Let ρ ∈ (0, 1/ω], m ∈ R. Then the space ((sm,N+1
ρ,Λ )0, | · |sm,Nρ,Λ

)

is separable.

In order to obtain completeness we use completion of (sm,N+1
ρ,Λ )0 with

respect to the | · |sm,Nρ,Λ
norm. Completion is also denoted by (sm,N+1

ρ,Λ )0. We

assume that N is an integer such that N > 2d.

Theorem 4.2. Let un ⇀ 0 in Lp(Rd) and vn ⇀ 0 in Hm,q
Λ (Rd), m ∈

R, ρ = 1/ω. Then, up to subsequences, there exists a distribution µ ∈
(S(Rd)⊗̂(sm,N+1

Λ )0)′ such that for all ϕ ∈ S(Rd) and all ψ ∈ (sm,N+1
Λ )0,

lim
n→∞

〈un,Aψ̄(ϕvn)〉 = 〈µ, ϕ̄⊗ ψ〉.
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Proof. In the proof we follow the ideas given in the proofs of existence of
H-distributions in [2, 3]. We consider a sequence of sesquilinear (linear in ψ
and anti-linear in ϕ) functionals:

µn(ϕ,ψ) =

∫
Rd
unAψ(ϕvn)dx, n ∈ N.

Functionals µn are well defined because Aψ(ϕvn) ∈ Lq, n ∈ N.

Since ψ(ξ) = ψ1(ξ)ψ2(ξ), ψ1(ξ) = Λ(ξ)m ∈ sm,N+1
Λ , ψ2(ξ) =

Λ(ξ〉−mψ(ξ) ∈ (s0,N+1
Λ )0. Using (2.4), it follows that

‖Aψ(ϕvn)‖Lq ≤ c|ψ2|s0,NΛ
‖Aψ1

(ϕvn)‖Lq ≤ c1|ψ|sm,NΛ
‖ϕvn‖Hm,qΛ

,

where we use the estimate

|ψ2|s0,NΛ
= |Λ(ξ)−mψ(ξ)|s0,Nρ,Λ ≤ C|Λ(ξ)−m|s−m,NΛ

|ψ|sm,NΛ
≤ C1|ψ|sm,NΛ

.

Using inequality (2.1) and the exchange formula for the inverse Fourier trans-
form of convolution, we have

‖ϕvn‖Hm,qΛ
=
(∫

Rd

∣∣∣F−1(Λ(ξ)mϕ̂ ∗ v̂n)
∣∣∣qdx) 1

q

=
(∫

Rd

∣∣∣F−1
(

Λ(ξ)m
∫
Rd
ϕ̂(ξ − η)v̂n(η)dη

)∣∣∣qdx) 1
q

=
(∫

Rd

∣∣∣F−1(

∫
Rd

Λ(ξ)mϕ̂(ξ − η)v̂n(η)dη)
∣∣∣qdx) 1

q

≤ c
(∫

Rd

∣∣∣F−1
(∫

Rd
Λ(η)m(1 + |ξ − η|2)

|m|ω
2 ϕ̂(ξ − η)v̂n(η)dη

)∣∣∣qdx) 1
q

= c
(∫

Rd

∣∣∣F−1
(
v̂nΛ(·)m ∗ ϕ̂(1 + | · |2)

|m|ω
2

)∣∣∣qdx) 1
q

= c
(∫

Rd

∣∣∣F−1(v̂nΛ(·)m)
∣∣∣q∣∣∣(F−1(ϕ̂(1 + | · |2)

|m|ω
2 )
∣∣∣qdx) 1

q

≤ C sup
x∈Rd

∣∣∣F−1((1 + |ξ|2)
|m|ω

2 ϕ̂)
∣∣∣‖vn‖Hm,qΛ

≤ C
∫
Rd

1

(1 + |ξ|2)
d+1

2

‖〈ξ〉d+1+|m|ωϕ̂‖∞dξ ≤ C‖〈ξ〉d+1+|m|ωϕ̂‖∞.

We choose the sequence of norms on S(Rd): |ϕ|k = sup
|α|≤k

‖〈ξ〉kϕ̂(α)(ξ)‖∞, k ∈

N0. Therefore, ∣∣∣∣∫
Rd
unAψ(ϕvn)dx

∣∣∣∣ ≤ C|ψ|sm,NΛ
|ϕ|d+1+d|m|ωe.

Let ϕ ∈ S(Rd) be fixed. Then the mapping ψ 7→ µn(ϕ,ψ) :=∫
Rd
unAψ(ϕvn)dx is linear and continuous, and similarly for fixed ψ ∈

(sm,N+1
Λ )0, the mapping ϕ 7→ µn(ϕ,ψ) is anti-linear and continuous. In
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the rest of the proof we follow the standard steps for proving the exis-
tence of H-distributions, as it was done in the proof of Theorem 3.1, in [2]
and Theorem 6 in [3]. Repeating these steps we obtain that there exists

µ ∈ (S(Rd)⊗̂(sm,N+1
Λ )0)′ defined as

〈µ(x, ξ), ϕ(x)ψ(ξ)〉 = lim
ν→∞

∫
uνAψ(ϕvν)dx, ϕ ∈ S(Rd), ψ ∈ (smΛ,N+1)0,

where uν is a subsequence of un and vν is a subsequence of vn. Hence the
proof is complete. �

Distribution obtained in Theorem 4.2 is called HΛ-distribution. The
following corollary follows from the proof of Theorem 4.2.

Corollary 4.3. Let un ⇀ 0 in H−s,pΛ (Rd) and vn ⇀ 0 in Hm+s,q
Λ (Rd),

s,m ∈ R, ρ = 1/ω. Then, up to subsequences, there exists a distribution

µ ∈ (S(Rd)⊗̂(sm,N+1
Λ )0)′ such that for all ϕ ∈ S(Rd) and all ψ ∈ (sm,N+1

Λ )0,

lim
n→∞

〈un,Aψ̄(ϕvn)〉 = 〈µ, ϕ̄⊗ ψ〉. (4.1)

Remark 4.4. If we fix ψ ∈ sm,NΛ in Theorem 4.2 we can consider a Schwartz
distribution µψ ∈ S ′(Rd) defined via (4.1) as

〈µψ, ϕ〉 = lim
n→∞

〈un,Aψ(ϕvn)〉.

In a similar manner as in [2] and [3] we prove the following theorem
regarding strong convergence of a given weakly convergent sequence.

Theorem 4.5. Let un ⇀ 0 in Lp(Rd). Assume that

lim
n→∞

〈un,AΛ(ξ)m(ϕvn)〉 = 0, (4.2)

for every sequence vn ⇀ 0 in Hm,q
Λ (Rd), m ∈ R. Then for every θ ∈ S(Rd),

θun → 0 strongly in Lp(Rd).

Proof. We will prove that for all θ ∈ S(Rd) and every bounded B ⊆ Lq(Rd),
sup{〈θun, φ〉 : φ ∈ B} → 0, n→∞.

Assume the opposite, i.e. that there exist θ ∈ S(Rd), a bounded set B0

in Lq(Rd), an ε0 > 0 and a subsequence θuν of θun such that

sup{|〈θuν , φ〉| : φ ∈ B0} ≥ ε0, for every ν ∈ N.
Choose φν ∈ B0 such that |〈θuν , φν〉| > ε0/2. Since φν ∈ B0 and B0 is
bounded in Lq(Rd), it follows that {φν , ν ∈ N} is weakly precompact in
Lq(Rd), i.e. up to a subsequence, φν ⇀ φ0 in Lq(Rd). Moreover, since φ0 is
fixed, we have 〈uν , φ0〉 → 0 and

|〈θuν , φν − φ0〉| >
ε0

4
, ν > ν0. (4.3)

Applying (4.2) on uν ⇀ 0 in Lp(Rd) and AΛ(ξ)−m(φν−φ0) ⇀ 0 in Hm,q
Λ (Rd),

we obtain that for every ϕ ∈ S(Rd),
lim
ν→∞

〈uν ,AΛ(ξ)m(ϕAΛ(ξ)−m((φν − φ0))〉 = 0.
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Choosing ϕ = θ and using Theorem 3.4, we get limν→∞ 〈θuν , φν − φ0〉 = 0,
which contradicts (4.3). �

The following corollary also holds.

Corollary 4.6. Let un ⇀ 0 in H−s,p(Rd). If

lim
n→∞

〈un,AΛ(ξ)m(ϕvn)〉 = 0,

for every sequence vn ⇀ 0 in Hm+s,q
Λ (Rd), m ∈ R, then for every θ ∈ S(Rd),

θun → 0 strongly in H−s,p(Rd).

5. Applications

Let un ⇀ 0 in H−s,pΛ (Rd), s ∈ R, 1 < p < ∞. We consider a sequence of
linear equations

(Tpun)(x) =

∫
Rd
eixξa(x)σ(ξ)ûn(ξ) d̄ξ = fn(x), (5.1)

where Tp is the operator with the symbol p(x, ξ) = a(x)σ(ξ), a ∈ C∞b (Rd)
-the space of smooth, bounded functions with all derivatives also bounded,

and σ ∈ sr,NΛ ; recall that Λ is a weight function, r ∈ R and ρ = 1/ω. Hence

p ∈Mr,N
Λ . For the right hand side of (5.1) we assume that (fn)n is a sequence

of temperate distributions such that

ϕfn → 0 in H−s−r,pΛ (Rd), for every ϕ ∈ S(Rd). (5.2)

For fixed ψ ∈ sm,NΛ we analyze Schwartz distribution µψ ∈ S ′(Rd), see
Remark 4.4. We assume that N ≥ 3d+ 5 in order to apply Corollary 3.5, in
the sequel. We obtain the following result.

Theorem 5.1. Let un ⇀ 0 in H−s,pΛ (Rd), s ∈ R satisfies (5.1), (5.2) and

ψ ∈ sm,NΛ . Then, for any vn ⇀ 0 in Hs+m,q
Λ (Rd) the following equation is

satisfied
a(x)µ σ(ξ)

Λ(ξ)r
ψ

= 0 in S ′(Rd). (5.3)

Proof. Let vn ⇀ 0 in Hs+m,q
Λ (Rd), ϕ ∈ S(Rd) and ψ ∈ sm,NΛ . We have to

prove that, up to a subsequence,

lim
n→∞

〈
un,A σ(ξ)

Λ(ξ)r
ψ

(ϕavn)

〉
= 0,

Since

lim
n→∞

〈
un,A σ(ξ)

Λ(ξ)r
ψ

(ϕavn)

〉
= lim
n→∞

〈
Aσ(ξ)(un),AΛ(ξ)−rψ(ϕavn)

〉
and AΛ(ξ)−rψ(ϕavn) ∈ Hs+r,q

Λ (Rd), applying Corollary 3.5 and (5.2) we have
that

lim
n→∞

〈
Aσ(ξ)(un),AΛ(ξ)−rψ(ϕ1ϕ2avn)

〉
=
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= lim
n→∞

〈
aϕ1Aσ(ξ)(un),AΛ(ξ)−rψ(ϕ2vn)

〉
= lim
n→∞

〈
ϕ1fn,AΛ(ξ)−rψ(ϕ2vn)

〉
= 0.

Therefore, we have proved (5.3). �

Remark 5.2. If a(x) 6= 0 and ψ = Λ(ξ)m, σ = Λ(ξ)r, equality (5.3) implies

that µΛ(ξ)m = 0. Hence, in this case, ϕun → 0 in H−s,pΛ (Rd), according to
Corollary 4.6.

5.1. Examples

1. Let P be complete polyhedron in Rd with set of vertices V (P) and Λ = ΛP .

Let un ⇀ 0 in H−s,pΛ (Rd), s ∈ R, 1 < p <∞, such that the following sequence
of equations is satisfied

p(x,D)u(x) =
∑

α∈V (P)

aα(x)D2αun(x) = fn(x), (5.4)

where aα(x) ∈ C∞b (Rd), and (fn)n is a sequence of temperate distributions
such that

ϕfn → 0 in H−s−2,p
Λ (Rd), for every ϕ ∈ S(Rd). (5.5)

The symbol of the given differential operator p(x, ξ) =
∑
α∈V (P) aα(x)ξ2α

belongs to M2
Λ.

Corollary 5.3. (of Theorem 5.1.)

Let un ⇀ 0 in H−s,pΛ (Rd), s ∈ R, satisfies (5.4), (5.5) and ψ ∈ sm,NΛ .

Then, for any vn ⇀ 0 in Hs+m,q
Λ (Rd) and the corresponding distribution µ,

there holds ∑
α∈V (P)

aα(x)µ ψξ2α

Λ(ξ)2

= 0 in S ′(Rd). (5.6)

Moreover, let ψ = Λ(ξ)m and the equality in (5.6) implies that µψ = 0. Then

we have the strong convergence θun → 0 in H−s,pΛ (Rd), for every θ ∈ S(Rd).

Proof. Let vn ⇀ 0 in Hs+m,q
Λ (Rd), ϕ ∈ S(Rd) and ψ ∈ sm,NΛ . We have to

prove that, up to a subsequence,

lim
n→∞

∑
α∈V (P)

〈
un,A ψξ2α

Λ(ξ)2

(ϕaαvn)

〉
= 0.

Let Aψα = A ψξ2α

Λ(ξ)2

. Since Aξ2α ◦A ψ(ξ)

Λ2(ξ)

= D2αAΛ(ξ)−2ψ(ξ), it follows that

lim
n→∞

∑
α∈V (P)

〈un,Aψα(ϕaαvn)〉 = lim
n→∞

∑
α∈V (P)

〈
D2α
x (un),AΛ(ξ)−2ψ(ϕaαvn)

〉
.

Then AΛ(ξ)−2ψ(ϕaαvn) ∈ Hs+2,q
Λ (Rd), and Corollary 3.5 implies that

lim
n→∞

∑
α∈V (P)

〈
D2α
x (un),AΛ(ξ)−2ψ(ϕaαvn)

〉
=
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lim
n→∞

∑
α∈V (P)

〈
aαϕ1D

2α
x (un),AΛ(ξ)−2ψ(ϕ2vn)

〉
= 0,

where we have used ϕ = ϕ1ϕ2 for ϕ1, ϕ2 ∈ S(Rd). Therefore, we have proved
(5.6). �

2. Let

p(x, ξ) =
∑
|α|≤k

Aα(x)ξα (5.7)

and let Λ = ΛP , where P is a complete polyhedron in Rd such that all
multi-indices α that appear in equation (5.7) are contained in P.

Now let un ⇀ 0 in H−s,pΛ (Rd), s ∈ R, 1 < p <∞, such that the following

sequence of equations is satisfied in H−s−1,p
Λ (Rd) :∑

|α|≤k

Aα(x)Dαun(x) = gn(x), (5.8)

where Aα ∈ C∞b (Rd), and (gn)n is a sequence of tempered distributions such
that

ϕgn → 0 in H−s−1,p
Λ (Rd), for every ϕ ∈ S(Rd). (5.9)

According to [17], Example 2.7.9, we have that p ∈ M1
Λ. Therefore∑

|α|≤k

Aα(x)Dαun(x) ∈ H−s−1,p
Λ (Rd).

Corollary 5.4. (of Theorem 5.1.)

Let un ⇀ 0 in H−s,pΛ (Rd), s ∈ R, satisfies (5.8), (5.9) and ψ ∈ sm,NΛ .

Then, for any vn ⇀ 0 in Hs+m,q
Λ (Rd) and the corresponding distribution µ

there holds that ∑
|α|≤k

Aα(x)µψ(ξ)ξα

Λ(ξ)

= 0 in S ′(Rd). (5.10)

Moreover, if ψ = Λ(ξ)m and (5.10) implies µΛ(ξ)m = 0, then we have the
strong convergence θun → 0.

Proof. Let vn ⇀ 0 in Hs+m,q
Λ (Rd), ϕ1 ∈ S(Rd), ϕ2 ∈ S(Rd) and ψ ∈ sm,NΛ .

We need to prove that, up to a subsequence,

lim
n→∞

∑
|α|≤k

〈
un, AΨ̄α(Aαϕvn)

〉
= 0,

where Ψα =
ξα

Λ(ξ)
ψ(ξ). Since AΨ̄α = A ξα

Λ(ξ)
◦ Aψ and A ξα

Λ(ξ)
= ∂αAΛ(ξ)−1 , it

follows that

lim
n→∞

∑
|α|≤k

〈
un, AΨ̄α(Aαϕvn)

〉
= lim
n→∞

∑
|α|≤k

〈
Dα
x (un)AΛ(ξ)−1ψ(Aαϕvn)

〉
= lim
n→∞

∑
|α|≤k

〈
ϕ1AαD

α
x (un)AΛ(ξ)−1ψ(ϕ2vn)

〉
= 0.

We have used Corollary 3.5 and (5.9), since AΛ(ξ)−1ψ(ϕvn) ∈ Hs+1,q
Λ (Rd).
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If µΛ(ξ)m = 0, then Corollary 4.6 implies θun → 0 in H−s,pΛ (Rd) for

every θ ∈ S(Rd). �

Remark 5.5. Equation (5.8) is considered in [3] with solutions in Bessel po-
tential spaces Hp

−s(Rd) (Λ(ξ) = 〈ξ〉). In that case it was necessary to require

convergence of type (5.9) in Hp
−s−k(Rd) to deduce result similar to (5.10)

with Λ(ξ) replaced by 〈ξ〉k.
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