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Abstract. We consider microlocal defect distributions associated to a
weakly convergent sequences u, in H,*" and v, in H{™? through
the space of pseudo-differential operators with the symbols in (ST’N“)O.
Symbols correspond to a weight function A determining a quasi-elliptic
symbol. Results are applied to partial differential equations with sym-

bols related to weights of the type A.
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1. Introduction

Our first aim in this paper is to study the defect distributions which corre-
spond to the space of quasi-elliptic symbols which are determined by related
weight functions, for example of the form

d
14+ ™, £eR?, (1.1)
i=1
where m = (myq,...,mq) € N% and minj<;<qm; > 1. In particular, (¢) =

d 1
(1 + Z 5»2) “isa weight function of this form. We recall the properties of
i=1
the spaces of symbols M}", the spaces of multipliers s’y and consider such
symbols with the finite order of regularity and those which vanish at infinity.
Then, by testing weakly convergent sequences in the corresponding weighted
Bessel potential spaces H, *F(R%),s € R,p € (1,00), and their duals, we
present consequences related to the introduced defect distributions.
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Our second aim is the use of defect distributions in the analysis of a
class of linear differential equations involving appropriate weights as symbols
and prove the existence of strong distributional solutions for such equations.

Microlocal defect distributions (also called H-distributions) are intro-
duced in [6] as an extension of H-measures (introduced in [12] and [19]) and
further developed in [2], for weakly convergent sequences in Sobolev spaces,
W=kr(R?) = H?, (RY), k € Ny, p € (1,00). Always, the motivation has been
the existence of a solution for an equation with a sequence of weak solutions
which corresponds to the sequence of approximating equations.

H-measures were applied to hyperbolic problems, in [1] as well as to
parabolic problems in [4]. Fractional H-measures were introduced in [15] in
order to treat problems with fractional derivatives. Classical H-measures were
adapted for problems where all partial derivatives are of the same order. Para-
bolic variants are applicable to problems where the ratio between derivatives
is a rational number, for example 1:2 in [4] and 1:4 in [8]. In [9] fractional
H-measures with orthogonality property were introduced and application of
localisation principle to fractional equation was presented.

Among many applications of the microlocal tools we emphasize possi-
bility of testing strong convergence of weakly convergent sequences. Recall
[2], Theorem 3.2:

Let u, — 0 in W=RP(RY), k € Ng,1 < p < 00 and q = %, If for every

sequence v, — 0 in Wk4(R?) the corresponding H-distribution is zero, then
for every 0 € S(RY), Qu,, — 0 strongly in W—FP(R%).
(In the sequel, we skip "n — oo”. Moreover, recall, S(R?) is the space of
rapidly decreasing functions.) Similar theorem can be found in [3], for se-
quences in Bessel potential spaces. Recall [2] that an H-distribution p is
associated to a pair of sequences (u,,v,) in dual pairing W=*? — Wk | ¢
Ny, and acts on test functions ¢ € S(R?) and ¢ € C*(S?!) in a sense that,
up to a subsequences, for all test functions we obtain the following limit

<:U/7 L)O’L/)> = n11_>1r;0<<)01un7 A@(‘Pﬂ)n))a

where A, is a Fourier multiplier operator with symbol ¢ and S4=1 denotes
the unit sphere in R, We have used the fact that any ¢ € S(RY) can be
written in the form ¢ = @12, ¢1,p2 € S(RY), cf. [18]. We have shown in
[2] that a strong convergence of a weakly convergent sequence in W% k €
No,p € (1,00) can be tested on all weakly convergent sequences in the dual
space W¥-4. Moreover, such a sequence can be tested on W*+™4 c Wk, for
m € N, but with the use of pseudo-differential operators of higher order m
(cf. [3]). Also, in [3], results were given for sequences in H?(R?),s € R, 1 <
p < 0o. These results were applied in [3] to solutions u,, € H” (R?) of linear
equations of the type

" Aa(@)0un(x) = ga(a),

|| <k

with assumption that ¢g, — 0 in H? __, (R?) for all ¢ € S(R?).
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Recent developments in hypoellipticity theory, cf. [7, 10, 16, 17], suggest
the use of more general weight functions A(§), instead of the usual one (£).
Such weight functions are useful in various applications, they can be cho-
sen in appropriate manner in order to get better estimates for solutions of
Schrodinger type differential operator, cf. [7, 17].

In this paper we associate a microlocal defect distribution to a pair
of sequences u, € LP(R?) and v, € Hy?(RY), where Hy?(R?) denotes the
weighted Bessel space:

HY'(RY) = {ue S'(RY) | FTHAY(§)Fu) € LYRY)}, seR, g€ (1,00),

with a general weight function A given in Definition 2.1. It is a Banach space
with respect to the norm

[ull e 2= 177 (A ()" Fu)| -

Here F denotes Fourier transform, i.e. F f(§) := / e @ f(z)de,E €RY, f e
R4

S(RY).

An associated distribution, denoted by g and called Hy-distribution,
acts on S(Rd)®(sﬁN+1)o, the completion of the tensor product of spaces of
test functions in the Schwartz space (regarding to the space variable x) and
Hormander type symbol classes (sf\” ~N+1)o,m € R, which will be introduced
below, adapted to LP boundedness property (regarding to the frequency vari-
able ¢). Since S(RY) is nuclear the completion is the same for the 7 and the &
topologies and therefore we use notation S (Rd)®(sx ~N41)o- Our main interest
in this paper is to apply results to linear partial differential equations.

The paper is organized as follows. In Section 2 we introduce notation
and definition of weight function. Symbol classes and multipliers with fi-
nite regularity are introduced and results regarding boundedness of pseudo-
differential operators on Hy"(R?) are given, where s € R, 1 < p < oc. In
Section 3 we prove compactness of commutator, then in Section 4 existence
of H-distributions. In Section 4 we also analyze possible strong convergence
of weakly convergent sequence in Theorem 4.5 and in Corollary 4.6. Finally,
Section 5 is devoted to applications of previous results to linear partial dif-
ferential equations.

2. Weight functions, symbols, multipliers

In this section all the definitions and assertions are taken from [7, 10, 11, 16,
17]. Only, we consider symbols and multipliers with the properties of their
derivatives up to N, that is, with a limited regularity. Recall the definition
of weight function:

Definition 2.1. ([7]) Positive function A € C*°(R?) is a weight function if the
following assumptions are satisfied:
1. There exist positive constants 1 < pg < 1 and ¢y < ¢1 such that

co(E)0 < A(€) < e ()", € eRY
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2. There exists w > py such that for any o € N¢ and v € K = {0,1}¢
€07 FTA©)] < Ca s AT, LR
Constant w is called the order of A.
If A is a weight function, then (cf. [7], p. 30) there exists C' > 0 such
that
A)™ < CAO)™(z =M m eR, z,¢ e RY (2.1)
It is well-known, if A is a weight function, then for any m € R, a € Nd, v € K,
€07TAE)™] < CapAO™EIT e RY

We recall the well-known examples. Quasi-elliptic smooth functions
P,, = A and their powers, where A is given by (1.1), are examples of weight
functions which satisfy conditions of Definition 2.1 (cf. [16]).

More general weights are defined by (cf. [11, 17])

M) = (X )’ cent,
acV(P)
where P is a given complete polyhedron with the set of vertices V(P). Recall
that a complete polyhedron is a convex polyhedron P C (R4 U {0})? with
the following properties: V(P) C N&, 0 € V(P), V(P) # {0}, No(P) =
{e1,...,eq} and N1(P) C R%. Here
P={zcR":v.2>0, WeNy(P)}Nn{zeR:v-2<1, veN(P)},

and No(P) and Ni(P) C R? are finite sets such that for all v € No(P), |v| =

1. We have that (£)*0 < CA(E) < C1 (&)™, € € R, with g =  min Q

(€< CAE) < Culey™, € po= _min o

and p; = mva(>7<j) |ae|. The formal order of P is given by w = max{ =
€

1...d,ve Nl(P)}. Notice that 1 < pp < 1 < w.

2.1. Symbols

First, we recall the classical notions and assertions. Then we list the defini-
tions of the symbols with finite regularity for which the same estimates hold,
but with the careful choice of the regularity. Such results, concerning the
commutator lemma are given in the next section.

Let A be a weight function of order w, m € R and p € (0,1/w]. Spaces
Spas p € (0,1/w] and SY" = S7),, o were defined in quoted papers (cf. [10,
p. 88]). We recall that the spaces of A-symbols are connected with standard
Hormander’s spaces S7's, m € R, 0 < <p<1:

SPHl 0 C SpA - Spuo 0

where h := min{mpug, mp1 }, k := max{mpuo, mu1 } and p € (0,1/w]. When P

is the polyhedron with set of vertices {0} U {e; : 1 < i < d}, then w =1 and
b =5, where S™ = ST is the standard Hérmander’s space of symbols.

In this case we have that Ap(ﬁ) €).
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Pseudo-differential operator 7, with a symbol a € S’y is defined in a
usual manner,

Tou(z) == /R e Ca(x, £)u(€) d¢, r € RY, ue S(RY),

where d¢ = (2m)~%d¢. In general, these operators are unbounded on
LP(RY), p # 2. Namely, considering Sp's spaces for 0 < ¢ < p < 1itis
known that pseudo-differential operators of order zero are L? bounded and
the same is true when § = p # 1. In the case § = p = 1, L? continuity does
not hold in general. When m =0, p =1 and 0 < § < 1 we have L? bound-
edness for 1 < p < co. If p # 1, i.e. if p < 1 we do not have LP boundedness
in general (for more details see [10]).

Since, SS,A - SSMO’O and ppo < po/w < 1, operators with symbols in
Sgﬁ A can be unbounded on LP. The LP-boundedness holds with the use of
symbols My (cf. [10, p. 88]). One has [11, Proposition 5.3]: Let a € M},
m,s €R, pe (0,1/w] and 1 < p < co. Then,

T, : H™P(RY) — HYP(RY)

is a linear, continuous operator.
Now we recall the definitions but with the differentiation up to N € N.

Definition 2.2. Let m € R, p € (0,1/w] and N € Ny. We denote by S’Z?I’\N the
space of functions a € CV (R??) such that for all |af,|3| < N,
1080 a(x,€)| < CasA(E)™ ", .6 € R

We denote by M/T[’\N the space of functions a € CV(R??) such that for
every v € K and for all |af,|8] < N,

§0)a(x, ) € ST (2.2)
As before, when p = 1/w we denote S7"" = Sﬁ’g[\ and M = M{’;wNA

Condition (2.2) is equivalent to
€707 00 a(x,€)| < Cap AE™ 1, 2, € RY,
for all |af, |8] < N, v € K. Then:

al,,m,~ = max max su 190 0B a(x, £)|A(£) "™ Hrlel
S T U S M

: m,N

is the norm on Mp’A .

One can prove, as in Theorem 13 in [3], that T} is a bounded operator
if N > 2d.

Theorem 2.3. Leta € M/T,’\N, N>2d,s,meR,pe (0,1/w] and1 < p < 0.
Then

T, : H™P(RY) — HYP(RY)
1s a linear, continuous operator and there exists cy > 0 such that

[Tavll msvmay < CN|G|M;7AN||“|\H;+M~P(Rd)-
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As in [3], following [13], we define M;,l[\],\(f) space.

Definition 2.4. Let m € R,p € (0,1/w] and N € Ny. We denote by M;?[’\{\g

the space of functions a € CV(R??) such that a € M;',LI’\N and for every v € K
and for all |o|, |8] < N,

€707 707 a(2,€)| < capy (@A™, 2,6 € R (23)
where cq g () is a bounded function and lim|| e Ca,8,4(2) = 0.

We introduce spaces of multipliers, following definitions of S;nl’\N and

N
M]"i" spaces.

Definition 2.5. Let m € R, p € (0,1/w] , N € Ny. Then S:}\N(Rd) is the space
of all ¢ € CN(R?) for which the norm

m.N i= A ax s oty A(e)™mHrlel < oo,
(9] gm Wr‘rgnglgll;;Eeuﬂglf e P(E)IAE) 00

If p = 1/w, then we denote ST’N = ST/LVN

We will need the Lizorkin-Marcinkiewicz theorem:

Theorem 2.6. ([14]) Let ¢ be a continuous function such that 07 (€), &€ € R?
are also continuous for all v € K. If there exists B > 0 such that

€0Y() < B, £eRY, yeK,

then for every 1 < p < oo there exists C' > 0 depending only on p, B and d
such that

[AyullLr < CllullLe.

If ¢ € s)) (RY), then [£7074(¢)] < B, v € K, & # 0. Therefore, by
Theorem 2.6, we have the following result.

Corollary 2.7. Let ¢ € sng(Rd),p €(0,1/w], N >d and 1 < p < co. Then,
Ay is a continuous linear operator on LP(R?) and

@l < Clloxllull oo (2.4)

3. Compactness of a commutator

First we prove a version of the Rellich theorem, which will be used in the
sequel.

Lemma 3.1. Let o € C®(R%), u,, — 0 in LYR?) and A be a weight function.
Then pu, — 0 strongly in HXE’q(Rd), for any e > 0.
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Proof. We have to show that Apg)-<(¢u,) — 0, in L9(R?), where A is a
weight function satisfying properties from the Definition 2.1. Applying the
Rellich theorem for the weight (£) it follows that A= (¢u,) — 0 in L(R?),
for any € > 0. Notice that Ap(e)-<(0un) = Ag)ea(e)-<Ae)—<(0un). In order
to apply Theorem 2.6, we will show that there exists B > 0 such that
E07(E°AE) ) < B, E€RY, yeK.
There holds:
€07 (&)A€ )| = ]@ S Pl 0P AE) 7| =
B<y
| S e Partlerefoiae) | < 3 1Mo ()7 PP A ) <
B<y B<y
CLEAE) ™ S AT A = ATV < B
since f € K, A is weight function and pg > 1. Theorem 2.6 implies that
Aeyea(e)-< maps continuously L4(R?) into L(R?). Since A~ (pun) — 0,
in L(R?) it follows that A= p(e)-=Aey—= () — 0 in LI(R?) and the proof
is complete. O
In the sequel with (D,) = v/1 — A, we denote the pseudo-differential
operator with symbol (£), i.e. (D.)f = /eix5<§)f(§)d§, r € RY We use

powers of (D,) and the partial integration.

The proofs of the assertions of this section are similar to the ones that
we have given in our paper [3]. For the sake of completeness of the paper, we
give all the details.

Theorem 3.2. Let m € R,p € (0,1/w], ¢ € S(RY) and ¢ € 5", N(RY), N >

3d + 3. Then, AyT, is a compact operator from Hy" ?(R?) mto Hyo9(RY),
for any e > 0.

Proof. We will show that the symbol of the composition AT, denoted by
o, is in M;nl’\]\gfdfl for odd d, or M?A%7d72 for even d.

We need to prove that for ¢ € 57"y N(R?) and for ¢ € S(R?) the symbol
of the composition o, given by

o(x,&) = // e~ VMp(E+n)p(x + y)dy dn, z,& € RY,

belongs to the space M}" 0 . Using (2.1) it follows:

AE+m™ <A™ )™, 2, € €RT, mER.
We estimate (z,¢ € RY):

o(z,8)| = ‘// —lyn 2k >2k(<77>_2l¢(f+77)<Dy>2l<,0($+y)>dy dﬂ’
8 // () ()" A+ )" (D) ol + y)ldy
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< [ A "D, oo+ y)ldy dy < CAE"

for 2k > d and 2] —|m|w > d. In the case when d is odd, we choose 2k = d+1.
Since ¢ € S(R?), it follows that for any M > 0 there exists cp; > 0 such that
(Dy)* oz +y) < ear(w+y)~" < Cur(2) M ()™ 2,y € RY.
Then,
jo(x,6)] < eA€)™(x) M, 2,6 €RY, (3.1)
where we choose 0 < M < 1, so that 2k — M > d.
Next, we estimate 578&7+Q8£a(w, €). We have

‘// e—iyﬁg‘Ya?-Hw(f-i-n)@fgp(x+y)dy dﬁ‘ _
‘// e_iy’?<y>_2k<Dn>2k<<77>_2l§’78?+’7w(£+n)) <Dy>218590(33+y)dy il <

m pla|
3 / () m=p1e1D< | (D VDB (4 )| dy din < elx) M A(E)™ 71!,
where O < M < 1. Therefore,
£0¢ 000 (2,)] < @) MAE)™ I, 2, € e RY,

for 21— |m—p|a||lw > d, 2k = d+1. Hence, if we assume that N—d—1 > 2d we
can apply Theorem 2.3. We have proved that o € MZA%7d71 for odd d. If d
is even we choose 2k = d+2 and then we need to assume that N —d—2 > 2d.
Therefore, in both cases, it is enough to assume that N > 3d + 3.

In the rest of the proof we apply an idea used in the proof of Theorem
3.2 [20], following also steps from the proof of Theorem 4 in our paper [3].
Take ¢ € C°(R?) such that ¢(z) = 1 for |z| < 1 and ¢(z) = 0 for |z| > 2
and let o, (z,£) = (b(%)a(x,f), 2,6 € RY, v € N. Then, T,, = ¢, T}, for

The operator T, is compact because T}, is bounded from Hy"(R?) into
L4(R?) and the operator of multiplication by ¢, is compact from L9(R%) into
H,®%R%), for any ¢ > 0 (Lemma 3.1).

Ifv € Hy"Y(R%), 1 < ¢ < 0o, then Theorem 2.3 implies that there exists
¢ > 0 such that

||(TUV - TG)U”H;E,q < ”(TUV - TU)U”Lq < Clau - UlM;T;\N*d*1 ||U||H;\"q
We estimate:
07 02(8(2) — Do ()

max max sup
VY€K [al|B]<N—d—1 , ¢ pa A(g)m=rlel
+
12 ()07 (8(2) = DO Yo (2, 6)|
< max max sup
Y[ Y€K |l |BISN—=d—1 |g|>p,ccRé A(&)m=rlel

< Ceany(v).

‘0',/ — O’|M;‘r‘lj,\N—d—l =
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Since o € M:TAA(T) 41 it follows that Canq (V) = 0(1) as v — co. We conclude

that | T,, — Ty ”L(H}(’”" pyeey = 0as v — 00, which implies that 75 is also a
compact operator.
U

Corollary 3.3. Let ¢ € C®(R?) and u, — 0 in Hy"(R?), m € R. Then
ou, — 0 strongly in Hy' =%(R?), for any e > 0.

Proof. We have to show that Agym-:(¢u,) — 0, n — oo in LI(R%).
Since A(6)™ € st and u, — 0 in Hy"?(R%), Theorem 3.2 implies that
Apeym (@un) — 0in Hy =9 This is equivalent with A g)-< Apg)m (@un) = 0

in L4(R%). The proof is completed.
([

Theorem 3.4. Let ) € spA ,p€SMRY), meR and p € (0,1/w], N > 3d+5.
Then the commutator C' = [Ay, T, = AyT, — T, Ay is a compact operator
from HY"Y(RY) into HY S9(R?), ¢ > 0. pr denotes the symbol of C, then
pE M\ 430, if disodd, orpe M\, . if dis even.

Proof. The proof is analogous to the proof of Theorem 5 in [3]. Let ¢ € SZ}\N,
N > 3d+ 5 d odd and ¢ € S(R?). The symbol of the composition AyT, is
given by o(z,&) = [[ e= (€ + n)p(z + y)dy dn, x,& € RY. Using Taylor’s
expansion, we obtain that

o(z,§) = Ii(z,§) + Ix(z,§), where

L& =) — // “WIn g (&) p(x + y)dy dn

\oc|<1
and Lz, &) = 2 Z —iyny (1 — 0)20¢9(& + On)dh)p(x
Lo ([ )
y)dy dn. Then, I(x,&) = > aag"w(&)DZw(y)\y:w and similarly,

jal<1
(x,6) =2 Z // _””’ / 0)28?1#(5 + 977)d9)D§‘<p(w + y)dy dn.
o= 2
Since the symbol of T, Ay equals w(x)h(§), the symbol of commutator C is
of the form p(z, &) = I(x, &) + Iz(x, €), where
0,6 = Y 28w DY)y
jal=1

Therefore I (z,£) € Mm_”’N_1 . We need to estimate I5(z,¢). Note that

bo=2Y /1— 2Ly (, €)d6

lee|= 2 @
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where I3(z,§) = [[ e”10¢(¢ + 0n) Dy o(x + y)dy dn. From the proof of
Theorem 3.2 it follows that

B9 < [ [ D (023wl +m) D) [Dye(o -+ )] dy dn

< CAE™ ()™,
for 2k =d+1,0< M < 1, 2l > d+ |m — 2p|w. Also, from the proof of Theo-
rem 3.2 it follows that I € M;'f/;gp’Nidfs. Since I(z,§) € MZX@N*I C
MYCENTE and I, € M RN o M e Tt follows that
pE M;n[;g’Nfdfg. Now we apply the proof of Theorem 3.2 to conclude that
C = T, is a compact operator from H}"*(R%) into H{ =¢(R?). The proof
is analogous in the case when d is even. In order to apply Theorem 3.2 we
assume that N > 3d + 5. O

The proof of the next corollary is a direct consequence of Corollary 3.3
and Theorem 3.4.

Corollary 3.5. Let ¢ € SZ?}\N, v € S(RY), m,s € R and p € (0,1/w], N >
3d + 5. Then the commutator C = [Ay, T, = AyT, — T, Ay is a compact
operator from Hy'T59(RY) into HYT*~59(RY), & > 0. If p denotes the symbol

of C, thenp € M\ 4 5, if dis odd orp € M\ % 4 44, if d is even.

4. Existence of H,-distributions

We denote by (s:}\N)o C sgf}\N the space of multipliers ¢ € (sgf/’\N)o such that
for all || < N, yeK

lim sup M =0.

n—oo l€]>n A(g)m—pla\

We need separability and completeness of the symbol spaces for the existence
theorem of H-distributions. The following theorem holds since S(R?) is
dense in (SZAN)O (for the proof see [3]).

Theorem 4.1. Let p € (0,1/w], m € R. Then the space ((s;nl’\NH)o, |+ ]gm.~)
’ P
s separable.

In order to obtain completeness we use completion of (SZ_L/’\NH)O with

respect to the | -

gm,N TIOTM. Completion is also denoted by (sZ?I\NH)O. We
assume that N is an integer such that N > 2d.

Theorem 4.2. Let u, — 0 in LP(R?Y) and v, — 0 in Hy"'(RY), m €
R, p = 1/w. Then, up to subsequences, there exists a distribution p €
(SRHYG(sTN 1)) such that for all o € S(RY) and all ¢ € (s7N 1),

i (up, Ay (ovn)) = (1,0 ® V).
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Proof. In the proof we follow the ideas given in the proofs of existence of
H-distributions in [2, 3]. We consider a sequence of sesquilinear (linear in
and anti-linear in ¢) functionals:

palip) = [ Apun)de, n €.

Functionals pi, are well defined because Ap(¢vn) € L, n € N.

Since (&) = Y1(Oa(E), Yi(€) = AO™ € sPNTL (e =
A(E)"mp(€) € (s3V 0. Using (2.4), it follows that

[ Az (pvn)llze < elihal o A (pvn)llLe < erly
where we use the estimate

[2lgx = [AE) ()] ox < CIAE) ™ oo v o < Crlifl v

Using inequality (2.1) and the exchange formula for the inverse Fourier trans-
form of convolution, we have

ﬂFN”@Un”HTﬂ7

levnllags = ([ |77 4@ e o]

- (L.
- (L.

F( [ A rle =)

<(/,
c</Rd
(LI

F (8" [ ote=nin(min) @)

1

P At i)

= n)@n(n)dn) @)

dx)

G+ 2 ‘“)qu%
e

f*l(@nAo L+ 1))

< C sup |FH(L+ 16275 @) llonl o
reR4
1
<C / ———— () HFImI || o de < O (€)M G|
s (1+¢2)5

We choose the sequence of norms on S(R%): |¢|s, = sup ||< Y@ (E)]|oo, k€
Np. Therefore,

|
Up A7 (v, )de

Let ¢ € S(RY) be fixed. Then the mapping ¥ > pn(p,) =

< C|¢|STAR’N |l a4 14 [mlw] -

un.AE(govn)dx is linear and continuous, and similarly for fixed v €
d

R
(ST’NH)O, the mapping ¢ — p,(p,1) is anti-linear and continuous. In
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the rest of the proof we follow the standard steps for proving the exis-
tence of H-distributions, as it was done in the proof of Theorem 3.1, in [2]
and Theorem 6 in [3]. Repeating these steps we obtain that there exists
€ (SRYS (s )g) defined as

(&) 9(@)0(©) = Jim [ 0, T oo dz, o € SEY, 6 € Ryl

where u, is a subsequence of u,, and v, is a subsequence of v,. Hence the
proof is complete. O

Distribution obtained in Theorem 4.2 is called Hj-distribution. The
following corollary follows from the proof of Theorem 4.2.

Corollary 4.3. Let u, — 0 in Hy*?(RY) and v, — 0 in HyT5Y(RY),
s,m € R, p = 1/w. Then, up to subsequences, there exists a distribution
€ (SRHS (s N T)g) such that for all ¢ € S(RY) and all ¢ € (s5"N 1),

(un, Ag(pon)) = (1, @ @ 9P). (4.1)

lim
n—oo
Remark 4.4. If we fix ¢ € ST’N in Theorem 4.2 we can consider a Schwartz
distribution j,, € S’(R?) defined via (4.1) as
(s ) = nlggo@m Ay (o).

In a similar manner as in [2] and [3] we prove the following theorem
regarding strong convergence of a given weakly convergent sequence.
Theorem 4.5. Let u,, — 0 in LP(R?). Assume that

nan;O<un, Aneym (ovn)) =0, (4.2)
for every sequence v, — 0 in Hy"?(R?), m € R. Then for every 6 € S(R?),
Ou,, — 0 strongly in LP(R?).
Proof. We will prove that for all § € S(R?) and every bounded B C L(R?),
sup{(Qu,,d) : p € B} -0, n — co.

Assume the opposite, i.e. that there exist € S(R?), a bounded set By
in L9(R%), an £y > 0 and a subsequence 6u,, of fu,, such that
sup{|(0u,,®)| : ¢ € By} > &g, for every v € N.
Choose ¢, € By such that |(Qu,,d,)| > eo/2. Since ¢, € By and By is
bounded in L4(R%), it follows that {¢,,v € N} is weakly precompact in
LY(R%), i.e. up to a subsequence, ¢, — ¢o in LI(R%). Moreover, since ¢ is
fixed, we have (u,, ¢g) — 0 and
€o

|<9Uua¢u 7¢0>‘ > 4’

Applying (4.2) on u,, — 0 in LP(R?) and Ane)-m (v —¢o) — 0in HW (R,
we obtain that for every ¢ € S(R?),

Uli_)n;o (uy, .AA(g)m ((,O.AA(g)*m((d)u —¢0))) = 0.

v > 1. (4.3)
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Choosing ¢ = 6 and using Theorem 3.4, we get lim, oo (Bu,, ¢, — ¢o) = 0,
which contradicts (4.3). O

The following corollary also holds.
Corollary 4.6. Let u, — 0 in H*P(R%). If
lim (un, Apg)m (ovn)) =0,

n—oo

for every sequence v, — 0 in Hy't>9(R?), m € R, then for every 6 € S(RY),
Ou, — 0 strongly in H=5P(R?).

5. Applications

Let u, — 0 in Hy*P(R?), s € R, 1 < p < oo. We consider a sequence of
linear equations

(Tyn)(@) = [ eala)o(€)in(€) dé = 1, (o). (51)

where T, is the operator with the symbol p(z, &) = a(z)o(€), a € C°(R?)
-the space of smooth, bounded functions with all derivatives also bounded,
and o € .SXN; recall that A is a weight function, »r € R and p = 1/w. Hence
pE MX’N. For the right hand side of (5.1) we assume that (f,,), is a sequence
of temperate distributions such that

¢fn — 0in Hy " "P(RY), for every ¢ € S(RY). (5.2)

For fixed ¢ € ST’N we analyze Schwartz distribution u, € S’(R?), see
Remark 4.4. We assume that N > 3d 4 5 in order to apply Corollary 3.5, in
the sequel. We obtain the following result.

Theorem 5.1. Let u, — 0 in Hy"P(RY), s € R satisfies (5.1), (5.2) and
¢ € s Then, for any v, — 0 in HyT™9(RY) the following equation is
satisfied

a(T)p o , =0 in S'(R%). (5.3)

AT

Proof. Let v, — 0 in Hy™™9(R%), ¢ € S(RY) and ¢ € s%"". We have to
prove that, up to a subsequence,

lim <un,A o (€) ¢(<Paﬂn)> =0,

n—oo AT

Since

lim <u”’“4,(’((§5)1~w(90av”)> = lim (Ay(e)(un), Ap(e)-ry (pavn))

n— oo n—oo

and Ay )y (pavy,) € HT‘T"J (R9), applying Corollary 3.5 and (5.2) we have
that

im (Aqe) (un), An(e)—ry (P102a05)) =

n—oo
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= lim (ap1Ag(e)(Un); Are)-ru(P2vn))

n— oo
= lim (1 fn, Ar(e)-ry(p20n)) = 0.
Therefore, we have proved (5.3). O

Remark 5.2. If a(z) # 0 and ¢ = A(&)™, o = A(§)", equality (5.3) implies
that pp(eym = 0. Hence, in this case, pu, — 0 in H, *P(R?), according to
Corollary 4.6.

5.1. Examples

1. Let P be complete polyhedron in RY with set of vertices V(P) and A = Ap.
Let u, — 0in H, *P(R%), s € R, 1 < p < o0, such that the following sequence
of equations is satisfied

p(l‘,D)u(l‘) = Z aa(x)DQOlun(-r) = fn(x)v (54)

acV(P)
where a,(x) € C°(R?), and (fn,), is a sequence of temperate distributions
such that
@fn — 0in Hy*7*P(RY), for every ¢ € S(R?). (5.5)
The symbol of the given differential operator p(z,&) = Zaev ao (7)€%
belongs to M3.

Corollary 5.3. (of Theorem 5.1.)

Let up, — 0 in Hy*P(RY), s € R, satisfies (5.4), (5.5) and ¢ € s\"".
Then, for any v, — 0 in Hy ™9 (R?) and the corresponding distribution
there holds

Z Ao (T)p ye2a =0 in S'(RY). (5.6)

acvV(P) A
Moreover, let v = A(€)™ and the equality in (5.6) implies that gy = 0. Then
we have the strong convergence Ou,, — 0 in H, *P(R), for every 0 € S(RY).

Proof. Let v, — 0 in Hy ™4 (R%), » € S(RY) and ¢ € s7"". We have to
prove that, up to a subsequence,

2 <“"’A““(‘”“"”")> -

acV(P) A
Let Ay, = A ye20 . Since Agza 0 A vy = DQO‘AA ¥(¢), it follows that
NG A2(e)
nILH;o Z (Un, Ay, (paqvy)) = nhﬁngo Z 2 (Un), An(e) -2y (Paavn)) -
aeV(P) acv(P)

Then Ap ()2 (¢aavn) € 1177\+2"1(Rd)7 and Corollary 3.5 implies that

Jim > (D2 (un), Ane)-2p(Paava)) =
a€eV(P)
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lim > (aa@rD5" (un), An -2 (@20n)) = 0,

n—00

aeV(P)

where we have used ¢ = @109 for @1, 0o € S(R?). Therefore, we have proved
(5.6). O

= > Au(z)€” (5.7)

|| <k

2. Let

and let A = Ap, where P is a complete polyhedron in R? such that all
multi-indices « that appear in equation (5.7) are contained in P.

Now let u,, — 0in H, *P(R%), s € R, 1 < p < oo, such that the following
sequence of equations is satisfied in Hy *~"P(R?) :

Z Ao () D%y (x) = gn(x), (5.8)

o <k
where A, € Cp°(R?), and (g,,), is a sequence of tempered distributions such
that
©gn — 0 in Hy*""P(RY), for every ¢ € S(R?). (5.9)
According to [17] Example 2.7.9, we have that p € Mj. Therefore
D Aa(@)Dup(z) € HY* HP(RY).
lo| <k

Corollary 5.4. (of Theorem 5.1.)

Let u, — 0 in Hy*P(RY), s € R, satisfies (5.8), (5.9) and ¢ € s\~
Then, for any v, — 0 in Hy'"™%(RY) and the corresponding distribution p
there holds that

D Aa( Dpisgen =0 in S'(RY). (5.10)
|l <k
Moreover, if ¢ = A(§)™ and (5.10) implies pipeym = 0, then we have the
strong convergence Qu, — 0.

Proof. Let v, — 0 in H{T™(R%), o1 € S(RY), o € S(R?) and ¢ € s)"7.
We need to prove that, up to a subsequence,

lim Z (un, Ag, (Aappvyn)) =0,

n—oo
| <k

£ . o .
= %w(g) Slnce A\IJQ = A 5({ A"P and ./4 = 8 AA(&)*I, 1t
follows that

lim > (un, Ag, (Aaprn)) = lim Y (DS (un) Ape)-14(Aatpvn))

n—oo n—oo
la|<k la|<k

= lim Z <301AO¢D$(U") AA(g)—lw(gOQUn» =0.

n— oo
la| <k

We have used Corollary 3.5 and (5.9), since Ay (¢)-14(¢vn) € HTHI(RE),

where ¥,
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If pageym = 0, then Corollary 4.6 implies Ou, — 0 in Hy *P(R%) for
every 6 € S(R?). O

Remark 5.5. Equation (5.8) is considered in [3] with solutions in Bessel po-
tential spaces H” ,(R?) (A(€) = (¢)). In that case it was necessary to require
convergence of type (5.9) in H” __, (R?) to deduce result similar to (5.10)
with A(€) replaced by (€)%,
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