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1 Introduction

Although spectra of matrices and operators play essential role in many appli-
cations, [18], effective computation of the spectrum of a (large) finite matrix,
and especially of infinite matrices still remains a challenging task. Also, in
some applications, instead explicitly computing the spectra, one often needs
an estimates of their location in complex plane to deduce different operator
properties. Due to that, in the literature on finite matrices, different methods
were used to approximate the spectrum through various inequalities, bounds
and the construction of localization sets in the complex plane, [19, 11].

From the end of IXX and beginning of XX century, when the concept
of diagonal dominance for (finite) matrices first emerged in papers of Lévy
(1881), Desplanques (1887), Minkowski (1900) and Hadamard (1903) (see [19]
for detailed history on this subject) until now, there has been an extensive
use of this matrix property and its many generalizations in various ways, in
matrix theory as well as in its modern applications in the theory of dynamical
systems, theory of neural networks, wi-fi communications and many others.
The extensive use of these classes of matrices is, among other things, due to
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their nonsingularity, which made them a handy tool for obtaining different
estimates of spectra of arbitrary matrices. In the matrix theory literature
this is known as Geršgorin-type eigenvalue localization, [9, 19].

On the other hand, although infinite matrices considered as linear oper-
ators on Banach spaces appear in applications, they have, up to now, drawn
less attention, [15]. Strict diagonal dominance as a property of infinite matri-
ces (considered as linear operators on sequence spaces) has been investigated
in [14]. There, an infinite matrix that was called diagonally dominant was
necessary acting as an operator l∞ → l∞. So, contrary to the case of finite
matrices, results of [14] could not be applied to infinite matrices that repre-
sent linear operators lp → lp, for p < ∞. An extension of these results was
obtained in [16] for p = 1 and, there, Geršgorin localization theorems for
p = 1 and p = ∞ were introduced. In addition, in [5, 6] authors construct
similar Geršgorin sets for operators on lp, for 1 < p <∞.

Motivated by the need for simple localization methods of spectra of ma-
trices and operators, we will generalize notion of strict diagonal dominance
from the finite matrix case to the infinite case in a way that is applicable
to operators on lp spaces for all values 1 < p < ∞. Consequently, we will
obtain special classes of matrix operators with useful properties such as in-
jectivity and boundedness, that extend results of [14]. Then, we construct
localizations of spectra that generalize results from [5, 6, 16].

The paper is organized as follows. After short introduction of basic facts
and notations, in the third section we introduce notion of SDD(p) infinite
matrices and derive some of their properties. Then, in the fourth section we
develop localization of spectra of matrix operators on lp spaces.

2 Notation and basic properties

Denote by A = [aij]i,j∈N ∈ CN×N an infinite matrix and define an operator
A : D(A)→ CN on D(A) ⊂ CN as A(x) = Ax, x ∈ D(A). We are interested
in case when A : D(A) ⊆ lp → lp, 1 < p < ∞, where lp is the Banach space

of p-summable sequences with the p-norm ‖x‖pp =
∑
i∈N

|xi|p. The cases p = 1

and p =∞ are completely handled in [15].
Denote by ai = (aij)j∈N the i-th row and by aj = (aij)i∈N the j-th column

of the matrix A. Also , âi := (âij)j∈N = ((1 − δij)aij)j∈N, i ∈ N, δij =
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{
1, i = j

0, i 6= j
, denotes the i-th deleted row of A.

The operator A will be defined on whole lp (A : lp → CN) if and only if
ai ∈ lq, i ∈ N, q = p

p−1
. If additionally the sequence of lq norms or rows of

A, (‖ai‖q)i∈N ∈ l
p, then A : lp → lp is bounded linear operator. Also, in this

case, all columns aj ∈ lp. This is illustrated in the following example.

Example 1. Consider matrix

A = (aij)i,j∈N =

(
1

ij

)
i,j∈N

=


1 1/2 1/3 . . . 1/j . . .

1/2 1/4 1/6 . . . 1/2j . . .
. . . . . . . . . . . . . . . . . .
1/i 1/2i 1/3i . . . 1/ij . . .
. . . . . . . . . . . . . . . . . .

 . (1)

Since ‖A‖op = sup
‖x‖p=1

‖Ax‖p ≤ ‖(‖ai‖q)i∈N‖p = µ(p), where

µ(p) := ζ(p)1/pζ(q)1/q, (2)

and ζ(p) =
∞∑
n=1

1

np
is Riemann zeta function, for 1 < p < ∞, A defines the

bounded linear operator A : lp → lp, 1 < p < ∞. But, since Ae1 = a1 /∈ l1,
A[l1] 6⊂ l1, so A doesn’t define linear operator l1 → l1.

If additionally to ai ∈ lq, which gives us just a linear operator A : lp → CN,
we have that aj ∈ lp, then D(A) := {x ∈ lp : Ax ∈ lp} is dense in lp.

Lemma 2.

a) Let ai ∈ lq. Then linear operator A : D(A)→ lp is closed.

b) If additionally aj ∈ lp then D(A) is dense in lp.

Proof: a) Take a sequence xn ∈ D(A), n ∈ N, such that xn → x and
Axn → y in lp. Then

|(Ax)i − yi|p ≤ 2p
(
‖ai‖pq‖x− xn‖pp + ‖Axn − y‖pp

)
→ 0, as n→∞,

which implies that Ax = y and x ∈ D(A).
b) Since Aej = aj ∈ lp, then Span{ej : j ∈ N} ⊂ D(A), i.e. D(A) is

dense in lp. 2
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More about matrix operators on lp can be found in [1, 2, 3, 8, 10, 12].

3 Diagonally dominant infinite matrices as

operators on lp spaces

Following the idea from [9], we introduce strictly diagonally dominant infinite
matrices adapted to lp spaces in the following definition.

Definition 3 (Sp, the class of SDD(p) matrices). An infinite matrix A is
called SDD(p) matrix, i.e., A ∈ Sp, if and only if there exists w ∈ B+

p :=
{x ∈ lp : ‖x‖p < 1 and xi > 0, i ∈ N} such that for all i ∈ N, wi|aii| >

rqi (A) := ‖âi‖q =
(∑

j 6=i |aij|q
)1/q

.

Note that in the case of finite matrices for p = 2 this class was introduced
in [7] as class of (finite) matrices that satisfy strong square sum criterion.
In the following, we provide basic operator properties of infinite SDD(p)
matrices and their two subclasses.

First, from the previous definition note that A ∈ Sp implies that for all
i ∈ N, |aii| > 0, i.e. aii 6= 0, 0 < wi < 1, and all rows ai ∈ lq, with
‖ai‖q < q

√
2|aii|. Moreover, A ∈ Sp can be equivalently expressed as

sp(A) :=

[∑
i∈N

(
rqi (A)

|aii|

)p] 1
p

< 1. (3)

Lemma 4. Every A ∈ Sp defines linear injective operator A : lp → CN.

Proof: In previous remark we noticed that every SDD(p) matrix has lq-
rows which is enough for matrix A to define linear operator A : lp → CN. To
prove injectivity suppose that there is an x ∈ lp\{0} such that Ax = 0. This
implies that

|aiixi| = |âix| ≤ rqi (A)‖x‖p < wi|aii|‖x‖p, i ∈ N.

Now, dividing by ‖x‖p|aii| 6= 0 we obtain that |xi|
‖x‖p < wi, i ∈ N, which

contradicts the fact that ‖w‖p < 1. 2
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Corollary 5. If matrix A ∈ Sp has lp-columns, then operator A : D(A)→ lp

is closed, injective and densely defined in lp.

Proof: The proof follows from Lemmas 2 and 4. 2

Example 6. Consider matrix B = (bij)i,j∈N, where

bij =


1

i2
, i = j,

1

i3jµ(p)
, i 6= j,

where µ(p) is given by (2). Then, since

∑
i

(∑
j 6=i

∣∣∣∣bijbii
∣∣∣∣q
)p/q

= ζ(p)−1ζ(q)−p/q
∑
i

(∑
j 6=i

∣∣∣∣ 1

ij

∣∣∣∣q
)p/q

< 1.

we conclude that B ∈ Sp. Also, B has lp-columns, so the operator B :
D(B)→ lp is closed, injective and densely defined. Moreover D(B) = lp and
B is bounded with ‖B‖op ≤ µ(p) .

As we shall soon see, diagonal elements of matrix A ∈ Sp will deter-
minate important properties of operator A. In that purpose denote by
d = {aii}i∈N the sequence whose elements are diagonal elements of A, and
by D : D(D) → lp the multiplication operator Dx = (aiixi)i∈N, where

D(D) :=
{(

yi
aii

)
i∈N

: y ∈ lp
}
. Also d−1 :=

{
1
aii

}
i∈N

and D−1 : D(D−1)→ lp

will be the multiplication operator D−1x =
(
xi
aii

)
i∈N

, where D(D−1) :={
(aiiyi)i∈N : y ∈ lp

}
. Additionally, denote by Ad(A) the set of accumula-

tion points of the sequence d = {aii}i∈N.
The operator D−1 will be defined and bounded on lp if and only if d−1 ∈

l∞, i.e. if zero is not accumulation point of the sequence d. The operator
D−1 is also injective. That is the reason why we introduce another class of
matrices.

Definition 7. Let S0
p denote the class of SDD(p) matrices such that zero

is not accumulation point of their diagonal elements, i.e., an infinite matrix
A ∈ S0

p if and only if A ∈ Sp and 0 /∈ Ad(A).
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Except SDD(p) property, matrices from S0
p have property that inf{|aii| :

i ∈ N} is strictly positive, which provides that operator

D−1 : lp → R(D−1) = D(D) =

{(
yi
aii

)
i∈N

: y ∈ lp
}

is bounded and bijective. This leads us to the following operator property.

Theorem 8. If A ∈ S0
p, A has bounded inverse A−1 : lp → D(A), with

‖A−1‖op ≤
‖d−1‖∞

1− sp(A)
,

where sp(A) is defined in (3). Moreover, if all aj ∈ lp then D(A) is dense in
lp.

Proof: For any x ∈ lp, ‖D−1x‖pp ≤
(

sup
i∈N

1

|aii|

)p
‖x‖pp. If 0 /∈ Ad(A), then

d−1 ∈ l∞, and ‖D−1‖op ≤ ‖d−1‖∞.
Now rewrite A = D + B, where D = [δijaij]i,j∈N , and consider operator

D−1B, where Bx = (âi · x)i∈N. For any x ∈ lp

‖(D−1B)x‖pp ≤ ‖x‖pp
∑
i

‖âi‖pq
|aii|p

= ‖x‖pp[sp(A)]p,

which implies that sp(A) = ‖D−1B‖op < 1 and ‖(I+D−1B)−1‖op ≤
1

1− sp(A)
.

Now, I + D−1B : lp → lp is bijection and operator D : D(D) → lp,

defined as Dx = (aiixi)i∈N, where R(D−1) = D(D) =
{(

yi
aii

)
i∈N

: y ∈ lp
}
,

is onto, i.e. R(D) = lp. So the same conclusion is valid for the operator
A = D(I +D−1B) : D(A)→ lp, where now D(A) = D[(I +D−1B)−1]D(D).
We can now define the inverse operator A−1 on R(A) = lp, and conclude

that ‖A−1‖op ≤ ‖I +D−1B‖op‖D−1‖op ≤
‖d−1‖∞

1− sp(A)
<∞.

Now suppose that am = (ami )i≥1 ∈ lp, m ∈ N, and denote zm :=(
ami
aii

)
i∈N

. One can see that zm ∈ D(D), m ∈ N and also zm = (I+D−1B)em,

m ∈ N. Since em = (I +D−1B)−1zm ∈ D(A), D(A) is dense in lp. 2
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Therefore, better properties of the inverse of diagonal will give better
properties of A−1. Namely, if d−1 ∈ c0 then D−1 is compact operator, and so
is A−1. The condition d−1 ∈ c0 is fulfilled for example if lim

i→∞
|aii| → ∞.

Example 9. Given 1 < p < ∞, let µ(p) be defined by (2) and consider
matrix

C = (cij)i,j∈N =


1µ(p) 1/2 1/3 . . .

1 2µ(p) 1/3 . . .
1 1/2 3µ(p) . . .
. . . . . . . . . . . .

 , (4)

i.e., for i, j ∈ N,

cij =


1

j
, i 6= j

iµ(p) , i = j.

The matrix C ∈ S0
p, its columns are not in lp and the sequence of diag-

onal elements diverge to infinity. Therefore, the operator C : D(C) → lp is
bijective and C−1 is compact. Notice that D(C) is a small subset of lp.

If, instead of C, we consider symmetric matrix

C̃ =


1µ(p) 1/2 1/3 . . .
1/2 2µ(p) 1/3 . . .
1/3 1/3 3µ(p) . . .
. . . . . . . . . . . .

 ,

i.e., for i, j ∈ N,

c̃ij =


1

max{i, j}
, i 6= j

iµ(p) , i = j,

then additionally D(C̃) is dense in lp.

Boundedness of diagonal will provide operator on whole space lp. Since
d ∈ l∞ also means that infinity is not accumulation point of d we introduce
another class of matrices.

Definition 10. Let S∞p be the class of SDD(p) matrices with bounded diag-
onal, i.e., an infinite matrix A ∈ S∞p if and only if A ∈ Sp and d ∈ l∞.

Lemma 11. The matrix A ∈ S∞p defines a bounded injective operator A :
D(A) = lp → R(A) ⊂ lp.
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Proof: If A ∈ Sp then ai ∈ lq, and for all x ∈ lp, ai · x ∈ C is well defined.
Moreover, rewrite A = D + B, where D = [δijaij]i,j∈N to obtain

‖Ax‖p ≤ ‖Dx‖p + ‖Bx‖p ≤ ‖x‖p (‖d‖∞ + ‖âi‖q)
≤ ‖x‖p‖d‖∞ (1 + ‖w‖p) < 2‖x‖p‖d‖∞.

Thus, D(A) = lp and ‖A‖op := sup
‖x‖p=1

‖Ax‖p ≤ 2‖d‖∞. Injectivity of the

operator A follows from Lemma 4. 2

Corollary 12. If A ∈ S0
p ∩ S∞p then A defines bounded linear bijective oper-

ator A : lp → lp.

Note that A ∈ S0
p ∩ S∞p does not imply the compactness of A−1. These

facts are illustrated in the following example.

Example 13. Given 1 < p <∞, and µ(p) defined by (2), consider matrix

M = (mij)i,j∈N =


µ(p) 1/2 1/3 . . .
1/2 µ(p) 1/6 . . .
1/3 1/6 µ(p) . . .
. . . . . . . . . . . .

 , (5)

i.e., for i, j ∈ N,

mij =


1

ij
, i 6= j

µ(p) , i = j.

Then, since matrix M has constant sequence of diagonal entries, M ∈ S0
p ∩

S∞p , and defined operator M : lp → lp is bijective with a bounded inverse.
On the other hand, matrix

M̃ = (mij)i,j∈N =


µ(p) 1/2 1/3 1/4 . . .
1/2 2µ(p) 1/6 1/8 . . .
1/3 1/6 µ(p) 1/12 . . .
1/4 1/8 1/12 4µ(p) . . .
. . . . . . . . . . . .

 , (6)

i.e., for i, j ∈ N,

m̃ij =


1

ij
, i 6= j

iµ(p) , i = j ≡ 0 (mod 2)
µ(p) , i = j ≡ 1 (mod 2).
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has a diagonal that consists of one constant sequence and one sequence that
diverges to infinity. So, M̃ ∈ S0

p, implying that the operator M̃ : D(M̃)→ lp

is bijective and M−1 is bounded. Furthermore, M̃−1 is not compact which is
in accordance with the fact that M̃ 6∈ S∞p .

4 Spectrum localization for matrix operators

on lp spaces

In this section we provide a method to localize spectra of matrix operators
on lp spaces using classes of SDD(p) matrices. So, we recall basic definitions
and properties.

First, denote Mq the class of matrix operators A whose corresponding
matrix A has all rows in lq. As we have seen, large class of operators on lp

space fulfils this condition. Then, let ρ(A) denote the resolvent set of A, i.e.

ρ(A) = {z ∈ C | z − A : D(A) ⊆ lp → lp has bounded inverse},

and for z ∈ ρ(A), operator RA(z) = (z−A)−1 denotes the resolvent operator
of A. The complement of the the resolvent set σ(A) = C \ ρ(A) is called
the spectrum of A. Furthermore, let σP (A) denote pointwise spectrum of A,
i.e., σP (A) = {z ∈ C | z − A : D(A) ⊆ lp → lp is not injective}. Here the
operator z − A is understood as zI − A, where I is an identity operator on
lp. We know that the set ρ(A) is open, the set σ(A) is closed in C, and the
set σP (A) consists of discrete points in C. Furthermore, it is known that if
an operator A is compact, then σ(A) = σP (A).

Now, we prove theorems that provide regions in the complex plane that
contain the spectrum of an operator A ∈Mq. For that purpose we consider
following sets of complex numbers:

Γpw(A) :=
⋃
i∈N

Γ

(
aii,

rqi (A)

wi

)
, for w ∈ B+

p , (7)

and
Γp(A) :=

⋂
w∈B+p

Γpw(A), (8)

where Γ(ξ, r) denotes a closed disc in the complex plane centered at ξ ∈ C
with radius r ≥ 0.
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Theorem 14. Given arbitrary A ∈Mq,

σP (A) ⊆ Γp(A) and σ(A) ⊆ Γp(A) ∪ Ad(A). (9)

Moreover, the following characterization of (8) holds:

Γp(A) = C \ {z ∈ C : sp(z −A) < 1} , (10)

where sp(·) is defended in (3).

Proof: Suppose that λ ∈ σP (A), i.e., that operator z − A is not injective.
Then, according to the Lemma 4, λI−A 6∈ Sp. Therefore, for every w ∈ B+

p ,

there exist i ∈ N, such that wi|λ− aii| ≤ rqi (A), i.e., λ ∈ Γ
(
aii,

rqi (A)

wi

)
.

To prove the second inclusion, we actually need to prove that σ(A)\σP (A) ⊆
Γp(A)∪Ad(A). If operator λ−A do not have bounded inverse, then according
to Theorem 8 the matrix λI −A can not be SDD(p) matrix with diagonal
entries that have a zero as accumulation point, i.e., either λI − A 6∈ Sp or
0 ∈ Ad(λI − A). But this is equivalent to the fact that λ ∈ Γpw(A), for
arbitrary w ∈ B+

p , or λ ∈ Ad(A).
Notise that z ∈ Γp(A) if and only if z − A 6∈ Sp. Thus, characterization

(10) follows from (3). 2

Since, obviously, sets Γpw(A) contain the sequence d = {aii}i∈N for all
w ∈ B+

p , if Γp(A) would be closed set in C, then Γp(A) ∪ Ad(A) = Γp(A),
and Γp(A) would be the localisation set of the spectrum of A. The following
example shows that this is not always the case, and that Ad(A) is a necessary
part of (9).

Example 15. Consider matrix

N = (nkj)k,j∈N =


−2 1 1/2 1/3 1/4 . . .
0 1 0 0 0 . . .
0 0 2eiπ

3 1/9 1/18 . . .
0 0 0 1/2 0 . . .
0 0 0 0 2eiπ

5 . . .
. . . . . . . . . . . . . . .

 , (11)
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i.e., for k, j ∈ N,

nkj =



0 , j < k

2eiπ
k , j = k ≡ 1 (mod 2)

2
k

, j = k ≡ 0 (mod 2)

1
(j−k)k2

, j > k ≡ 1 (mod 2)

0 , j > k ≡ 0 (mod 2)

which defines the operator N : D(N) ⊆ l2 → R(N) ⊆ l2. Since N is an
upper triangular infinite matrix, it is easy to obtain that

σP (N) = {k−1 : k ∈ N} ∪ {2e
iπ

2k−1 : k ∈ N},

and, for w = {
√

6
kπ
}k∈N,

Γ2
w(N) = {k−1 : k ∈ N} ∪

⋃
k∈N

Γ

(
2e

iπ
2k−1 ,

π2

6(2k − 1)

)
.

So, Ad(N) = {0, 2} ⊂ σ(N), but Ad(N) 6⊂ Γ2(N) since for all k ∈ N:

|0− 2e
iπ

2k−1 | = 2 >
π2

6(2k − 1)
,

and

|2− 2e
iπ

2k−1 | = 2
√

2

√
1− cos

(
π

2k − 1

)
>

π2

6(2k − 1)
.

This is illustrated in Figure 1, where the set Γ2
w(N) is shown in light gray,

while Γ2(N) is shown in dark gray and eigenvalues of N are marked by ×.

Therefore, although sets Γ
(
aii,

rqi (A)

wi

)
, i ∈ N and w ∈ B+

p , are closed in

C, depending of the matrix operator A, Γpw(A) and Γp(A) may or may not
be closed. So, instead of working with Γpw(A) and Γp(A), it may be more

practical to use their closures Γpw(A) and Γp(A) as localization sets for σ(A).
We continue by investigating boundedness of (7) and (8) since this will

determine geometric properties of these sets in the complex plane.
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Figure 1: Sets Γ2(N) (dark gray) and Γ2
w(N), w = {

√
6

kπ
}k∈N, (light gray) for

matrix N of (11). Elements of σP (N) are marked by ×.

Theorem 16. Let A ∈Mq, d = {aii}i∈N and r = {rqi (A)}i∈N. The following
statements hold:

a) If r 6∈ lp, then Γpw(A) is unbounded in C, for all w ∈ B+
p .

b) If r 6∈ lp and d ∈ l∞, then Γp(A) = C.

c) If r ∈ lp, then there exist w ∈ B+
p and γ > 0, depending of w, such that

Γpw(A) =
⋃
i∈N

Γ(aii, γi),

where γi = γ or γi = 0, for i ∈ N.

d) If r ∈ lp and d ∈ l∞, then Γp(A) is bounded.

Therefore, Γp(A) is bounded if and only if r ∈ lp and d ∈ l∞.

Proof: First, assume that r 6∈ lp, for every w ∈ B+
p . Then, we have

that for γi :=
rqi (A)

wi
, i ∈ N, limi→∞γi = +∞. Indeed, if we suppose that

limi→∞γi < +∞, then, there exist a constant 0 < M <∞ such that rqi (A) <
Mwi, for all i ∈ N. But, then ‖r‖p ≤M‖w‖p < M <∞.
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Therefore, we have that there exist a sequence {γik}k∈N, such that γik →
∞, k →∞. But then, ⋃

k∈N

Γ(aikik , γik) ⊆ Γpw(A),

implies that Γpw(A) is unbounded in C, and a) is proved. If in addition d ∈ l∞,
then ⋃

k∈N

Γ(aikik , γik) = C,

which implies b).

To prove c), let r ∈ lp, and for arbitrary ε > 0 define the sequence w by

wi :=


rqi (A)

‖r‖p+ε
, for rqi (A) > 0,

vi
‖r‖p+ε

, for rqi (A) = 0,

where i ∈ N, and v is an arbitrary sequence of positive numbers such that
‖v‖p < ε.

Then, w ∈ B+
p , and z ∈ Γpw(A) if and only if |z − aii| ≤ ‖r‖p + ε =: γ, or

z = aii, for some i ∈ N. We conclude that for this particular w,

Γpw(A) =
⋃
i∈N

Γ(aii, γi),

where γi = γ or γi = 0, for i ∈ N.

Finally, since d) is a direct consequence of c), using a) we obtain that
Γp(A) is bounded if and only if r ∈ lp and d ∈ l∞. 2

Results of the previous Theorem are illustrated in Figures 2 and 3. Namely,
for the matrix A of Example 1, ||r||p < µ(p) <∞, and consequently set Γp(A)
is compact in C. Note that in this case Γp(A) is closed, so σ(A) ⊂ Γp(A).
In Figure 2, the set Γ2(A) is shaded dark grey, while the set Γ2

w(A), for

w = {
√

6
kπ
}k∈N, is light grey. To be precise, in order to obtain that the set

Γ2
w(A) contains all eigenvalues of A, we need that ||w||2 < 1. But, for plot-

ting purposes, ||w||2 = 1 doesn’t make essential problem, since we can easily
construct ŵ = {wk − δk,1ε}k∈N, for sufficiently small ε > 0, and obtain that
Γ2
ŵ(A), which is arbitrarily close to Γ2

w(A), is a localization set for σP (A). So,

13



having this in mind, for plotting purposes, in the reminder of this section,
we will use w = {

√
6

kπ
}k∈N.

On the other hand, for matrix C of Example 9, r 6∈ lp, and, therefore,
Γp(C) is unbounded in C. This is shown in Figure 3. Again, set Γ2(C) is
shaded dark gray and Γ2

w(C) light gray.
Here, we remark that Γ2

w(C) is the closed right half-plane of C, while
Γ2
w(C) is the open right-half plane.

−4 −3 −2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2: Sets Γ2(A) (dark gray) and Γ2
w(A), w = {

√
6

kπ
}k∈N, (light gray) for

matrix A given in (1).

0 10 20 30 40 50 60 70 80
−8

−6

−4

−2

0

2

4

6

8

Figure 3: Sets Γ2(C) (dark gray) and Γ2
w(C), w = {

√
6

kπ
}k∈N, (light gray) for

matrix C of (4).

Very useful property of Geršgorin-type localizations for finite matrices is
that disjoint components reveal number of eigenvalues that are isolated in
such a way, [19]. In [9] this property was proved for all eigenvalue localization
sets that arise from subclasses of H-matrices. Similar results in the infinite
case were obtained in [16] for l∞ and l1 matrix operators. Here we extend
this isolation property to matrix operators on lp space for 1 < p < ∞. We
will use well known result on bounded perturbations due to Rellich, see [4,
Theorem 11.1.6]. Here, for the sake of completeness, we slightly reformulate
it to better suit our application.
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Lemma 17. Let U ⊆ C be interior of a simple closed curve Ω ⊂ C. Given
two closed operators A and B acting on a Banach space (X , ‖ · ‖), consider
a family At := A + tB, for t ∈ C. Suppose that RA exists on Ω and that
there exist c1, c2 > 0 such that ‖RA(z)‖ ≤ c1 and ‖RA(z)B‖ ≤ c2 for all
z ∈ Ω. Then, σ(A) ∩ U 6= ∅ implies that σ(At) ∩ U 6= ∅ for all t ∈ C such
that |t| < 1/c2, and, moreover, the spectral subspaces of At do not change
dimensions.

Proof: First, since RA(z)B is uniformly bounded on Ω, we have that for
every z ∈ Ω and every t ∈ C such that |t| < 1/c2, (I − tRA(z)B)−1 exists as
a bounded operator and

(I − tRA(z)B)−1 =
∑
n∈N

tn(RA(z)B)n.

Therefore, for every z ∈ Ω and every t ∈ C such that |t| < 1/c2, resolvent
operator of At

RAt(z) = [I − tRA(z)B]−1RA(z) =
∑
n∈N

tn[RA(z)B]nRA(z)

is jointly analytic function of (z, t), and for all relevant (z, t)

‖RAt(z)‖ ≤ c1

1− c2|t|
.

But, since σ(A) ∩ U 6= ∅, this means that the Riesz projection operator (see
Theorem 11.1.5 of [4])

PAt :=
1

2πi

∫
Ω

RAt(z)dz

is analytic in t ∈ C such that |t| < 1/c2, and, therefore, according to Lemma
1.5.5 of [4], the space R(PAt) has the same dimension for all |t| < 1/c2.
In another words, spectral subspaces of At do not change dimensions for
|t| < 1/c2, which completes the proof. 2

Having this, for arbitrary matrix operator A ∈Mq we prove that all dis-
joint parts of closures of localization sets (7) and (8) have to contain eigen-
values. Moreover, we prove that in bounded parts the number of eigenvalues
has to coincide with the number of diagonal elements of A.
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Theorem 18. Given A ∈Mq, w ∈ B+
p and ∅ 6= N ⊆ N, denote

N (A) :=
⋃
i∈N

Γ(aii,
rqi (A)

wi
).

If N is such that N (A) is bounded and disjoint with Γpw(A) \ N (A), then
N (A) contains exactly card(N) eigenvalues of the operator A.

Proof: Let us denoteM(A) := Γpw(A) \ N (A). Since N (A) andM(A) are
disjoint closed sets and N (A) is compact, we can construct a simple closed

curve Ω in C such that int(Ω) ⊃ N (A) and Ω ∩ Γpw(A) = ∅. But then, for
every z ∈ Ω, wi|z − aii| > rqi (A) holds for all i ∈ N, and we obtain∑

i∈N

[ rqi (A)

|z − aii|

]p
≤ ‖w‖p < 1, z ∈ Ω. (12)

Let B := A −D, D : D(D) → lp is a multiplication operator defined by
Dx = (aiixi)i∈N. Note that both, D and B, operators are closed. Then, since
for arbitrary z ∈ Ω we have that z 6∈ {aii : i ∈ N} ∪ Ad(A), there exists
c1 > 0 such that for all z ∈ Ω, ‖RD(z)‖ ≤ c1.

Furthermore, since rqi
(
(z −D)−1B

)
=

rqi (B)

z − aii
, we obtain that for every

z ∈ Ω,

‖RD(z)B‖ ≤
∑
i∈N

[ rqi (B)

|z − aii|

]p
≤ c2 = ‖w‖p < 1. (13)

Finally, we construct a family of closed operators At := D+ tB, t ∈ [0, 1].
Since for every 0 ≤ t2 ≤ t1 ≤ 1, we have that N (At2) ⊆ N (At1) and
M(At2) ⊆M(At1), which implies that Ω ⊆ ρ(At), i.e. the resolvent operator
of At exists as a bounded operator in every point of Ω.

Now, taking t = 0 we have that σ(A0) = σ(D) = {aii : i ∈ N} ∪ Ad(A),

and according to Theorem 14, σ(A0) ⊆ Γpw(A0) = N (A0)∪̇M(A0). There-
fore, σ(A0) ∩ N (A0) = {aii : i ∈ N}, and dimension of the space R(PA0)
has to be card(N). But, since for all t ∈ [0, 1], tc2 < 1, Lemma 17 implies
that dimension of the space R(PA1) = R(PA) is also card(N), and, therefore,
int(Ω) has to contain exactly card(N) eigenvalues of the operator A. Since
σ(A) ∩ int(Ω) = σ(A) ∩N (A), theorem is proved. 2
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Theorem 19. Let A ∈ Mq. If there exists a compact set N (A) ⊆ C such

that Γp(A) \ N (A) is closed, then card(N (A) ∩ σ(A)) = card(N (A) ∩ d),
where d = {aii}i∈N.

Proof: The proof of this theorem follows the same lines as the proof of the
previous one. The only difference is in obtaining constant c2 < 1 in (13).
Namely, for a simple contour Ω ⊂ C \ Γp(A) such that N (A) ⊂ int(Ω), from
(10), we have that

sp(z − A) =
∑
i∈N

[ rqi (A)

|z − aii|

]p
< 1.

Therefore, there exists c2 > 0 such that c2 := supz∈Ω sp(z − A) ≤ 1. So, it
just remains to obtain that c2 6= 1. To that end, assume c2 = 1, i.e., there
exists sequence {zn}n∈N ⊂ Ω such that limn→∞ zn = z and sp(z − A) = 1.

Since Ω is closed in C, z ∈ Ω ⊂ C \ Γp(A) ⊆ C \ Γp(A). But then, according
to Theorem 14, sp(z − A) < 1. 2

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

Figure 4: Sets Γ2(M̃) (dark gray) and Γ2
w(M̃), for w = {

√
6

kπ
}k∈N, (light gray)

for matrix M̃ of (6).

Note here that if r ∈ lp and d ∈ l∞, according to Theorem 16, Γp(A) is
compact, and taking N = N, previous result states that σ(A) is countable
set.

As an illustration of this isolation property, consider matrix M̃ of Exam-
ple 13. In Figure 4, set Γ2(M̃) is dark gray and set Γ2

w(M̃), for w = {
√

6
kπ
}k∈N,

is light gray. According to Theorem 19 all dark gray compact disjoint sets,
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except the leftmost one, contain exactly one eigenvalue of M̃ , while the left-
most one contains ℵ0 of them. The same holds for the light gray sets from
Theorem 18, since

Γ2
w(M̃) =

⋃
k∈N

Γ

(
π2

6
,
π2

6
− π

√
6

6(2k − 1)

)
∪
⋃
k∈N

Γ

(
π2k

3
,
π2

6
− π
√

6

12k

)
,

and all circles

Γ

(
π2k

3
,
π2

6
− π
√

6

12k

)
, k ∈ N,

are mutually disjoint.

There are many possible applications of the results obtained in this sec-
tion. For example, one can use them to determine sufficient conditions for an
l2 operator to be normal, or to determine if an infinite linear dynamical sys-
tem has assimptoticaly stable equilibrium. To illustrate one such application,
given ω ∈ C, let us consider Mathieu equation:

d2y

dx2
+ (λ− 2ω cos 2x)y = 0, (14)

with the boundary condition y(0) = y(π/2) = 0. This well known equa-
tion arises in many applications - vibrations in an elliptic drum, the in-
verted pendulum, radio frequency quadrupole, frequency modulation, fixed-
field alternating-gradient cyclotrons, the Paul trap for charged particles and
mirror trap for neutral particles, stability of a floating body and others, [13].

One of the interesting problems when dealing with Mathieu equation is to
determine when, depending on ω, there exists sequence of distinct complex
values λ each one corresponding to a unique solution of (14) of the form
y(x) =

∑∞
j=1 ujω

−j cos(2jx), [15], where {uj}j∈N are unknown coefficients.
This problem can be reformulated as eigenvalue problem Hu = λu, where
H = (hkj)k,j∈N is infinite tridiagonal matrix

hkj =


ω2 , j = k − 1, k ≥ 2,
4k2 , j = k,
1 , j = k + 1, k ≥ 1.

Then, the goal is to determine conditions on ω to assure that all eigenvalues
of H are distinct. One way to do so is to use Theorem 18 and obtain sequence
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of disjoint disks. Namely, considering H as matrix operator on l2, we have
that all disks in (7) are disjoint if

|16− 4| > 1

w1

+
√

1 + ω4
1

w2

and, for k ≥ 2,

4|2k + 1| = |4(k + 1)2 − 4k2| >
√

1 + ω4

(
1

wk+1

+
1

wk

)
.

Therefore, taking w = {
√

6
kπ
}k∈N, we obtain that for |ω| < 1.7188 all eigenval-

ues of H are simple. Off course, this is not the best possible value one can
obtain using Theorems 18 and 19. In fact, the best upper bound would be
|ω| < 3, while the best possible bound |ω| < 6.9289 can be computed using
an iterative algorithm of [17] . So, as this example illustrates, one can be
motivated to explore tighter localisation sets that are not computationally
expensive, as it was done in the finite matrix case, see [9, 19]. This and
another open questions and possible applications of SDD(p) matrices will be
the subject of our future research.
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