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Abstract

H-distributions associated to weakly convergent sequences in Sobolev spaces are determined.
It is shown that a weakly convergent sequence (un) in W−k,p(Rd) has the property that θun

converges strongly in W−k,p(Rd) for every θ ∈ S(Rd) if and only if all H-distributions related to
this sequence are equal to zero. Results are applied on a weakly convergent sequence of solutions
to a family of linear first order PDEs.

1. Introduction

H-measures, or Microlocal defect measures, of Tartar [21] and Gérard [8] obtained for
weakly convergent sequences in L2(Rd), and their generalization to Lp(Rd), p ∈ (1,∞), called
H-distributions [5], are widely used to determine whether a weakly convergent sequence
of solutions to certain classes of equations converges strongly. For example, by using H-
measures the authors of [3] obtained L1

loc-precompactness of solutions to diffusion-dispersion
approximation for a scalar conservation law. In homogenization theory applications of these
objects can be found e.g. in [4] and [12]. In [14], H-measures are applied to family of entropy
solutions of a first order quasilinear equation and in [18] to ultraparabolic equation. The list
of applications of these objects is far from being complete.

Our aim in this paper is to extend the concept of H-distributions to the Sobolev spaces.
For the purposes of this paper, we introduce in Subsection 2.1 new tensor product - spaces of
test functions and distributions. For the reader’s convenience, we give full description of such
spaces in the Appendix (Propositions 4.1 and 4.2).

In order to use the duality W−k,p-W k,q, q = p
p−1 , k ∈ N0, we prove the existence result for H-

distributions associated to a weakly convergent sequence in Lp(Rd); in Theorem 2.1 we extend
the result of [5, Theorem 2.1] since we did not use the localization coming from the compactly
supported test functions. H-distributions of Theorem 2.1 are defined on the space of rapidly
decreasing functions. This leads to the improvements of results of [5] in the case of Lp−spaces.
In Theorem 3.1 we prove the existence of H-distributions for weakly convergent sequences in
Sobolev spaces. Our main theorem, Theorem 3.2, shows that if for a given weakly convergent
sequence un ⇀ 0 in W−k,p(Rd) and every weakly convergent sequence vn ⇀ 0 in W k,q(Rd)
the corresponding H-distributions are equal to zero, then for every ϕ ∈ S(Rd), (ϕun) converges
strongly to zero in W−k,p(Rd). Clearly, the converse assertion also holds. As an application, we
analyze in Theorem 3.3 a weakly convergent sequence (un) of solutions to

∑d
i=1 ∂i (Ai(x)un) =

fn in W−k,p(Rd), d > p
p−1 , and show that the supports of the corresponding H-distributions

are concentrated on the characteristic set {(x, ξ) :
∑d
i=1Ai(x)ξi = 0}, under the new condition

that for every ϕ ∈ S(Rd), (ϕfn) strongly converges to zero in W−k−1,p(Rd). Moreover, if all
H-distributions assigned to this equation are equal to zero, then (ϕun) converges strongly to
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zero in W−k,p(Rd). The corresponding results for L2(Rd) and Lq(Rd) are obtained in [21] and
[5], respectively. Even in mentioned cases our results with k = 0 extend previous results since
the non-locality is the essential part of our approach. Moreover, the results from the recent
contributions in which the H-distributions were used cf. [11, 13, 17] can be extended to a more
general situations (in the Sobolev spaces with negative coefficients) by using results from this
paper.

2. Basic definitions and assertions

2.1. Some spaces of distributions

We refer to [2] for the Sobolev spaces W k,q(Rd). If k > d
q , then W k,q(Rd) ⊂ C0(Rd),

where C0(Rd) is the space of continuous functions vanishing at infinity. The dual(
W k,q(Rd)

)′
=: W−k,p(Rd) is isometrically isomorphic to the Banach space consisting of

distributions u ∈ S ′(Rd) of the form u =
∑
|α|≤k

∂αuα, where all uα ∈ Lp(Rd), normed by

‖u‖ := inf
{( ∑
|α|≤k

‖uα‖pp
)1/p

: u =
∑
|α|≤k

∂αuα

}
, cf. [2, Theorem 3.10, p. 50].

In order to give clear explanations concerning a new space, which will be denoted by SE(Rd ×
Sd−1), and its dual SE ′(Rd × Sd−1), we will use some classical results, [16] and [7], of L2 and
Sobolev theory for the unit sphere Sd−1 as well as of [6] for some results for Ck and L2 functions
on Sd−1. Concerning Sobolev spaces and distributions on a manifold, we refer to [19] and for
tensor product of test spaces, to [22].

We define the space of smooth functions SE(Rd × Sd−1) by the sequence of norms

p∞Rd×Sd−1,k(θ) = sup
(x,ξ)∈Rd×Sd−1,|α+β|≤k

〈x〉k|(∆?
ξ)
α∂βx θ(x, ξ)|, (2.1)

where 〈x〉k = (1 + |x|2)k/2 and ∆? is the Laplace-Beltrami operator. The space SE(Rd × Sd−1)
is a Fréchet space and can be identified with the completion of tensor product S(Rd)⊗̂E(Sd−1),
as was shown in Proposition 4.2 in the Appendix. Complete description of this space can be
found in the Appendix.

2.2. H-distributions on Lp spaces

A bounded function ψ, on Rd, is called Lp-Fourier multiplier if f 7→ Aψ(f) := (ψf̂)ˇ is a
bounded mapping from S(Rd) to Lp(Rd) and can be continuously extended to a mapping from

Lp(Rd) to Lp(Rd). Here f̂(ξ) = F [f ](ξ) =

∫
Rd

e−2πix·ξf(x) dx denotes the Fourier transform

on Rd, while ǧ(x) = F−1[g](x) =

∫
Rd

e2πix·ξg(ξ) dξ denotes the inverse Fourier transform. The

space of Lp-Fourier multipliers, denoted by Mp(R
d), 1 < p <∞ (cf. [9]), is supplied by the

norm ‖ψ‖Mp
:= ‖Aψ‖Lp→Lp , where ‖ · ‖Lp→Lp is the standard operator norm.

If ψ ∈ Cκ(Rd\{0}), κ = [d2 ] + 1, is homogeneous of zero degree (i.e. ψ(λξ) = ψ(ξ), λ > 0),
then ψ ∈ L∞(Rd) and

|∂αξ ψ(ξ)| ≤ A|ξ|−|α|, ξ ∈ Rd\{0}, (2.2)

for every |α| ≤ κ (with A = max
|β|≤κ

sup
ξ 6=0
|ξ|α|∂βψ|, cf. [1, p. 120]). Thus ψ fulfills conditions from

the Mihlin theorem (cf. [9]): Let ψ be a complex-valued bounded function on Rd\{0} that
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satisfies (2.2) for all multi-indices |α| ≤ [d2 ] + 1. Then ψ ∈Mp(R
d) for any 1 < p <∞ and

‖ψ‖Mp ≤ Cd max

{
p,

1

p− 1

}
(A+ ‖ψ‖∞). (2.3)

Moreover, if ψ ∈ Cκ(Sd−1), then constant A in (2.3) can be replaced by ‖ψ‖Cκ(Sd−1).
Fourier multiplier operators Aψ with symbol ψ ∈ Cκ(Sd−1) can be defined on W−k,p(Rd),

via duality

W−k,p〈Aψu, v〉Wk,q := W−k,p〈u,Aψ̄v〉Wk,q .

Since ∂αAψ̄v = Aψ̄(∂αv), we know that Aψ̄v ∈W k,q(Rd). If u ∈W−k,p(Rd) is of the form

u =
∑
|α|≤k

∂αuα, then for all v ∈W k,q(Rd),

W−k,p〈Aψu, v〉Wk,q =
∑
|α|≤k

W−k,p〈∂αuα,Aψv〉Wk,q =

=
∑
|α|≤k

(−1)|α| Lp〈uα,Aψ(∂αv)〉Lq =
∑
|α|≤k

(−1)|α| Lp〈Aψ(uα), ∂αv〉Lq .

One can see that every Lp-multiplier operator Aψ with symbol ψ ∈Mp(R
d) is a bounded

operator from W−k,p(Rd) to W−k,p(Rd).
In order to prove the existence of an H-distributions of Theorem 3.1 given below, we need

Tartar’s First commutation lemma [21] and the modification of this lemma given in [5] .
[21]: Let ψ ∈ C(Sd−1) and b ∈ C0(Rd) define the Fourier multiplier operator Aψ and the

operator of multiplication B, acting on u ∈ L2(Rd), as follows: F(Aψu)(ξ) = ψ
(
ξ
|ξ|

)
F(u)(ξ),

ξ ∈ Rd\{0}, and Bu(x) = b(x)u(x), x ∈ Rd. Then the operators Aψ and B are bounded on
L2(Rd), and their commutator C := AψB −BAψ is a compact operator from L2 into itself.

Moreover, [5]: If a sequence (vn) is bounded in both L2(Rd) and Lr(Rd), for some r ∈ (2,∞]
and vn ⇀ 0 in the sense of distributions, then the sequence (Cvn) strongly converges to zero
in Lq(Rd), for any q ∈ [2, r]\{∞}.

Theorem 2.1. If un ⇀ 0 in Lp(Rd), and vn ⇀ 0 in Lq(Rd), then there exist subsequences
(un′), (vn′) and a distribution µ(x, ξ) ∈ SE ′(Rd × Sd−1) of order not more than κ = [d/2] + 1
in ξ, such that for every ϕ1, ϕ2 ∈ S(Rd) and ψ ∈ Cκ(Sd−1),

lim
n′→∞

∫
Rd

Aψ(ϕ1un′)(x)(ϕ2vn′)(x)dx= lim
n′→∞

∫
Rd

(ϕ1un′)(x)Aψ(ϕ2vn′)(x)dx

=: 〈µ, ϕ1ϕ2ψ〉,
(2.4)

where Aψ : Lp(Rd)→ Lp(Rd) is a Fourier multiplier operator with the symbol ψ ∈ Cκ(Sd−1).

By the order of µ ∈ SE(Rd × Sd−1) we mean that for any ϕ ∈ S(Rd), 〈µ(x, ξ), ϕ(x)ψ(ξ)〉
can be extended on Cκ(Sd−1) (see (2.9) and (2.10) below).

Proof. First, notice that the Fourier multiplier operator Aψ with ψ ∈ Cκ(Sd−1) is well
defined on both ϕ1un ∈ Lp(Rd) and ϕ2vn ∈ Lq(Rd), and that the adjoint operator of Aψ is
Aψ. Thus, the first equality in (2.4) holds.

Let 1 < p ≤ 2. Consider a sequence of sesquilinear (linear in ψ ∈ Cκ(Sd−1) and anti-linear
in ϕ ∈ S(Rd)) functionals

µn(ϕ,ψ) =

∫
Rd

unAψ(ϕvn)dx. (2.5)
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By the continuity of Aψ and the boundedness of (un) and (vn) in Lp(Rd) and Lq(Rd), it
follows that there exists c > 0, such that for every n ∈ N,

|µn(ϕ,ψ)| ≤ ‖un‖Lp‖Aψ(ϕvn)‖Lq ≤ c ‖ψ‖Cκ(Sd−1)‖ϕ‖L∞ . (2.6)

Fix ϕ ∈ S(Rd) and denote by (Bnϕ) the sequence of functions defined on Cκ(Sd−1) by

〈Bnϕ, ·〉 = µn(ϕ, ·). (2.7)

For every n ∈ N, the linearity of Bnϕ is clear and the continuity follows from (2.6):

|〈Bnϕ,ψ〉| ≤ cϕ ‖ψ‖Cκ(Sd−1), where cϕ = c||ϕ||L∞ . (2.8)

If we fix ψ ∈ Cκ(Sd−1), then (2.5) implies that the mapping S(Rd)→ C, ϕ 7→ 〈Bnϕ,ψ〉 is
anti-linear and, again by (2.6), continuous.

We continue with fixed ϕ and apply the Sequential Banach Alaoglu theorem to obtain weakly
star convergent subsequence (Bkϕ) in (Cκ(Sd−1))′. We denote the weak star limit of Bkϕ by
Bϕ, i.e. for every ψ ∈ Cκ(Sd−1),

〈Bϕ,ψ〉 = lim
k→∞

〈Bkϕ,ψ〉.

We are going to show that B can be defined on the whole S(Rd), so that S(Rd) 3 ϕ 7→ Bϕ ∈
(Cκ(Sd−1))′ is linear and continuous.

By the diagonalization argument, we define B on a countable dense set M = {ϕm|m ∈
N} ⊂ S(Rd). For that purpose extract a subsequence (B1,k)k ⊂ (Bn)n such that (B1,kϕ1)
is weakly star convergent in (Cκ(Sd−1))′ and denote the limit as Bϕ1. Then extract a
subsequence (B2,k)k ⊂ (B1,k)k such that (B2,kϕ2) is weakly star convergent in (Cκ(Sd−1))′

and denote the limit as Bϕ2. Notice also that B2,kϕ1 converges weakly star to Bϕ1. Repeating
this procedure (extracting subsequences for all ϕm ∈M), we obtain diagonal (sub)sequence

Bk,k ∈ L
(
S(Rd),

(
Cκ(Sd−1)

)′)
, such that for all ϕm ∈M

〈Bϕm, ψ〉 = lim
k→∞

〈Bk,kϕm, ψ〉, ψ ∈ Cκ(Sd−1).

Denote Bk,k =: bk and fix ψ ∈ Cκ(Sd−1). By (2.7), ϕ 7→ 〈bkϕ,ψ〉, is a pointwise bounded
sequence in S ′(Rd) which converges on a dense set M ⊂ S(Rd). By the Banach-Steinhaus
theorem, see e.g. [10, p. 169], 〈bk(·), ψ〉 converges to 〈B(·), ψ〉 on S(Rd). In this way we show
that for every ϕ ∈ S(Rd) and every ψ ∈ Cκ(Sd−1)

lim
k→∞

〈bkϕ,ψ〉 = 〈Bϕ,ψ〉.

Moreover, by (2.7),

|〈Bϕ,ψ〉| ≤ c||ϕ||L∞ ||ψ||Cκ(Sd−1). (2.9)

By [22, Part III, Chap. 50, Proposition 50.7, p. 524] (it is a version of the Schwartz kernel
theorem) we have that there exists µ ∈ SE ′(Rd × Sd−1) defined as

〈µ(x, ξ), ϕ(x)ψ(ξ)〉 = lim
k→∞

〈bkϕ,ψ〉 = lim
k→∞

∫
ukAψ(ϕvk)dx, (2.10)

for all ϕ ∈ S(Rd), ψ ∈ Cκ(Sd−1), where (uk) is a subsequence of (un) and (vk) is a subsequence
of (vn) corresponding to (bk). Now, we will use the factorization property of S(Rd), [15]: Every
ϕ ∈ S(Rd) can be written as ϕ = ϕ1ϕ2, for some ϕ1, ϕ2 ∈ S(Rd). Then

〈µ, ϕψ〉 = lim
k→∞

∫
ukAψ(ϕ1ϕ2vk)dx.
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Since ‖ϕ2vk‖L2 ≤ ‖vk‖Lq‖ϕ2‖
L

2q
q−2

, we can apply the commutation lemma to ϕ2vk ∈ L2 ∩ Lq

and ϕ1 ∈ S(Rd) ⊂ C0(Rd) to obtain that for every ϕ1, ϕ2 ∈ S(Rd) and ψ ∈ Cκ(Sd−1),

〈µ, ϕ1ϕ2ψ〉 = lim
k→∞

∫
Rd

ϕ1ukAψ(ϕ2vk)dx. (2.11)

This completes the proof of Theorem 2.4 for 1 < p ≤ 2.
In the case when p > 2, we define

µn(ϕ,ψ) :=

∫
Rd

Aψ(ϕun)vndx.

Then, in the same way as above, but now with the change of the roles of (un) and (vn), we
use factorization ϕ = ϕ1ϕ2, then the commutation lemma on ϕ1un ∈ L2(Rd) and apply the
preceding proof.

Remark 1. The formulation of the previous theorem can be slightly changed in the case
when p ∈ (1, 2). Then, instead of vn ⇀ 0 in Lq we can assume that vn ⇀ 0 in Lr for some r ≥ q
and obtain the same result as in Theorem 2.1. In that case for every ϕ ∈ S(Rd), ϕvn ∈ Lq ∩ L2

and the same proof can be applied. The same idea but with compactly supported ϕ was used
in [5].

3. H-distribution and Sobolev spaces

The next theorem determines H-distributions associated to sequences in Sobolev space.

Theorem 3.1. If a sequence un ⇀ 0 weakly inW−k,p(Rd) and vn ⇀ 0 weakly inW k,q(Rd),
then there exist subsequences (un′), (vn′) and a distribution µ ∈ SE ′(Rd × Sd−1) such that for
every ϕ1, ϕ2 ∈ S(Rd) and every ψ ∈ Cκ(Sd−1),

lim
n′→∞

〈Aψ(ϕ1un′) , ϕ2vn′〉 = lim
n′→∞

〈ϕ1un′ , Aψ(ϕ2vn′)〉 = 〈µ, ϕ1ϕ̄2ψ〉. (3.1)

Proof. Since un ⇀ 0 in W−k,p(Rd), there exist a subsequence un′ ⇀ 0 such that un′ =∑
|α|≤k

∂αgα,n′ , where for every |α| ≤ k, (gα,n′) is a sequence of Lp-functions such that gα,n′ ⇀ 0

in Lp(Rd). Indeed, since a weakly convergent sequence forms a bounded set in W−k,p(Rd),
using the same proof of the representation theorem for elements of W−k,p(Rd), one can

obtain the existence of bounded sets {Fα,n, n ∈ N}, |α| ≤ k, such that un =
∑
|α|≤k

∂αFα,n.

Now, since {Fα,n, n ∈ N} are bounded in Lp(Rd), these sets are weakly precompact and
every {Fα,n, n ∈ N} has a weakly convergent subsequence. By the diagonalization method
one can find a subsequence such that Fα,n′ ⇀ fα ∈ Lp(Rd), n′ →∞, |α| ≤ k, in Lp(Rd).

Since
∑
|α|≤k

∂αFα,n′ ⇀ 0, it follows that
∑
|α|≤k

∂αfα = 0. Thus we obtain required subsequence

un′ =
∑
|α|≤k

∂α(Fα,n′ − fα). In the sequel we will not relabel subsequences, so we will use un

instead of un′ .
Since

∂αx

[
Aψ(u)

]
= Aψα(u) = Aψ(∂αu), for ψα(ξ) = (2πi)|α|ξαψ(ξ),
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we have that

Aψ (ϕ1 ∂
αFα,n) = (−1)|α|

∑
0≤β≤α

(−1)|β|
(
α
β

)
∂β
[
Aψ
(
Fα,n ∂

α−βϕ1

)]
,

and so

〈Aψ(ϕ1un) , ϕ2vn〉 =
∑
|α|≤k(−1)|α|

∑
0≤β≤α

(
α
β

)〈
Aψ
(
Fα,n ∂

α−βϕ1

)
, ∂β[ϕ2vn]

〉
=
∑
|α|≤k

(−1)|α|
∑

0≤β≤α

(
α
β

) ∑
0≤γ≤β

(
β
γ

)〈
Aψ
(
Fα,n ∂

α−βϕ1

)
, ∂β−γϕ2 ∂

γvn
〉
.

(3.2)
For the moment, we fix α and apply Theorem 2.1 to Fα,n ⇀ 0 in Lp(Rd) and vn ⇀ 0

in Lq(Rd), thus obtaining subsequences (Fα,n0)n0 , (vα,n0)n0 and an H-distribution µα,0 ∈
SE ′(Rd × Sd−1), such that

〈µα,0 , ϕ1ϕ2ψ〉 := lim
n0→∞

〈Aψ (ϕ1Fα,n0
) , ϕ2 vα,n0

〉 .

Then, applying Theorem 2.1 to Fα,n0 ⇀ 0 in Lp(Rd), and ∂(1,0,...,0)vα,n0 ⇀ 0 in Lq(Rd),
we obtain subsequences (Fα,n(1,0,...,0)

)n(1,0,...,0)
, (vα,n(1,0,...,0)

)n(1,0,...,0)
and an H-distribution

µα,(1,0,...,0) ∈ SE ′(Rd × Sd−1). Thus, we obtain finitely many H-distributions µα,γ , 0 ≤ γ ≤ α,
such that

〈µα,γ , ϕ1ϕ2ψ〉 := lim
nγ→∞

〈
Aψ
(
ϕ1Fα,nγ

)
, ϕ2 ∂

γvα,nγ
〉
.

The last one µα,α is obtained together with subsequences (Fα,nα)nα , (vα,nα)nα which we
are going to use to define H-distribution µα in the following way: For ϕ1, ϕ2 ∈ S(Rd),
ψ ∈ Cκ(Sd−1),

〈µα , ϕ1ϕ2ψ〉 := (−1)|α|
∑

0≤β≤α

(
α
β

) ∑
0≤γ≤β

(
β
γ

)〈
µα,γ , ∂

α−βϕ1 ∂
β−γϕ̄2 ψ

〉
.

The sum on the right hand side is finite and all H-distributions µα,γ can be defined via (Fα,nα)nα
which is subsequence of Fα,nγ and (vα,nα)nα which is subsequence of (vα,nγ )nγ , so the H-
distribution µα is well-defined.

Let us emphasize that we have obtained µα for a fixed α. Now if we take first α = 0 with
previous procedure we can obtain H-distribution µ0 defined via (F0,n0

)n0
and (vn0

)n0
. Then,

starting with (Fe1,n0
)n0

and (ve1,n0
)n0

we obtain (by the same procedure) H-distribution µe1

defined via (Fe1,ne1 )ne1 and (ve1,ne1 )ne1 . Here e1 = (1, 0, ..., 0). Then we proceed with e2 =
(0, 1, 0, ..., 0) to obtain H-distribution µe2 and so on with all |α| ≤ k.

At the end we obtain H-distribution µ defined by

〈µ , ϕ1ϕ2ψ〉 :=
∑
|α|≤k

(−1)|α|
∑

0≤β≤α

(
α
β

) ∑
0≤γ≤β

(
β
γ

)〈
µα,γ , ∂

α−βϕ1 ∂
β−γϕ̄2 ψ

〉
.

and subsequences

∑
|α|≤k

∂αFα,n(0,...,0,k)


n(0,...,0,k)

and
(
vn′ ≡ v(0,...,0,k),n(0,...,0,k)

)
n(0,...,0,k)

.

Distribution µ obtained in Theorem 3.1 is called H-distribution corresponding to the
(sub)sequence (un′ , vn′).

Assume that the distributions µ determined by Theorem 3.1 are equal to zero. Then the
local strong convergence in W−k,p(Rd) easily follows. We will prove a more delicate assertion
in the next theorem.
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Theorem 3.2. Let un ⇀ 0 in W−k,p(Rd). If for every sequence vn ⇀ 0 in W k,q(Rd)
the corresponding H-distribution is zero, then for every θ ∈ S(Rd), θun → 0 strongly in
W−k,p(Rd), n→∞.

Proof. For the strong convergence we need to prove that for every θ ∈ S(Rd)

sup{〈θun, φ〉 : φ ∈ B}−→0, n→∞, for every bounded B ⊆W k,q(Rd).

If it would not be true, then there would exist θ ∈ S(Rd), a bounded set B0 in W k,q(Rd), an
ε0 > 0 and a subsequence (θuk) ⊂ (θun), such that

sup{|〈θuk, φ〉| : φ ∈ B0} ≥ ε0, for every k ∈ N.

Choose φk ∈ B0 such that |〈θuk, φk〉| > ε0/2. Since φk ∈ B0 and B0 is bounded in W k,q(Rd),
(φk) is weakly precompact in W k,q(Rd), i.e. up to a subsequence, φk ⇀ φ0 in W k,q(Rd).
Moreover, since φ0 is fixed, 〈uk, φ0〉 → 0 and

|〈θuk, φk − φ0〉| >
ε0

4
, k > k0. (3.3)

Applying Theorem 3.1 on uk ⇀ 0 and φk − φ0 ⇀ 0, we obtain that for every ϕ1, ϕ2 ∈ S(Rd)

lim
k→∞ W−k,p〈Aψ(ϕ1uk), ϕ2(φk − φ0)〉Wk,q = 0. (3.4)

With ψ ≡ 1 on Sd−1, (3.4) implies

lim
k→∞

〈ϕ1uk , ϕ2(φk − φ0)〉 = 0.

Again, we use the factorization property of S(Rd). So if θ ∈ S(Rd), then θ = φ1φ̄2, for some
φ1, φ2 ∈ S(Rd), and we have that lim

k→∞
〈φ1uk , φ2(φk − φ0)〉 = 0, i.e. lim

k→∞
〈θuk , (φk − φ0)〉 = 0.

This contradicts (3.3) and completes the proof.

3.1. Localization property

Recall [20, p. 117], the Riesz potential of order s, Re(s) > 0 is the operator Is = (−∆)−
s
2 .,

see also [9]. Consideration of the Fourier transform and convolution theorem reveals that Iα,
for 0 < α < d, is a Fourier multiplier, i.e. F [Iα[f ]](ξ) := (2π|ξ|)−|α|F [f ](ξ). We will use the
potential I1 with the following properties:

‖I1(f)‖
L

qd
d−q
≤ C‖f‖Lq , for f ∈ Lq(Rd), 1 < q < d; (3.5)

∂jI1(f) = −Rj(f), f ∈ Lq(Rd), where Rj := Aξj/ı|ξ|. (3.6)

Moreover, Rj : Lq → Lq is continuous.
Consider now a sequence un ⇀ 0 inW−k,p(Rd) satisfying the following sequence of equations:

d∑
i=1

∂i (Ai(x)un(x)) = fn(x), (3.7)

where Ai ∈ S(Rd) and fn is a sequence of temperate distributions such that

ϕfn → 0 in W−k−1,p(Rd), for every ϕ ∈ S(Rd). (3.8)

Theorem 3.3. Let 1 < q < d. If un ⇀ 0 in W−k,p(Rd) satisfies (3.7), (3.8), then for any
sequence vn ⇀ 0 in W k,q(Rd) the corresponding H-distribution µ satisfies

d∑
j=1

Aj(x)ξjµ(x, ξ) = 0 in SE ′(Rd × Sd−1). (3.9)
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Moreover, if (3.9) implies µ(x, ξ) = 0, we have the strong convergence θun −→ 0, in W−k,p(Rd),
for every θ ∈ S(Rd).

Proof. Let vn ⇀ 0 in W k,q(Rd), ϕ1 ∈ S(Rd), ϕ2 ∈ S(Rd) and let ψ ∈ Cκ(Sd−1). We have
to prove (3.9), i.e. (multiplying (3.9) by (i|ξ|)−1, |ξ| 6= 0) that, up to a subsequence,

0 =

d∑
j=1

〈
µ,Ajϕ1ϕ2

ξj
i|ξ|

ψ

〉
= lim
n→∞

d∑
j=1

〈
unAjϕ1 , AΨ̄j (ϕ2vn)

〉
, (3.10)

where Ψj =
ξj
i|ξ|

ψ
( ξ
|ξ|

)
. Moreover, AΨ̄j = −Rj ◦ Aψ̄ = ∂jI1 ◦ Aψ̄, see (3.6). Thus (3.10) is

equivalent to

lim
n→∞

〈
d∑
j=1

∂j(unAj) , ϕ̄1I1(Aψ̄(ϕ2vn))

〉
+

d∑
i=1

lim
n→∞

〈
unAj , ∂j(ϕ̄1)I1(Aψ̄(ϕ2vn))

〉
= 0. (3.11)

Since Aψ̄(ϕ2vn) ∈W k,q(Rd) it follows from (3.5) that

∂αI1(Aψ̄(ϕ2vn)) = I1(Aψ̄(∂α(ϕ2vn))) ∈ L
qd
d−q (Rd), for all 0 ≤ |α| ≤ k. (3.12)

Now, since q <
qd

d− q
, we have that for all ϕ ∈ S(Rd),

‖ϕ I1(Aψ̄(ϕ2vn))‖Lq ≤ ‖I1(Aψ̄(ϕ2vn))‖
L

qd
d−q
‖ϕ‖Ld . (3.13)

From (3.12) and (3.13) we see that

∂α[ϕ I1(Aψ̄(ϕ2vn))] ∈ Lq(Rd), for all 0 ≤ |α| ≤ k.

Now,

∂α+ej [I1(Aψ̄(ϕ2vn))] = −Rj(Aψ̄(∂α(ϕ2vn))) ∈ Lq(Rd),

which gives us that for all ϕ ∈ S(Rd),

ϕ I1(Aψ̄(ϕ2vn)) ∈W k+1,q(Rd),

and moreover

ϕ I1(Aψ̄(ϕ2vn)) ⇀ 0 in W k+1,q(Rd). (3.14)

Take ϕ̄1 = ϕ̄11ϕ̄12 all in S(Rd). From (3.8) and (3.14) we conclude that〈
ϕ11fn, ϕ̄12 I1(Aψ̄(ϕ2vn))

〉
→ 0.

From here and (3.7) we conclude that the first term in (3.11) converges to zero.
Now we analyze the second term in (3.11). We will prove that ∂j(ϕ̄1)I1(Aψ̄(ϕ2vn)) converges

strongly to zero in W k,q(Rd). For that purpose we write ∂jϕ̄1 = ϕ̄13ϕ̄14, all in S(Rd), and
denote by Lm the open ball centered at the origin with radius m ∈ N. By Rellich lemma
W k+1,q(Lm) is compactly embedded in W k,q(Lm). Since ϕ̄14I1(Aψ̄(ϕ2vn)) weakly converges
to zero in W k+1,q(Rd), by the diagonalization procedure we can extract a subsequence (not
relabeled) such that for all m ∈ N

ϕ̄14I1(Aψ̄(ϕ2vn)) −→ 0 in W k,q(Lm). (3.15)

Take smooth cutoff functions χm such that χm(x) = 1 for x ∈ Lm and χm(x) = 0 for x ∈
Rd\Lm+1 and write ϕ̄13 = χmϕ̄13 + (1− χm)ϕ̄13. We have that

‖ϕ̄13ϕ̄14I1(Aψ̄(ϕ2vn))‖Wk,q ≤ sup
|α|≤k,|x|>m

|∂αϕ̄13| ‖ϕ̄14I1(Aψ̄(ϕ2vn))‖Wk,q (3.16)

+‖χmϕ̄13ϕ̄14I1(Aψ̄(ϕ2vn))‖Wk,q . (3.17)
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Let ε > 0. The sequence ϕ̄14I1(Aψ̄(ϕ2vn)) is bounded in W k,q(Rd), i.e. there is M > 0 such
that ‖ϕ̄14I1(Aψ̄(ϕ2vn))‖Wk,q ≤M . Since ϕ̄13 ∈ S(Rd), there exists m0 ∈ N such that for all
m ≥ m0

sup
|α|≤k,|x|>m

|∂αϕ̄13| <
ε

2M
.

Next, from (3.15) we have that (3.17) goes to zero as n→∞. So, for given ε, there exists
n0 ∈ N such that (3.17) is less than ε/2 for all n ≥ n0. Thus the left hand side in (3.16) is less
than ε for n > n0, i.e. ∂j(ϕ̄1)I1(Aψ̄(ϕ2vn)) converges strongly in W k,q(Rd) and (3.11) holds,
which completes the proof of (3.9).

If coefficients Aj are such that
∑d
j=1Aj(x)ξj 6= 0, ξ ∈ Sd−1, then Theorem 3.2 implies the

strong convergence θun −→ 0, for every θ ∈ S(Rd).

4. Appendix

We give here the full description of spaces SE and SE ′ introduced in Subsection 2.1. We
recall from [6, Section 3.8.] the basic properties of Sobolev spaces on the unit sphere with
respect to the surface measure dSd−1. In the sequel we assume that d > 2. Let Ωl = {x ∈
Rd; |x| ∈ [1− l, 1 + l]}, 0 < l < 1, and k ∈ N0. Then φ ∈ Ck(Sd−1) if for some and hence for
all 0 < l < 1, φ∗ ∈ Ck(Ωl), where φ∗(x) = φ(x/|x|). Moreover, [6, p. 9], Ck(Sd−1) is equipped
with the norm

pSd−1,k(φ) = |φ|Ck(Sd−1) = sup
|α|≤k,x∈Ωl

|∂αφ∗(x)|, (4.1)

and this norm does not depend on l ∈ (0, 1). Then C∞(Sd−1) =
⋂
k∈N0

Ck(Sd−1). The completion

of C∞(Sd−1) with respect to the norm

‖v‖Hs(Sd−1) =
∥∥∥(−∆? +

(d− 2

2

)2)s/2
v
∥∥∥
L2(Sd−1)

,

where ∆? is the Laplace-Beltrami operator, is the Sobolev space Hs(Sd−1), s ∈ N0. The case
d = 2, when S1 is given by x = cos θ, y = sin θ, θ ∈ [0, 2π), is the simple one which we do not
consider. Note, in this case one can take −∆? + 1 instead of −∆? + ((d− 2)/2)2.

Denote by {Yn,j , 1 ≤ j ≤ Nn,d, n ∈ N0} the orthonormal basis of L2(Sd−1) (cf. [6, p. 121]
or [19, Proposition 10.2, p. 92]), where Nn,d ∼ O(nd−2), [6, p. 16], is the dimension of the set
of independent spherical harmonics Yn,j of order n. Then we have

‖v‖Hs(Sd−1) =

√√√√ ∞∑
n=0

Nn,d∑
j=1

(
n+

d− 2

2

)2s

‖vn,j‖2, (4.2)

where vn,j =

∫
Sd−1

vY n,j dS
d−1.

The space C∞(Sd−1), supplied by the sequence of norms (4.1), k ∈ N0, is denoted by
E(Sd−1). By the Sobolev lemma for compact manifolds [7, Theorems 2.20, 2.21 (see also
Theorem 2.10)], explicitly written in [19, Theorem 7.6, p. 61], we have that

E(Sd−1) =
⋂
s∈N0

Hs(Sd−1). (4.3)

This is a Fréchet space. Since all elements of C∞(Sd−1) are compactly supported, we also have
that E(Sd−1) = D(Sd−1).
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By [16, Theorem II.10, p. 52], if we have orthonormal bases (ψn)n∈N and (ψ̃m)m∈N for
L2(Rd, dx) with Lebesgue measure dx and L2(Sd−1, dSd−1) with surface measure dSd−1

respectively, then ψn(t1)ψ̃m(t2), (t1, t2) ∈ Rd × Sd−1, is an orthonormal basis for L2(Rd ×
Sd−1).

By [16, Appendix to V.3, p. 141] (where the case d = 1 is treated), one has that the product
of one-dimensional harmonic oscillators Nx = N1...Nd, Ni = x2

i − (d/dxi)
2, i = 1, ..., d, and the

Hermite basis hn(x) = hn1
(x1)...hnd(xd), n ∈ Nd

0, of L2(Rd) satisfy

Nk
xhn = (2n1 + 1)k...(2nd + 1)khn, n ∈ Nd

0, k ∈ N0.

Moreover, S(Rd) is determined by the sequence of norms

|||φ|||k = ||Nkφ||2 =
∑
n∈Nd

0

(2n1 + 1)2k...(2nd + 1)2k|an|2, k ∈ N, (4.4)

where φ =
∑
n∈Nd anhn ∈ S(Rd). This sequence of norms is equivalent to the usual one for

S(Rd).
Now, we define the space of smooth functions SE(Rd × Sd−1) by the sequence of norms

(2.1). By the quoted Sobolev lemma for compact manifolds [7] and (4.3), we have the next
proposition.

Proposition 4.1. The family of norms (2.1) is equivalent to any of the following two
families of norms:

p2
Rd×Sd−1,k(θ) =

(∫
Rd×Sd−1

|Nk
x (∆?

ξ)
α∂βx θ(x, ξ)|2 dxdξ

) 1
2

, (4.5)

pRd×Sd−1,k(θ) = sup
(x,ξ)∈Rd×Ωl,|α+β|≤k

〈x〉k|∂αξ ∂βx θ∗(x, ξ)|, (4.6)

where θ∗(x, ξ) = θ(x, ξ/|ξ|), 〈x〉k = (1 + |x|2)k/2 and the derivatives with respect to ξ are
defined as above, with fixed x.

In particular, SE(Rd × Sd−1) is a Fréchet space.

Note that SE(Rd × Sd−1) induces the π-topology on S(Rd)⊗ E(Sd−1), see [22, Chap. 43]
for the π−topology. Since S(Rd) is nuclear, the completion S(Rd)⊗̂E(Sd−1) is the same for
the π and the ε topologies, cf. [22, Part III, Chap. 50, Theorem 50.1, p. 511].

Proposition 4.2.

S(Rd)⊗̂E(Sd−1) = SE(Rd × Sd−1). (4.7)

Proof. Clearly the embedding S(Rd)⊗̂E(Sd−1)→ SE(Rd × Sd−1) is continuous. Thus for
the proof of (4.7), it is enough to prove that the left space is dense in the right one. As for
general manifolds, we have that hm(x)× Yn,j(ξ), 1 ≤ j ≤ Nn,d, n,m ∈ N, is an orthonormal
basis for L2(Rd × Sd−1). Now, by (4.3) – (4.5), it follows that

θ(x, ξ) =

∞∑
n=0

Nn,d∑
j=1

∑
m∈Nd

0

an,j,mhm(x)Yn,j(ξ) ∈ SE(Rd × Sd−1) (4.8)
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if and only if for every r > 0,

∞∑
n=0

Nn,d∑
j=1

∑
m∈Nd

0

|an,j,m|2(1 + n2 + |m|2)r <∞ (4.9)

(cf. [23, Chapter 9]). Now taking finite sums of the right-hand side of (4.8), we obtain that
S(Rd)⊗̂E(Sd−1) is dense in SE(Rd × Sd−1). This completes the proof.
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