
STAR-QUASILINEAR EQUATIONAL THEORIES OF

GROUPOIDS
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Abstract. We investigate equational theories E of groupoids with the
property that every term is E-equivalent to at least one linear term.

1. Introduction

The main result of the paper [1] is that there are precisely six linear
equational theories of groupoids (equational theories with the property that
every term is equivalent to precisely one linear term). The present paper
deals with the generalization of linear equational theories to those that are
quasilinear, by which we mean equational theories such that every term is
equivalent to at least one linear term. It turns out that this generalization
is unwieldy: in the last section we show that there are uncountably many
examples. However, the most important case in this context, as it turns out
from [1], is the case when the equational theories under consideration are
idempotent. The whole paper except the last section will relate to this case.
Since all linear equational theories of groupoids turned out to be idempo-
tent, all their extensions are idempotent and quasilinear. But there are also
idempotent quasilinear equational theories that are not extensions of any
linear ones. The main result of this paper, Theorem 11.1, states that there
are precisely 28 idempotent quasilinear equational theories of groupoids. We
also describe them. The corresponding varieties are all finitely generated.
It will also turn out that all of them, except two that were already found to
be inherently nonfinitely based in [1], are finitely based.

By a term we always mean a term in the signature of groupoids (algebras
with one binary, multiplicatively denoted operation). A term is said to be
linear if every variable has at most one occurrence in it.

Let S(t) denote the set of variables occurring in a term t and let |t| denote
the length of t, i.e., the total number of occurrences of variables in t. Clearly,
|S(t)| ≤ |t| with equality precisely when t is linear.
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In order to avoid writing too many parentheses in terms, x1x2x3 . . . xn
will stand for (((x1x2)x3) . . . )xn (the parentheses are grouped to the left),
x · yz will stand for x(yz), etc.

By a left-associated term we mean a term x1x2 . . . xn where n ≥ 1 and
x1, . . . , xn are variables.

An equational theory is a set of equations (ordered pairs of terms) which
is closed under logical consequences; in other words, the set of all equations
that are satisfied in a particular groupoid. We denote the equation (p, q)
by p ≈ q, and when the equational theory E is previously fixed, we denote
p ≈ q ∈ E by p ∼ q. We say that a variety V satisfies p ≈ q iff p ≈ q
is in the equational theory corresponding to V . The lattice of equational
theories is antiisomorphic to the lattice of all varieties of groupoids. An
equational theory E is said to be n-linear (for a positive integer n) if every
term in at most n variables is E-equivalent to precisely one linear term
(which must then be again in at most n variables). If, moreover, E is
generated by its at most n-variable equations, then we say that E is sharply
n-linear. Of course, such an equational theory is uniquely determined by its
n-generated free groupoid. An equational theory is ∗-linear if it is n-linear
for all n. Such equational theories were investigated in [1]. Here we will
need a generalization.

An equational theory E is said to be n-quasilinear if every term in at
most n variables is E-equivalent to at least one linear term. An equational
theory is ∗-quasilinear if and only if it is n-quasilinear for all n.

A variety is said to be ∗-quasilinear (or n-quasilinear, etc.) if the corre-
sponding equational theory has the same property.

Lemma 1.1. Let E be a ∗-quasilinear idempotent equational theory. Then
every term t is E-equivalent to a linear term t∗ such that S(t∗) ⊆ S(t).

Proof. Let u be a linear term of minimal length that is E-equivalent with t,
and suppose that there exists a variable x ∈ S(u) − S(t). If x = u then E
is the trivial equational theory, so that every term is E-equivalent with any
variable. Let x 6= u. Then u is not a variable and there exists a term v such
that either vx or xv is a subterm of u. This subterm can be replaced by vv
(use the substitution sending x to v) and then by v (use the idempotence)
to obtain a linear term of smaller length also E-equivalent with t. �

It follows that every ∗-quasilinear idempotent theory defines a locally
finite variety. In fact, the cardinality of the free algebra on n generators
in that variety is at most the number of linear terms over x1, . . . , xn. For
n = 2, 3, 4 we get that the cardinality is at most 4, 21, 184, respectively.

For a pair v1, v2 of variables denote by σv1,v2 the substitution sending v1
to v2 (and fixing all variables other than v1).

The dual A∂ of a groupoid A is defined in this way: its underlying set is
the same as that of A, and ab = c in A∂ if and only if ba = c in A. Similarly
we define the partial of a variety, of an equation, and of an equational theory.



STAR-QUASILINEAR EQUATIONAL THEORIES OF GROUPOIDS 3

An acquaintance with the paper [1] may be useful for understanding the
present paper. The standard terminology and basic facts of universal algebra
can be found in the book [4].

We would like to note that most of the work on this paper was done by
the first author.

2. 2-generated free algebras in 2-quasilinear idempotent

equational theories

In this section we will describe all candidates for the 2-generated free
algebra in a ∗-quasilinear idempotent variety. The following result can be
found in [1] as Lemma 2.1. It characterizes all sharply 2-linear equational
theories. They are all idempotent as it is implied by 2-linearity.

Lemma 2.1. There are precisely twelve sharply 2-linear equational theories.
Their 2-generated free groupoids are the following seven groupoids, plus their
duals. (The first two of the seven groupoids are self-dual.)

G0 x y xy yx

x x xy yx y
y yx y x xy
xy y yx xy x
yx xy x y yx

G1 x y xy yx

x x xy xy x
y yx y y yx
xy x xy xy x
yx yx y y yx

G2 x y xy yx

x x xy xy yx
y yx y xy yx
xy x y xy x
yx x y y yx

G3 x y xy yx

x x xy xy yx
y yx y xy yx
xy x y xy yx
yx x y xy yx

G4 x y xy yx

x x xy x xy
y yx y yx y
xy xy x xy x
yx y yx y yx

G5 x y xy yx

x x xy x xy
y yx y yx y
xy xy xy xy xy
yx yx yx yx yx

G6 x y xy yx

x x xy xy xy
y yx y yx yx
xy xy xy xy xy
yx yx yx yx yx

The following lemma characterizes the remaining candidates for the 2-
generated free groupoid in a ∗-quasilinear idempotent variety.

Lemma 2.2. There are precisely four groupoids that are 2-generated free
groupoids for a 2-quasilinear, not 2-linear idempotent variety. They are the
following three groupoids, plus the dual of G9. (Note that the trivial variety
is 2-quasilinear and not 2-linear, but has no 2-generated free algebra.)
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G7 x y xy

x x xy y
y xy y x
xy y x xy

G8 x y xy

x x xy xy
y xy y xy
xy xy xy xy

G9 x y

x x y
y x y

Proof. Denote by G the two-generated free groupoid in the variety V corre-
sponding to a 2-quasilinear (but not 2-linear) idempotent equational theory.
Since the equational theory is not 2-linear, G has at most three elements x, y
and (perhaps) one of xy and yx. It is easy to see that one of the following
three cases takes place.

Case 1: xy ∼ yx. Then G is commutative. Note that by fixing a linear
two-variable term u and stipulating that x · xy ∼ u, the 2-generated free
groupoid is completely determined. Consider the following three subcases:

Subcase 1a: x · xy ∼ y. Then G = G7.
Subcase 1b: x · xy ∼ xy. Then G = G8.
Subcase 1c: x · xy ∼ x. Then x ∼ x · xy ∼ xy · x ∼ xy(x · xy) ∼ xy, so we

obtain x ∼ y, a contradiction.
Case 2: xy ∼ y. Then G = G9.
Case 3: xy ∼ x. Then G is the dual of G9.
Clearly, the varieties generated by G7, G8 and G9 are idempotent, 2-

quasilinear and not 2-linear. �

3. Extending G0

In this and the next sections we are going to find which of the ten candi-
dates (neglecting their duals) for two-generated free groupoids of an idem-
potent ∗-quasilinear variety do give us such a variety. The following lemmas
and their proofs are based on Section 3 of [1].

Proposition 3.1. We cannot have G0 as the free two-generated groupoid
of a 3-quasilinear (and consequently, for a ∗-quasilinear) equational theory.

Proof. There are 21 possibilities for a linear term equivalent with xy · zx,
and each of them is easily seen to result in an equation conflicting with the
multiplication table of G0. Note that the substitutions z → x and z → y
applied to xy · zx give y and x, respectively. This immediately eliminates
any of the terms which do not contain z as the linear term equivalent with
xy · zx, and with a little more work all other equations also fail in G0 by
one of these two substitutions. �

4. Extending G1

Lemma 4.1. Let G1 be the free two-generated groupoid of an idempotent,
∗-quasilinear equational theory E. Then x(yz) ≈ (xy)z and xyz ≈ xz belong
to E.
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Proof. If E contains an equation with different leftmost variables at its two
sides, then we can substitute for all the remaining variables one of these
two variables, and obtain an equation with the same property in just two
variables, which would yield a contradiction. So, every equation of E must
have the same leftmost variables and, quite similarly, also the same rightmost
variables at both sides. A term both starting and ending with a variable x
must be equivalent to a linear term both starting and ending with x, and
therefore equal to x. In particular, the equations xyx ≈ x, x · yx ≈ x,
xyzx ≈ x and x(y(zx)) ≈ x belong to E.

Define two relations on any algebra in the variety V determined by E:
a ∼ℓ b iff ab = a and a ∼r b iff ab = b. Then b ∼ℓ ab ∼r a and both relations
are reflexive and symmetric. Reflexivity follows from the idempotence, while
symmetry of ∼ℓ is proved like this: if ab = a then b = b · ab = ba. The
intersection of these two relations is the identity. The two relations are also
transitive: if x ∼r y ∼r z then zx = yzx = xyzx = x, giving x ∼r z; using
the identity x(y(zx)) = x, we can similarly prove that also ∼ℓ is transitive.
Now

x(yz) ∼r x ∼r xy ∼r xyz and

x(yz) ∼ℓ yz ∼ℓ z ∼ℓ xyz

imply that x(yz) ≈ xyz is valid in V . Then xyz = (((xz)x)y)z = x(z(xy)z)
= xz implies that xyz ≈ xz is valid in V. �

The variety determined by the equations x(yz) ≈ (xy)z, xx ≈ x and
xyz ≈ xz is the variety of rectangular bands. We denote it by R.

Theorem 4.2. There is precisely one ∗-quasilinear idempotent equational
theory with 2-generated free groupoid isomorphic to G1; it is the equational
theory of R. The variety R is generated by G1 and its only proper sub-
varieties are the trivial variety, the variety of left-zero semigroups and the
variety of right-zero semigroups.

Proof. It follows from Lemma 4.1 together with Lemma 3.2 of [1]. �

5. Extending G2 and G3

Proposition 5.1. We cannot have G2 or G3 as the free two-generated
groupoid for a ∗-quasilinear idempotent equational theory.

Proof. Suppose that either G2 or G3 is the two-generated free groupoid for
an idempotent, ∗-quasilinear equational theory E. Of course, the equational
theory is idempotent. It is easy to see that whenever u ≈ v is an equation
belonging to E then the terms u, v have the same rightmost variables. Thus
a linear term equivalent with x ·xyz under E must be one of the seven linear
terms in the variables x, y, z that have z as the rightmost variable. However,
none of the seven corresponding equations is valid in either G2 or G3. �
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6. Extending G4

Lemma 6.1. In any ∗-quasilinear equational theory with G4 as its 2-genera-
ted free groupoid, the following identities hold:

(W1) xx ≈ x,
(W2) xyy ≈ x,
(W3) x · yz ≈ xy,
(W4) xyz ≈ xzy.

Proof. The first two equations are in the multiplication table of G4. In the
course of the proof of Lemma 3.4 in [1], it was proved that any quasilinear
equational theory with G4 as its 2-generated free groupoid satisfies xy ≈
x · yz. Therefore, any term t, written as xp1p2 . . . pn, is equal in G4 to the
term xy1y2 . . . yn, where yi is the leftmost variable of pi. Finally, consider a
linear term in the variables x, y and z which is equal to xyzy in G4. This
term s must have x as its leftmost variable, and we may as well assume that
it is left-associated. The substitution z 7→ y reveals that it can not be x,
xyz or xzy, while z 7→ x shows that s is not xy. The remaining possibility,
xyzy ≈ xz, holds in G4, and therefore, s must be equal to xz. This yields
that xyz ≈ xyzyy ≈ xzy. �

We denote by EW the equational theory generated by the four equations
(W1)–(W4) and by W the corresponding variety.

Lemma 6.2. The equational theory EW is ∗-quasilinear.

Proof. Obviously, using the identity (W3), we get that any term t is equal in
E to a left-associated term t′. Then, using the identity (W4), t′ is reduced
to a left-associated term t′′ in which the semigroup word obtained from t′′ by
erasing the parentheses is equal to xm1

1 xm2

2 . . . xmk

k , where xi 6= xj for i 6= j.
Finally, using the idempotence and (W2), we get that t is equal to the term
y1y2 . . . yn, where y1 = x1, yi 6= yj for i 6= j, while the set {y2, y3, . . . , yn} is
equal to the set {xi : 2 ≤ i ≤ k and mi is odd}. �

Notice that in EW any two left-associated linear terms with the same sets
of variables and the same leftmost variables must be equal.

Theorem 6.3. There is precisely one ∗-quasilinear variety with G4 serving
as its 2-generated free algebra; it is the variety W. Its only proper subvari-
eties are the trivial variety and the variety of left-zero semigroups.

Proof. Let V be a proper subvariety of W. By Lemma 6.2, V is a ∗-
quasilinear variety. V must satisfy an equation t1 ≈ t2 such that t1, t2
are two W-nonequivalent left-associated linear terms.

Consider first the case when there exists a variable y in the symmetric
difference of S(t1) and S(t2). Then, by substituting all the other variables
by x, one of the two terms becomes W-equal to x while the other to one of
the terms y, yx, xy. In the first two cases V is the trivial variety, while in
the last case V is a subvariety of the minimal variety of left-zero semigroups.
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Let S(t1) = S(t2) and suppose that the leftmost variable x in t1 is different
from the leftmost variable y in t2. By substituting all the other variables by
x, we can reduce t1 to xy, and t2 to either y or yx. If xy ≈ yx is satisfied
in V then xy ≈ xxy ≈ xyx ≈ yxx ≈ y, so we reduce to the previous case
either way. �

7. Extending G5

Lemma 7.1. If G5 is the free two-generated groupoid for a 4-quasilinear
equational theory then E contains a nontrivial equation in at most three
variables, both sides of which are linear terms.

Proof. This is implicit in the proof of Lemma 4.4 of [1]. �

In this section let E be a ∗-quasilinear equational theory and V be the
corresponding variety, such that G5 is the two-generated free groupoid in V .
Thus, by Lemma 7.1, the free three-generated groupoid in V has less than
21 elements. We write t ∼ s if the equation t ≈ s belongs to E. ¿From the
multiplication table for G5 we get

x ∼ xx,
x ∼ x(xy),
xy ∼ xyx ∼ xyy ∼ x(yx) ∼ xy(yx).

Lemma 7.2. If u ∼ v then u, v have the same leftmost variables.

Proof. It is easy. �

Lemma 7.3. Either xyz ∼ xzy or x · yz ∼ xy.

Proof. By Lemma 7.1 there exist two different linear terms t1, t2 in the
variables x, y, z such that t1 ∼ t2. According to Lemma 7.2, the leftmost
variables in t1 and t2 are the same. Without loss of generality, assume that
this leftmost variable is x. Since both xy ≈ xz and xy ≈ x fail in G5, at
least one of the two terms, say t1, has three different variables occurring
in it. Without loss of generality, we may assume that t1 is either xyz or
x · yz. Note that xyz, x · yz and x are in three different ∼-classes, which
can be seen from the substitutions y 7→ x and z 7→ y. The term t2 can be
xy, xz, x · yz, x · zy, xyz, xzy. We have two cases.

Case 1: t1 = xyz. If t2 equals one of xy, x · yz, xz and x · zy, we reach the
contradiction in the first two cases by the substitution y 7→ x, and in the
last two cases by substitution z 7→ x. The remaining possibility is t2 = xzy.

Case 2: t1 = x · yz. If t2 equals one of xz, xzy, x · zy and xyz, we reach
the contradiction by the substitution y 7→ x. The remaining possibility is
t2 = xy. �

Lemma 7.4. If xyz ∼ xzy then xy · zy ∼ xyz.

Proof. Let t ∼ xy · zy where t is linear. If either t = xy or t = x · yz, we get
a contradiction by the substitution y 7→ x. If t is any of the terms x, xz,
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x ·zy, we get a contradiction by the substitution z 7→ x. The only remaining
possibility is t = xyz. �

Lemma 7.5. If xyz ∼ xzy then xy · zx ∼ xzy and x · yxz ∼ x · yz.

Proof. xy · zx ∼ (x · zx)y ∼ xzy and x · yxz ∼ x · yzx ∼ x · yz. �

Lemma 7.6. x · yz ∼ xy.

Proof. By Lemma 7.3, we can assume that xyz ∼ xzy. There exists a term
t in four variables x, y, z, u with t ∼ x · yz · uz. Using the two-variable
equations and Lemmas 7.4 and 7.5 we get

σy,x(x · yz · uz) ∼ x · uz,
σz,x(x · yz · uz) ∼ xuy,
σu,x(x · yz · uz) ∼ x · yz,
σz,y(x · yz · uz) ∼ xuy,
σu,y(x · yz · uz) ∼ x · yz,
σu,z(x · yz · uz) ∼ xzy.

We have x ∈ S(t), else substituting y 7→ z and u 7→ z in x · yz · uz ∼ t
yields xz ∼ z.

We have y ∈ S(t), else substituting z 7→ x and u 7→ x yields xy ∼ x.
We have z ∈ S(t), else substituting u 7→ y yields x · yz ∼ xy.
We have u ∈ S(t), else substituting y 7→ x and z 7→ x yields xu ∼ x.
Thus S(t) = {x, y, z, u}.
Let t = t1t2. Let v1, v2, v3 be a permutation of the variables y, z, u. One

of the following four cases takes place.
Case t1 = x: Then t2 is either v1 ·v2v3 or v1v2v3. The substitution v1 7→ x,

v2 7→ v3 makes x · yz · uz equivalent to xv3, while both x(v1 · v2v3) and
x(v1v2v3) equivalent to x. We get a contradiction.

Case t1 = xv1: Then t = xv1 · v2v3 ∼ x · v2v3 · v1. By the substitution
v2 7→ x we get that xv1 is ∼-equivalent with one of the terms xv1v2, x ·v2v1,
x · v1v2. In the first case we get a contradiction by the substitution v1 7→ x
and in the second case by v2 7→ x. In the last case we get x · yz ∼ xy.

Case t1 = x · v1v2 and t2 = v3: Then t = x(v1v2)v3 ∼ xv3(v1v2), the pre-
vious case.

Case t1 = xv1v2 and t2 = v3: Then the substitution y 7→ x gives x · uz ∼
xuz, which is clearly impossible.

Thus in all cases we get either a contradiction or x · yz ∼ xy. �

It follows from Lemma 7.6 that every term is ∼-equivalent to a left-
associated linear term.

Lemma 7.7. Either xyzy ∼ xyz or xyzy ∼ xzy.

Proof. There exists a linear term t in three variables x, y, z with t ∼ xyzy.
If t is either x or xz, we get a contradiction by the substitution z 7→ x.
If t is xy, we get a contradiction by y 7→ x. By Lemma 7.6, the only two
remaining possibilities are t = xyz and t = xzy. �
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Lemma 7.8. Let x, y1, . . . , yn be pairwise distinct variables. Then
xy1 . . . ynx ∼ xy1 . . . yn.

Proof. We have xy1 . . . ynx ∼ xz1 . . . zk for some pairwise distinct vari-
ables x, z1, . . . , zk. If there exists a variable v in the symmetric difference
of S(xy1 . . . ynx) and S(xz1 . . . zk), then the substitution sending all vari-
ables except v to x (and fixing v) gives xv ∼ x, a contradiction. Thus
k = n and {y1, . . . , yn} = {z1, . . . , zn}. Let f be the substitution with
f(x) = x and f(yi) = zi for all i. We have xy1 . . . ynx ∼ xf(y1) . . . f(yn). If
xy1 . . . ynx ∼ xf i(y1) . . . f

i(yn) for some positive integer i then

xf(y1) . . . f(yn)x ∼ xf i+1(y1) . . . f
i+1(yn), so that

xy1 . . . ynxx ∼ xf i+1(y1) . . . f
i+1(yn), i.e.,

xy1 . . . ynx ∼ xf i+1(y1) . . . f
i+1(yn).

Thus, by induction, xy1 . . . ynx ∼ xf i(y1) . . . f
i(yn) for all i. For i the order

of the permutation f , we get xy1 . . . ynx ∼ xy1 . . . yn. �

Denote by EA the equational theory generated by the equations

(A1) xx ≈ x,
(A2) xyy ≈ xy,
(A3) x(yz) ≈ xy,
(A4) xyzy ≈ xyz.

Denote by EB the equational theory generated by the equations

(B1) xx ≈ x,
(B2) xyy ≈ xy,
(B3) x(yz) ≈ xy,
(B4) xyzy ≈ xzy.

Denote by EC the equational theory generated by the equations

(C1) xx ≈ x,
(C2) xyy ≈ xy,
(C3) x(yz) ≈ xy,
(C4) xyz ≈ xzy.

Denote by VA, VB, VC the varieties corresponding to EA, EB, EC , re-
spectively.

Lemma 7.9. The equational theory EA is ∗-quasilinear.

Proof. Obviously, using the identity (A3), we get that any term t is EA-
equivalent to a left-associated term t′. Then, using the identities (A1), (A2)
and (A4), t′ is reduced to a left-associated linear term t′′ by deleting any
occurrence of a variable which is not the first occurrence from the left. �

Lemma 7.10. The equational theory EB is ∗-quasilinear.

Proof. Denote EB by ∼. Using (B3), we get that any term is EB-equivalent
to a left-associated term. Using (B3) several times and (B1) at the last step
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we get

xy1 . . . ynx ∼ xy1 . . . yn · xy1

∼ xy1 . . . yn · xy1y2

...

∼ xy1 . . . yn · xy1 . . . yn

∼ xy1 . . . yn.

¿From this it follows that every term is EB-equivalent to a left-associated
term in which the leftmost variable occurs only once. Using (B4) we get

xyz1 . . . zny ∼ xyz1 . . . zn−1yzny

∼ xyz1 . . . zn−2yzn−1yzny

...

∼ xyz1yz2y . . . zny

∼ xz1yz2y . . . znz

...

∼ xz1z2 . . . zny.

¿From this, using also (B2), it follows that every left-associated term t is
EB-equivalent to a left-associated linear term t′ obtained from t like this:
Let x be the first variable from the left in t. We erase all occurrences of
x except that leftmost one. Then for any variable y 6= x of t we erase
all occurrences of y except the rightmost one. In particular, every term is
EB-equivalent to a left-associated linear term. �

Lemma 7.11. Every term is EC-equivalent to a left-associated linear term.
Two left-associated linear terms x1 . . . xn and y1 . . . ym are EC-equivalent if
and only if {x1, . . . , xn} = {y1, . . . , ym} (so that n = m) and x1 = y1. EC

extends both EA and EB. In other words, VC ⊆ VA ∩ VB.

Proof. It is easy. �

Lemma 7.12. The variety VC is generated by G5. Its only proper subvari-
eties are the trivial variety and the variety of left-zero semigroups.

Proof. Let V be a proper subvariety of VC . By Lemma 7.11, V satisfies an
equation x1 . . . xn ≈ y1 . . . ym where x1, . . . , xn are pairwise distinct vari-
ables, y1, . . . , ym are pairwise distinct variables and either {x1, . . . , xn} 6=
{y1, . . . , ym} or x1 6= y1. If the sets are different then the equation reduces
to either x ≈ y or xy ≈ x or xy ≈ y; in the last case it also reduces to x ≈ y.
If {x1, . . . , xn} = {y1, . . . , ym} and x1 6= x2 then the equation reduces to
x1x2 ≈ x2x1, which then also reduces to x ≈ y. Thus V is a subvariety of
the minimal variety of left-zero semigroups. Since G5 satisfies the equations
(C1)–(C4) and is not a left-zero semigroup, it follows that VC is generated
by G5. �
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Lemma 7.13. All proper subvarieties of VA are subvarieties of VC .

Proof. Note that VA satisfies xyx ≈ xxyx ≈ xxy ≈ xy. Let V be a proper
subvariety of VA. Then V satisfies an equation t1 ≈ t2 not satisfied in VA,
such that both t1 and t2 are left-associated linear terms. If S(t1) 6= S(t2),
then this equation reduces to either xy ≈ x or xy ≈ y. In the first case V
is contained in the variety of left-zero semigroups, and in the second case it
is the trivial variety. If S(t1) = S(t2) and the leftmost variable x of t1 is
different from the leftmost variable y of t2, then by replacing all the other
variables with x we reduce t1 to xy and t2 to yx, so that V is the trivial
variety. Finally, let S(t1) = S(t2), let the leftmost variable x of t1 be also
the leftmost variable in t2, and let i be the least number such that the i-th
variable y in t1 from the left differs from the i-th variable z in t2 from the
left. Replace all variables occurring before the i-th variable in t1 by x, and
all other variables except y and z by y. We obtain xyz ≈ xzy, so that V is
contained in VC . �

Lemma 7.14. All proper subvarieties of VB are subvarieties of VC .

Proof. It is similar to the proof of Lemma 7.13. �

Theorem 7.15. There are precisely three ∗-quasilinear varieties with G5

serving as their 2-generated free algebra: the varieties VA, VB and VC . Their
only subvarieties, except themselves, are the variety of left-zero semigroups
and the trivial variety. VA is generated by the groupoid A and VB is gen-
erated by the groupoid B; the multiplication tables of A and B are given
below. VC is generated by the groupoid G5.

A a b c d e

a a a a a a
b b b b b b
c d e c c c
d d d d d d
e e e e e e

B a b c d e

a a a a a a
b b b b b b
c d c c c c
d d e d d d
e d e e e e

Proof. It is easy to check that A belongs to VA but not to VB and that
B belongs to VB but not to VA. The rest follows from the lemmas of this
section. �

8. Extending G6

In this section let E be a ∗-quasilinear equational theory and V be the
corresponding variety, such that G6 is the two-generated free groupoid in V .
We write t ∼ s if the equation t ≈ s belongs to E. From the multiplication
table for G6 we get

x ∼ xx,
xy ∼ x(xy) ∼ x(yx) ∼ xyx ∼ xyy ∼ xy(yx).
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Lemma 8.1. If t ∼ s then S(t) = S(s) and the terms t, s have the same
leftmost variables.

Proof. This follows easily from the properties of G6. �

It has been proved in Lemma 5.1 of [1] that if E is 3-linear then the
three-generated free groupoid in V must be one of the seven 21-element
groupoids Q1, . . . ,Q7. We do not need to repeat the definitions of these
seven groupoids. Also, three ∗-linear varieties L1,L2,L3 were constructed
in [1] with three-generated free algebras Q1, Q2, Q4, respectively.

Lemma 8.2. If one of the seven groupoids Q1, . . . ,Q7 is the three-generated
free groupoid in V then V is a subvariety of either L1 or L2 or L3.

Proof. In Lemma 6.1 of [1] it was proved that four of the seven groupoids,
namely Q3, Q5, Q6 and Q7, are impossible in this context. (The proof was
done for the linear case, but the same proof can serve in our quasilinear
case.) Three possibilities for the three-generated free groupoid in V remain.

Let the free groupoid be Q1. The base for the equations of L1 found in
Theorem 9.1 of [1] consists of three equations. Since these are equations in
three variables, they are satisfied in V and thus V ⊆ L1.

Now let the free groupoid be either Q2 or Q4. According to Theorem 16.2
of [1], the varieties L2 and L3 are generated by Q2 and Q4, respectively.
Thus L2 ⊆ V in the first case and L3 ⊆ V in the second. However, a star-
linear variety is a subvariety of a star-quasilinear one iff the two are the
same (consider the free spectrum!), so L2 = V in the first case and L3 = V
in the second. �

Thus it remains to consider the case when E is not 3-linear. It follows
from Lemma 8.1 that at least one of the following four cases takes place:

(a) xyz ∼ x · yz,
(b) x · yz ∼ xzy,
(c) xyz ∼ xzy,
(d) x · yz ∼ x · zy.

Lemma 8.3. If either (a) or (b) is satisfied then V ⊆ L1.

Proof. If (a) is satisfied then all the three equations in the base for L1 (given
by Theorem 9.1 of [1]) belong to E, so that V ⊆ L1. If (b) is satisfied then
xyz ∼ x · zy ∼ x · zy · x ∼ xy · z · x ∼ xy · xz ∼ x · xzy ∼ x(x · yz) ∼ x · yz,
so that we are in case (a). (The identities of G6 were also used.) �

Lemma 8.4. Let both (c) and (d) take place. Then (a) takes place.

Proof. We have xy · z ∼ xy(xy · z) ∼ (x · xy)(xy · z) ∼(c) x · (xy · z) · xy ∼(d)

x·(z ·xy)·xy ∼(d) x·(z ·yx)·xy ∼(d) x·yxz ·xy ∼(c) x·yzx·xy ∼ x·yz ·xy ∼(c)

x·xy ·yz ∼ xy ·yz ∼(c) x·yz ·y ∼ (x·yz)(y ·(x·yz)) ∼(d) (x·yz)(y ·(yz ·x)) ∼(d)

(x · yz)(yz · x · y) ∼(c) (x · yz)(yz · y · x) ∼ (x · yz)(yz · x) ∼ x · yz. �
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Lemma 8.5. Let (d) take place, but neither (a) nor (b) nor (c). Then
V ⊆ L1.

Proof. If xy · xz ∼ x · yz then the substitution x 7→ yx yields (a), a contra-
diction. If xy ·xz ∼ xzy, we obtain (a) similarly by y 7→ xy. It remains that
xy · xz ∼ xyz.

Case x · xyz ∼ x · yz: All equations of the base for L1 (Theorem 9.1 of [1])
belong to E and thus V ⊆ L1.

Case x · xyz ∼ xyz: Then xzy ∼ x(xzy) ∼ x(xz · xy) ∼(d) x(xy · xz) ∼
x(xyz) ∼ xyz. We get (c), a contradiction.

Case x · xyz ∼ xzy: Then xzy ∼ x · xyz ∼ x(xy · xz) ∼(d) x(xz · xy) ∼
x · xzy ∼ xyz, a contradiction again. �

Lemma 8.6. Let (c) hold, but neither (a) nor (b) nor (d). Then:

(1) x · yz · zy ∼ xyz,
(2) xy · zy ∼ xyz.

Proof. (1) We have x · yz · zy ∼(c) x · zy · yz. If x · yz · zy is equivalent with
either x · yz or x · zy then we get (d), a contradiction. Thus x · yz · zy must
be equivalent with xyz.

(2) xy · zy ∼(1) x · (y · zy) · (zy · y) ∼ x · yz · zy ∼(1) xyz. �

Lemma 8.7. If (c) takes place then also either (a) or (b) or (d) takes
place.

Proof. Suppose that (c) takes place but neither (a) nor (b) nor (d). Then
we will prove that the term x(yz)(uz) is not ∼-equivalent to any liner term.
Let x(yz)(uz) ∼ t where t is linear. By Lemma 8.1, S(t) = {x, y, z, u}.
Using Lemma 8.6(2), xyz ∼ xzy and the two-variable equations of G6 it is
easy to see that

σy,x(x · yz · uz) ∼ xzu,
σz,x(x · yz · uz) ∼ xuy,
σu,x(x · yz · uz) ∼ xzy,
σz,y(x · yz · uz) ∼ xyu,
σu,y(x · yz · uz) ∼ x · yz,
σu,z(x · yz · uz) ∼ xzy.

Let t = t1t2. Let v1, v2, v3 be a permutation of the variables y, z, u. One
of the following three cases must take place:

Case t1 = x: Then t2 contains the other three variables. If t2 = v1 ·
v2v3, we obtain a contradiction by the substitution σv1,x. If t2 = v1v2v3, a
contradiction can be obtained using σv3,x.

Case t1 = xv1: Use σv1,x to obtain a contradiction.
Case t2 = v3: If t1 = x · v1v2 then t = x(v1v2)v3 ∼(c) xv3(v1v2), the

previous case. If t1 = xv1v2, we get a contradiction by σu,y. �

Proposition 8.8. Let E be a ∗-quasilinear equational theory and V be the
corresponding variety, such that G6 is the two-generated free groupoid in V.
Then V is a subvariety of either L1 or L2 or L3.
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Proof. It follows from the previous lemmas in this section. �

9. Extending G7

In this section let E be a ∗-quasilinear equational theory and V be the
corresponding variety, such that G7 is the two-generated free groupoid in V .
We write t ∼ s if the equation t ≈ s belongs to E. Thus we have xy ∼ yx
and xyx ∼ y (and their corollary xyy ∼ x).

Lemma 9.1. x(y · xz) ∼ z · xy.

Proof. There is a linear term t in the variables x, y, z with t ∼ x(y · xz). If
x /∈ S(t), we get a contradiction by the substitution y 7→ z. If y /∈ S(t),
we get a contradiction by z 7→ x. If z /∈ S(t), we get a contradiction by
y 7→ x. Thus S(t) = {x, y, z}. Using the substitution y 7→ x, we obtain that
t cannot be ∼-equivalent with either x · zy or y · xz. The only remaining
possibility is t ∼ z · xy. �

Lemma 9.2. xy · xz ∼ x · yz.

Proof. There is a linear term t in the variables x, y, z with t ∼ xy · xz. If
x /∈ S(t), we get a contradiction by the substitution y 7→ z. If y /∈ S(t),
we get a contradiction by z 7→ x. If z /∈ S(t), we get a contradiction by
y 7→ x. Thus S(t) = {x, y, z}. Using the substitution z 7→ y, we obtain that
t cannot be ∼-equivalent with either y · xz or z · xy. The only remaining
possibility is t ∼ x · yz. �

Lemma 9.3. xyzux ∼ yuz.

Proof. There is a linear term t in the variables x, y, z, u with t ∼ xyzux. We
are going to show that S(t) = {y, z, u}.

If y /∈ S(t), we get a contradiction by the substitution z, u 7→ x. If z /∈
S(t), we get a contradiction by y, u 7→ x. If u /∈ S(t), we get a contradiction
by y, z 7→ x.

Suppose that x ∈ S(t). By commutativity, we may assume that x is the
leftmost variable of t. Then one of the following cases takes place for three
variables v1, v2, v3.

Case t = x(v1 · v2v3): Using Lemma 9.1, we get a contradiction in all sub-
cases by the substitution v1 7→ x, v2 7→ v3.

Case t = xv1 · v2v3: We will use Lemmas 9.1 and 9.2. If v1 = y, we get a
contradiction by y, u 7→ z. If v2 = y or v3 = y, then by the substitution by
y 7→ x, u 7→ z the term t becomes ∼-equivalent to xz, while xyzux to x.

Case t = x · v1v2 · v3: Using Lemma 9.1, we get a contradiction in all sub-
cases by the substitution v1 7→ x, v2 7→ v3.

Case t = xv1v2v3: We get a contradiction in all subcases by the substitu-
tion v2 7→ x, v1 7→ v3.

Thus S(t) = {y, z, u} If either t ∼ yzu or t ∼ uzy, then using Lemma 9.1
the substitution u 7→ y yields yz ∼ z, a contradiction. Now t ∼ yuz is the
only remaining case. �
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Lemma 9.4. xzyu ∼ xuyz.

Proof. xzyu ∼ zxyu ∼ zxyuzz ∼ xuyz by Lemma 9.3. �

Denote by ED the equational theory generated by the equations

(D1) xx ≈ x,
(D2) xy ≈ yx,
(D3) x · xy ≈ y,
(D4) xzyu ≈ xuyz.

Denote by D the variety corresponding to ED.

Lemma 9.5. ED contains the following equations:

(D5) xzyx ≈ xyz,
(D6) xy · zu ≈ xz · yu.

Proof. xzyx ≈ xxyz ≈ xyz by (D4) and (D2). Using (D5), (D4), (D2) and
(D5) once more, we have xy ·zu ≈ (x ·zu ·y)x ≈ zuxyx ≈ uzxyx ≈ uyxzx ≈
xz · uy. �

Lemma 9.6. The equational theory ED is ∗-quasilinear.

Proof. We will write t ≡ s if the equation t ≈ s belongs to ED and every
variable has the same number of occurrences in t as in s.

Let us first prove that if t is a term, x ∈ S(t) and t 6= x, then there
exist terms v, w such that either t ≡ vx or t ≡ vxw. Since x ∈ S(t), it
follows from (D2) that there exist terms u1, . . . , un (for some n ≥ 1) such
that t ≡ xu1 . . . un.

Let n be odd. Using (D4) we have

t ≡ u1xu2 . . . un

≡ u1u3u2xu4 . . . un . . .

≡ u1u3u2 . . . un−2un−3xun−1un

≡ u1u3u2 . . . un−2un−3unun−1x,

so that t ≡ vx where v = u1u3u2 . . . un−2un−3unun−1.
If n is even, we can start in the same way but we end up with t ≡

u1u3u2 . . . un−1un−2xun, so that t ≡ vxw where t = u1u3u2 . . . un−1un−2

and w = un.
We claim that every term which is not ED-equivalent to any term of

smaller length must be linear. Let t be a counterexample to this claim
which has minimal length and let x occur twice in t. Then t = pq and by
minimality of t, each of p and q is linear and x occurs once in each of p and
q. Applying the above observation to p and q and taking commutativity into
account, we get the following six cases (for some terms u, v, u′, v′): t ≡ xx,
t ≡ uxx, t ≡ uxvx, t ≡ ux · u′x, t ≡ uxv · u′x and t ≡ uxv · u′xv′. The
first two are obviously ED-equivalent to terms of smaller length, and the
remaining cases are dealt with in the following way:

Case t ≡ uxvx: A contradiction, since uxvx ≈ xuvx ≈ xvu in ED.
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Case t ≡ ux · u′x: A contradiction, since ux ·u′x ≈ uu′ ·xx ≈ uu′x in ED.
Case t ≡ uxv · u′x: A contradiction, since uxv · u′x ≈ (v · ux) · u′x ≈

vu′ · uxx ≈ vu′u in ED.
Case t ≡ uxv · u′xv′: A contradiction, since uxv · u′xv′ ≈ ux · u′x · vv′ ≈

uu′x · vv′ in ED. �

Theorem 9.7. There is precisely one ∗-quasilinear variety with G7 serving
as its 2-generated free algebra: the variety D. It is the variety generated by
G7 and its only proper subvariety is the trivial variety. It is also based on
the following equations:

xx ≈ x,
xy ≈ yx,
x · xy ≈ y,
xy · zu ≈ xz · yu.

Proof. Denote by V the variety determined by these last four equations. By
Lemma 9.5 we have D ⊆ V . It was proved in [2], and also in [3], that V
is a minimal variety. Since D obviously contains the groupoid G7, D is
nontrivial and thus D = V . It also follows that D is generated by G7. By
Lemma 9.6, D is ∗-quasilinear. By Lemma 9.4, D is the only ∗-quasilinear
variety with G7 serving as its 2-generated free algebra. �

Groupoids satisfying xy · zu ≈ xz · yu were called abelian in some papers,
entropic in some other papers, but we prefer to call them medial. Thus
D is the variety of idempotent commutative medial groupoids satisfying
x · xy ≈ y.

10. Extending G8 and G9

Proposition 10.1. There exists precisely one ∗-quasilinear variety with G8

serving as its 2-generated free algebra: the variety of semilattices.

Proof. Let ∼ be a ∗-quasilinear variety with G8 serving as its 2-generated
free algebra. Clearly, it is sufficient to prove xyz ∼ x · yz. The term x(y ·
xz) is equivalent to a linear term in variables x, y, z. By using one of the
substitutions y 7→ x, z 7→ x or z 7→ y, it is easy to see that x(y ·xz) cannot be
∼-equivalent to any of the terms x, y, z, xy, xz, yz. It remains to consider
the following three cases.

Case 1: x(y ·xz) ∼ x ·yz. Then x ·yz ∼ x ·yz ·yz ∼ (x ·yz)(y((x ·yz)z)) ∼
(x · yz)(y(z ·xy)) ∼ (x · yz)(y ·xz). Similarly we have y ·xz ∼ (y ·xz)(x · yz)
and we get the associative law.

Case 2: x(y · xz) ∼ z · xy. Then y · xz ∼ x(z · xy) ∼ x(x(y · xz)) ∼
x(y · xz) ∼ z · xy ∼ yx · z.

Case 3: x(y · xz) ∼ y · xz. Obviously, the term xy · xz is not ∼-equivalent
to any of the terms x, y, z, xy, xz, yz. Thus it remains to consider the
following three subcases.

Subcase xy · xz ∼ x · yz: Then x · yz ∼ xy · xz ∼ xy(x · xz) ∼ x(y · xz) ∼
y · xz.
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Subcase xy · xz ∼ y · xz: Then y · xz ∼ xy · xz ∼ xz · xy ∼ z · xy.
Subcase xy · xz ∼ z · xy: This is similar to the previous subcase. �

Proposition 10.2. There exists precisely one ∗-quasilinear variety with G9

serving as its 2-generated free algebra: the variety of right-zero semigroups.

Proof. It is obvious. �

11. All idempotent ∗-quasilinear varieties

Recall from [1] the following notation:

N1 is the variety of L1-algebras satisfying w(xy · z) ≈ w(x · yz);
N2 is the variety of L1-algebras satisfying w · xy ≈ w · yx;
S1 is the variety of idempotent semigroups satisfying xyx ≈ xy;
S2 is the variety of idempotent semigroups satisfying wxy ≈ wyx;
S3 is the variety of semigroups satisfying xy ≈ x;
S4 is the variety of semilattices;
S5 is the trivial variety.

It was proved in Theorem 15.5 of [1] that the list consisting of these varieties,
the varieties L1, L2, L3, and all their duals, is the list of all ∗-linear varieties
and their subvarieties. (L1, L2 and L3 were defined at the ends of Sections
8, 10 and 12 of [1], respectively.) Only S4 and S5 are self-dual. Combining
this with the previous results of this paper, we obtain

Theorem 11.1. There are precisely 28 idempotent ∗-quasilinear varieties,
namely: L1, L2, L3, N1, N2, S1, S2, S3, S4, S5, R, W, VA, VB, VC , D,
L∂
1 , L∂

2 , L∂
3 , N ∂

1 , N ∂
2 , S∂

1 , S∂
2 , S∂

3 , W∂, V∂
A, V∂

B, V∂
C . While L3 and L∂

3

are inherently nonfinitely based, all the remaining 26 varieties are finitely
based. All inclusions between these 28 varieties are depicted in the following
figure, representing a down-set in the lattice of varieties of groupoids. All
represented inclusions are proper.

12. Non-idempotent ∗-quasilinear equational theories

We have seen that there are not many idempotent ∗-quasilinear varieties of
groupoids and that all of them are locally finite (or even finitely generated).
Arbitrary ∗-quasilinear varieties are not necessarily locally finite, as shown
by the following example.

Example 12.1. Let G be the groupoid with the underlying set ω (the set of
nonnegative integers) and multiplication ◦ defined by a ◦ b = a + 1. In the
equational theory of G, every term xt1 . . . tn is equivalent to the linear term
xy1 . . . yn where yi are pairwise distinct variables different from x. Thus the
equational theory ofG is ∗-quasilinear. The corresponding variety generated
by G is not locally finite. It has infinitely many subvarieties, although only
countably many, since it is term equivalent to the variety of all monounary
algebras.
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We are now going to find a ∗-quasilinear equational theory such that the
corresponding variety has 2ℵ0 subvarieties.

The set of slender terms is the smallest set of terms containing all variables
and such that whenever t is a slender term and x is a variable then both tx
and xt are slender terms. Denote by U the set of all terms that are either
not linear or not slender. Denote by E the equivalence on the set of terms
such that U is the only non-singleton block of E. It is easy to see that E is
a ∗-quasilinear equational theory.

Let A be an infinite countable set. Denote by B the set of all nonempty
words a1 . . . an over A such that the elements ai ∈ A are pairwise different.
For u ∈ B let S(u) denote the set of the elements of A occurring in u. Denote
by C the groupoid with the underlying set C = B ∪ {0} and multiplication
◦ defined in the following way. u ◦ v = 0 for all u, v ∈ C except these cases:

if a, b ∈ A and a 6= b then a ◦ b = ab;
if a ∈ A, if u ∈ B is of length 2 and if a /∈ S(u) then a ◦ u = au;
if u ∈ B is of length at least 3, if a ∈ A and if a /∈ S(u) then u ◦ a = ua.
In particular, a◦0 = 0◦a = a◦a = (a◦ b)◦ (d◦e) = 0 for all a, b, c, d ∈ C.

Thus every non-slender term evaluates to 0 and it is easy to check that also
every non-linear term evaluates to 0 under any interpretation of variables
in C. Thus C is a model of E.

For every subset K of the set of nonnegative integers define a binary
relation RK on C as follows: for u, v ∈ C we have (u, v) ∈ RK if and only if
either u = v or else there exist n ≥ 0 and elements a, b, c, di, ei of A such that
u = abcd0 . . . dn ∈ B, v = abce0 . . . en ∈ B and if n is odd, for any i with 0 ≤
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2i < n either d2i = e2i & d2i+1 = e2i+1 or i ∈ K & d2i = e2i+1 & d2i+1 = e2i,
while for even n, the same conditions apply and dn = en must also hold.
Clearly, RK is an equivalence and it is easy to check that it is a congruence
of C.

Let us prove that the factor C/RK satisfies t1 ≈ t2, where

t1 = (x · yz)x0 . . . x2i−1x2ix2i+1 and t2 = (x · yz)x0 . . . x2i−1x2i+1x2i,

if and only if i ∈ K. If i /∈ K then t1, t2 evaluate to two different elements of
C/RK if we interpret the variables by pairwise different elements of A. Now
let i ∈ K. Take any mapping h of the set x, y, z, x0, . . . , x2i+1 into C and
denote by H the extension of h to a homomorphism of the groupoid of terms
into C. We need to prove that (H(t1), H(t2)) ∈ RK . It is not difficult to see
that if the range of h is not contained in A then H(t1) = H(t2) = 0. Thus
we can assume that a = h(x), b = h(y), c = h(z), ai = h(xi) are elements
of A. It is easy to see that if these elements of A are not pairwise distinct
then again H(t1) = H(t2) = 0. Thus we can assume that all the elements
a, b, c, a0, . . . , a2i+1 are pairwise distinct. Then H(t1) = abca0 . . . a2i+1 ∈ B
and H(t2) = abca0 . . . a2i−1a2i+1a2i ∈ B. But then, by the definition of RK ,
(H(t1), H(t2)) ∈ RK .

It follows that for different subsets K the groupoids C/RK generate dif-
ferent varieties. Thus we obtain:

Theorem 12.2. There are 2ℵ0 different ∗-quasilinear equational theories of
groupoids.
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