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Abstract

We consider the problem of portfolio optimization under VaR risk mea-
sure taking into account transaction costs. Fixed costs as well as impact costs
as a nonlinear function of trading activity are incorporated in the optimal
portfolio model. Thus the obtained model is a nonlinear optimization prob-
lem with nonsmooth objective function. The model is solved by an iterative
method based on a smoothing VaR technique. We prove the convergence of
the considered iterative procedure and demonstrate the nontrivial influence
of transaction costs on the optimal portfolio weights.
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1 Introduction

Portfolio optimization problem is an attractive and important research topic since
the pioneering Markowitz work on optimal portfolio selection, [19]. Generally speak-
ing one is interested in determining the optimal combination of n risky assets in
such a way that the obtained portfolio has minimal risk and maximal expected
gain. Based on investors preferences and risk tolerance several alternative formu-
lations are possible, see [6] and [23] for example. In this paper we will consider
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portfolio consisting of n different assets traded at stock market. The key question
in formulating the problem of portfolio optimization is how to measure the risk. A
number of risk measures is available in literature with the most popular ones being
the portfolio variance, Value at Risk, VaR, and Conditional Value at Risk, CVaR.
Mutual relationship between these three risk measures is well known and all of them
are quite popular in financial industry, see [12]. Value-at-Risk is incorporated into
several regulatory requirements, like Basel Accord II, and hence plays a particularly
important role in modern risk analysis.

Theoretical models very often consider an ideal situation where optimization of a
portfolio is performed without considering transaction costs. More realistic models
where transaction costs are included are analyzed in [20, 7, 8, 18, 22]. Roughly
speaking transaction costs decrease the expected return and therefore can not be
neglected in real situation. In the above cited papers the transaction costs are
modeled as linear or piece-wise linear functions.

There are two main sources of transaction costs - fixed costs and impact costs.
Fixed costs are different kinds of fees (brokerage fee, bank fee etc.) and in gen-
eral they are linear or piece-wise linear functions of transaction size. Due to rapid
development of electronic trading in the last decade and a large number of par-
ticipants at modern markets, fixed costs are becoming relatively small, and in the
case of large institutional investor they are not playing the dominant role anymore.
But they continue to be significant for small investors. The impact costs are more
complicated to model and in general nonlinear. Roughly speaking the impact costs
are changes in the price of considered asset that are caused by our own trading of
that particular asset. Since the price of any asset is assumed to be an equilibrium
state based on demand and supply it is intuitively clear that if we are buying some
amount of a particular stock we are increasing the demand and thus influencing, i.e.
increasing its price. The opposite is happening if we are selling so our own trading
is decreasing the price. This effect is negligible if the quantity we are buying is small
but in the case of a large institutional investor can be significant. Therefore impact
costs can not be excluded from portfolio optimization problem.

Modeling impact cost is a nontrivial task and there are several models proposed
in the literature. Financial institutions are using their own models, based on aca-
demic work but not available publicly. One of the most detailed studies is done by
Almgren and Chriss, [2], Almgren [1] and Almgren et al., [3]. Another approaches
are presented in Bouchard et al. [10] and Lillo et al. [14]. In this paper we will
adopt the market impact model from Almgren [1] and Almgren and Chriss, [2]. The
problem we will consider in this paper is VaR optimal portfolio with fixed and im-
pact costs. Thus the optimization problem will have a nonsmooth objective function
and nonlinear constraints due to the presence of impact costs.

Minimizing VaR measure is a complicated task due to its’ nonsmoothness. A
number of approaches is considered in the literature. A sequence of CVaR problems
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is used to approximate VaR problem in [17]. Minimization of VaR function can be
treated as a special case of Order-Value-Optimization, see Andreani et al., [4, 5].
One smoothing approach is analyzed in Pang, Leyffer [21]. The optimal portfo-
lio problem with VaR constraints and transaction costs is solved using the Order-
Value-Optimization approach in [9]. A smoothing method for the CVaR portfolio
optimization is considered in [24]. The Smoothing VaR (SVaR) method, proposed
by Gaivoronsky and Pflug [12], transforms the original VaR objective function into
a smooth one, SVaR and thus the SVaR optimal portfolio is obtained by standard
optimization methods. In this paper we are defining an iterative procedure based on
SVaR methodology but yielding VaR optimal portfolio. A sequence of SVaR prob-
lems with decreasing smoothing parameters is solved and an approximate solution
of VaR problem is thus obtained. The procedure is applied to the model of portfolio
optimization with transaction costs. The transaction costs include both fixed and
impact costs and yield nonlinear constraints. Although more realistic, such model
is more complicated than the models dealing with linear and piece-wise transac-
tion costs. The aim of this paper is to solve VaR optimal portfolio problem with
transaction costs using a sequence of SVaR problems and to analyze the influence
of transaction costs on the optimal portfolio weights. The influence of transaction
costs on optimal portfolio weights is nontrivial as we will show on numerical exam-
ples. Further more, there is a clear difference between influence of fixed costs and
impact costs for different kind of investors as well as between different models for
impact costs. Thus the additional effort needed for solving the transaction costs
model with nonlinear impact is well justified.

This paper is organized as follows. In Section 2 of this paper we state the VaR
optimal portfolio problem and introduce the model of transaction costs. The op-
timization procedure is presented in Section 3. A sequence of SVaR optimization
problems is explained and the convergence of the iterative procedure based on a
decreasing sequence of smoothing parameters is proved. Section 4 contains two
examples with real trade data from London Stock Exchange (LSE). The numeri-
cal results demonstrate the influence of transaction costs on VaR optimal portfolio
weights as well as on the portfolio VaR value.

2 VaR optimal portfolio and transaction costs

2.1 Value at Risk

Information about future return of a portfolio are unknown at the time of portfolio
allocation, so every decision brings some risk. The Value at Risk is an important
measure of the risk exposure of a given portfolio. It is now the main tool in financial
industry and part of regulatory mechanism.

If W is a random variable representing the return of a risky asset with the
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distribution function FW (u) = P{W < u} then VaR of such asset is the α-quantile
of return i.e.

Qα(W ) = sup{u : FW (u) ≤ α}
for a given α ∈ (0, 1). Therefore VaR represents the largest return underperformance
which is possible in α outcomes. In general 1−α is called the confidence level. The
most common values of α are 0.1, 0.05 and 0.01. 1.

There are two main approaches to compute VaR, historical (nonparametric)
VaR and model-based (parametric) VaR. In the parametric approach one assumes
that the asset returns are governed by a given distribution and thus can obtain an
analytical expression for VaR. Unless the return distribution is normal this approach
is quite difficult for continuously distributed returns. The sampling approach allows
us to work directly with a finite sample of return observations without assuming any
specific distribution. The sample can be historical or simulated. We will follow the
historical approach and thus assume that a sample of historical returns is available.

Let us assume that we have an universe of n risky assets i = 1, . . . , n.We consider
an investor who has the initial portfolio x̂ that is composed of n assets,

x̂ = (x̂1, . . . , x̂n),

and aims to change that portfolio to the minimal VaR portfolio

x = (x1, . . . , xn)

which earns at least the minimal expected return µ. This initial portfolio x̂ is
introduced here only for generality, i.e. to allow us to consider both buying and
selling costs. The same reasoning applies if the portfolio x is purchased from some
capital available in cash but in that case only the buying costs would be relevant. If

ξ = (ξ1, . . . , ξn)

is the vector of assets returns then the portfolio return is

w(x) = xT ξ.

To facilitate notation in VaR definition we introduce the sequence of functions

fi : R
n → R, i = 1, . . . ,m,

as well as their ordering

fi1(x) ≥ . . . ≥ fik(x) ≥ . . . ≥ fim(x) (1)

1There are in fact two definitions of VaR, one that we will use here and another one defining
VaR as E[w] − inf{w ∈ R | P (W ≤ w) > α}, for details see [13]. However since we are dealing
with small time period in this paper (one day) for any reasonable portfolio we have E[w] ≈ 0, so
the difference in definition of VaR does not play any role in our analysis.
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for any x ∈ Rn. Let ξ1, . . . , ξm be a sample of historical realizations of the portfolio
return vector ξ. Then the empirical VaR function for a given α is defined as

V aR(x) = F (m− ⌊αm⌋ − 1, x) where αm− 1 < ⌊αm⌋ ≤ αm

with
fi(x) = xT ξi, F (k, x) = fik+1

(x).

If the sample mean is denoted by ξ̄, ξ̄ = m−1
∑m

i=1 ξ
i, then the optimal VaR

portfolio problem is

min
x

−F (m− ⌊αm⌋ − 1, x) (2)

s.t. xT ξ̄ ≥ µ (3)
n∑

i=1

xi = 1 (4)

x ≥ 0. (5)

The constraints in (3)- (5) represent the common conditions in portfolio opti-
mization - the expected return lower bound (3) and the budget constraint (4) while
the last condition prohibits short positions. The budget constraint (4) means that
all available capital is invested in the set of risky assets i.e. there is no cash in the
portfolio.

This problem is nonconvex. As the ordering of the function fi given by (1)
changes with x the objective function is nonsmooth. Therefore (2) -(5) cannot be
solved by standard algorithms for solving smooth nonlinear optimization problems.
Several approaches for solving this problem are suggested in literature. The problem
(2) - (5) can be considered in the framework of Order-Value Optimization (OVO)
problems and thus methods developed in [4, 5] can be applied. Another possibility
is given in [21]. In this paper we will use the SVaR technique developed in [12].

2.2 Transaction costs

Transaction costs are inevitably present in real life and yield decrease in portfolio
return. Therefore there is practical need to include these costs in optimization
problems dealing with portfolio allocation. In this paper we will assume that we
have an initial portfolio, say x̂ and that we want to transform that portfolio to
the optimal one. In other words we are considering re-optimization of an existing
portfolio. This assumption is just convenient since we wanted to have both selling
and buying costs in our numerical examples, but it can be easily dropped without
any changes in further considerations.

Two main types of costs we consider in this analysis are fixed costs and impact
costs. Fixed costs are in general proportional to the transaction size in monetary
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units and thus modeled by piecewise linear functions. Such kind of cost is considered
in [7, 8, 18, 22]. These costs include different fees and taxes and in general depend
on investors type. Roughly speaking a small investor is facing larger fixed costs than
a large institutional investor. So we will make distinction between these two types
of investors.

Impact costs are complicated to measure and model. Intuitively, the impact
costs are easy to understand but there is no universally accepted model for these
costs and in real life it is quite difficult to distinguish the impact costs from noise
that is always present. In this paper we will adopt the models presented in [2] and
[1]. According to these models the total impact of our own trading can be divided
into temporary and permanent impact. Permanent impact includes changes which
remain effective at least for the life time of considered transaction execution while
the temporary impact means short-term changes in the price caused by short time
imbalances in supply and demand.

In order to express these costs formally we need a couple of technical details of
the trading process itself. There are two opposite sides in trading: buyers and sellers.
They are submitting their offers through trading system specifying the stock they
want to buy/sell, volume and price as well as type of order - market or limit order.
The prices are discrete and change according to the tick size rule. Tick size is the
smallest possible change in price for a particular stock and it depends on the stock’s
properties like total market capitalization, liquidity, etc., and is determined by a
stock exchange rules. At some exchanges tick size is always the smallest monetary
unit (for example 1 cent at NYSE) but nevertheless the prices are still discrete. The
prices submitted by buyers are called bid prices while the opposite are ask prices.
Transaction is happening whenever there is an agreement in price at both sides - bid
and ask. Different bid and ask prices are ordered by value so we have bid price level
1, level 2 etc., as well as ask price level 1, level 2 and so on. We will denote bid prices
as b1, b2, . . . and ask prices a1, a2, . . . . The mid price is defined as p = (a1 + b1)/2
while the spread is s = a1 − b1. Clearly all these values are time dependent but we
omit the time symbol for reasons of simplicity. Order type plays an important role
when it comes to impact costs. In general orders of large size are never executed as a
single trade but decomposed into a subsequence of smaller orders that are executed
within a given time window. This way the impact of trade is reduced. Choice of
order type and execution strategy is quite important and nontrivial issue, for details
see [11, 15, 16]. For the purpose of analysis in this paper we will assume that the
execution strategy is optimal in the sense of [1, 2] and thus follow the impact model
presented there. For completeness we will briefly describe the impact costs here.
Let vi denote the velocity of trade (number of traded shares in the unit time period,
here one day) and ADVi the average daily traded volume for each asset i, while si
denotes the spread. Then, according to [1], the permanent impact is modeled by

g(vi) = γiv
β
i
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and the temporary impact by

h(vi) = 0.5si + ηiv
β
i ,

where β ∈ (0, 1]. Parameters γi, si and ηi are specific values for the i-th asset,
and according to the rule of thumb, [1] have the following values with the spread si
expressed in £/share,

γi =
si

10%ADVi

(
£

share2

)
,

ηi =
si

1%ADVi

(
£

share
· time

share

)
.

Monetary unit clearly depends on the data we are considering and we used £ since
our examples are from London Stock Exchange. When the impact is modeled by
linear function, then β = 1. In our examples we used β = 1 and β = 1/2 for the
nonlinear model of impact. Functions g and h are clearly concave functions.

As already stated, the fixed cost depend on transaction size. We assume that the
fixed costs for a small investor are 1% of the transaction size, i.e. the cost of trading
one share with the price pi is qi = 0.01 ·pi and for a large institutional investor fixed
costs of trading one share of ith asset is qi = 3 · 10−4pi. Here we actually stated that
the fixed costs are equal to 3 basis points of the transaction size. Basis points are
commonly used unit and 1bp = 10−4. Therefore, with one day as the time unit, the
transaction costs of trading zi shares of ith asset, expressed in £, are

ti(zi) = zi(gi(zi) + hi(zi) + qi).

Let n̂i be the number of shares of the ith asset in the existing portfolio x̂, while ni

denotes the number of shares in the new optimal portfolio x. Since we assume that
the whole budget will be invested, i.e.

∑n
i=1 xi = 1, the total portfolio value will be

y =
∑n

i=1 nipi, we have to normalize the cost function so the total transaction cost
is

t̃(x̂− x) =

∑n
i=1 ti(|n̂i − ni|)

y
.

As usual, we have that the weight of the portfolio represent the relative value of
each asset, i.e. xi = nipi/y.

Therefore the VaR optimal portfolio with transaction costs problem is

min
x

−F (m− ⌊αm⌋ − 1, x)

s.t. xT ξ̄ − t̃(x̂− x) ≥ µ (6)
n∑

i=1

xi = 1

x ≥ 0.
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One can easily notice that t̃(x̂− x) is a nonsmooth function as well. However that
did not cause any problems for the numerical procedure as will be shown by results
presented in the last Section.

The model (6) does not necessarily assume the self-financing portfolio as the
problem of costs is equally important for portfolio optimization problems if one is
increasing/decreasing the capital or maintaining the same capital. The self-financing
condition can be expressed as

n∑
i=1

n̂ipi = (1 + t̃(x̂− x))
n∑

i=1

nipi.

This condition can replace the budget equation in (6). But the results would be
slightly different than the ones presented here as the new budget equation would
imply another feasible set. The procedure presented in the next Section is applicable
to the self-financing portfolio problem as well.

3 SVaR optimal portfolio

The historical VaR function in general posses many local minima and maxima. Ac-
cording to [12] the number of local minima grows with the number of observations.
Moreover the VaR function is nondifferentiable in every local minimizer. Therefore
application of standard optimization tools is not a good option. On the other hand
it was observed that VaR is composed of two components - the first one with global
pattern, a unique global minimum and smooth behavior. The second component has
a highly irregular pattern which produces all local minima and nondifferentiablity.
In order to smooth out the local noisy component of VaR the smoothed VaR, SVaR,
function is proposed and analyzed in [12]. VaR function defined by the portfolio
weights x, the observations of return ξ1, . . . , ξm and the probability level α is ap-
proximated by the family of smoothed quantile functions Fε(k, x) parameterized by
smoothing parameter ε > 0 :

Fε(k, x) =
m∑
i=1

cεi (x)fi(x).

where fi(x) = xT ξi, i = 1, 2, . . . ,m and cεi are smoothing parameters determined by
ε. The smoothing parameters can be determined in many ways but one particularly
efficient way in terms of computational costs is described in [12] and we adopted
that procedure in our experiments.

Let the Fε(k, x) with ε > 0 be the smoothed function for F (k, x). It is shown in
[12] that for any fixed x

lim
ε→0

Fε(k, x) = F (k, x). (7)
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Using SVaR function and taking into account the transaction costs described
above we obtain the following SVaR portfolio optimization problem.

min
x

−Fε(m− ⌊αm⌋ − 1, x)

s.t. xT ξ̄ − t̃(x̂− x) ≥ µ (8)
n∑

i=1

xi = 1

x ≥ 0.

This problem is solvable by standard optimization tools since the objective func-
tion is smooth enough. The first constraint is not smooth if any component of x̂−x
is zero but that did not cause difficulties in numerical procedure so we did not apply
any additional smoothing to the constraints. The solution of this problem is called
SVaR optimal portfolio. However we are still interested in VaR optimal portfolio.
One kind of postprocessing is suggested in [12], starting from SVaR minimizer a
local minimization is performed taking VaR as the objective function.

We will pursue a different approach here. The standard idea in noonsmooth
optimization is to considering a sequence of smoothed problem with a decreasing
smoothing parameters. We will state the theoretical properties of such sequence for
this particular case and then apply the idea in order to get the VaR optimal portfolio.
Such procedure, in our experience, gives good results in a couple of smoothing steps
only. A similar approach is adopted in [21] for different smoothing procedure. Also,
it seems interesting from theoretical point of view to understand the relationship
between VaR and SVaR optimal portfolios when ε → 0.

Theorem 1 Let {εν}ν∈N be a decreasing positive sequence such that

lim
ν→∞

εν = 0.

Let xV aR be a global solution of VaR optimization problem (6) and xν a global solution
of SVaR optimization problem (8) with parameter εν. Then

lim
ν→∞

Fεν (k, x
ν) = F (k, xV aR), k = m− ⌊αm⌋ − 1.

Proof.
Let us suppose the contrary, that there exists δ > 0 such that for any ν̄ large

enough we have
|Fεν̄ (k, x

ν̄)− F (k, xV aR)| ≥ δ. (9)

As (7) holds for any fixed x, we have

lim
εν→0

Fεν (k, x
V aR) = F (k, xV aR)
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and
lim
εν→0

Fεν (k, x
ν̄) = F (k, xν̄).

So for every ν large enough

|Fεν (k, x
V aR)− F (k, xV aR)| < δ (10)

and
|Fεν (k, x

ν̄)− F (k, xν̄)| < δ . (11)

Clearly (9) can be separated into the following two cases:

1o Fεν̄ (k, x
ν̄)− F (k, xV aR) ≥ δ

Since xV aR is a global solution of VaR optimization problem then

F (k, xV aR)− F (k, xν̄) ≥ 0.

Using inequality (11) we obtain the following contradiction

δ > Fεν̄ (k, x
ν̄)− F (k, xν̄) =

= Fεν̄ (k, x
ν̄)− F (k, xV aR) + F (k, xV aR)− F (k, xν̄) ≥

≥ Fεν̄ (k, x
ν̄)− F (k, xV aR) ≥ δ,

2o Fεν̄ (k, x
ν̄)− F (k, xV aR) ≤ −δ

Since xν̄ is a global solution of SVaR optimization problem with parameter εν̄
then

Fεν̄ (k, x
V aR)− Fεν̄ (k, x

ν̄) ≤ 0.

Inequality (10) now implies

−δ < Fεν̄ (k, x
V aR)− F (k, xV aR) =

= Fεν̄ (k, x
V aR)− Fεν̄ (k, x

ν̄) + Fεν̄ (k, x
ν̄)− F (k, xV aR) ≤

≤ Fεν̄ (k, x
ν̄)− F (k, xV aR) ≤ −δ.

and therefore we can conclude that

|Fεν (k, x
ν)− F (k, xV aR)| < δ

holds for any δ > 0 for ν large enough and the statement is proved.
The following theorem states that if the sequence of SVaR optimal portfolios

converges when smoothing parameters tend to zero, then the sequence of optimal
SVaR values tends to the value of VaR function.
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Theorem 2 Let {εν}ν∈N be a decreasing positive sequence

lim
ν→∞

εν = 0.

Let xν be a global solution of SVaR optimization problem (8) with parameter εν. If

lim
ν→∞

xν = x∗,

then
lim
ν→∞

Fεν (k, x
ν) = F (k, x∗), k = m− ⌊αm⌋ − 1.

Proof. Suppose by contradiction that there exists δ > 0 such that for every
ν0 ∈ N exists ν̄ ≥ ν0 for which

|Fεν̄ (k, x
ν̄)− F (k, x∗)| ≥ δ (12)

holds. According to (7) for fixed xν̄

lim
εν→0

Fεν (k, x
ν̄) = F (k, xν̄).

This limit implies that for ν large enough

|Fεν (k, x
ν̄)− F (k, xν̄)| < δ

3
. (13)

From inequality (13) for xν̄ and continuousness of function F it follows that

−δ

3
< Fεν̄ (k, x

ν̄)− F (k, xν̄) <
δ

3

and

−δ

3
< F (k, xν̄)− F (k, x∗) <

δ

3
,

for ν̄ large enough. Consequently

−2δ

3
< Fεν̄ (k, x

ν̄)− F (k, x∗) ≤ 2δ

3
,

i.e.

|Fεν̄ (k, x
ν̄)− F (k, x∗)| ≤ 2δ

3
,

what is a contradiction with (12).
Therefore for every δ > 0 and ν large enough

|Fεν (k, x
ν)− F (k, x∗)| < δ,

what proves the statement.
These two theorems allow us to formulate the following Corollary which serves as

a base for the iterative application of SVaR procedure presented below as Algorithm
SVaR.
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Corollary 1 Let {εν}ν∈N be a positive decreasing sequence such that

lim
ν→∞

εν = 0.

Let xV aR be a global solution of the VaR optimization problem (6), and xν a global
solution of the SVaR optimization problem (8) with parameter εν. If

lim
ν→∞

xν = x∗,

then
F (k, x∗) = F (k, xV aR), k = m− ⌊αm⌋ − 1.

Consequently, the VaR optimal portfolio can be found by solving a sequence of
SVaR optimization problems (8) with the sequence of smoothing parameters that
tends to zero. Below we present the general algorithm used in Section 4. Let Ω be
the feasible set of (8).

Algorithm SVaR

Select the initial point x0 ∈ Ω, smoothing parameter ε > 0, decrease factor ρ ∈ (0, 1)
and tolerance tol. Let k = 0.

Step 1 Determine Fε(m− ⌊αm⌋ − 1, x).

Step 2 Find xk+1 such that

xk+1 = argmin
x

−Fε(m− ⌊αm⌋ − 1, x)

s.t. xT ξ̄ − t̃(x̂− x) ≥ µ,
n∑

i=1

xi = 1, x ≥ 0.

Step 3 If ||xk+1 − xk|| ≤ tol stop and take x∗ = xk+1.

Step 4 Set k = k + 1, ε = ρε, and go to step 1.

4 Numerical results

In this section we present the numerical examples obtained by SVaR algorithm. Two
toy portfolios were constructed with the purpose of demonstrating the influence of
transaction costs and emphasizing the difference between costs for small and large
investor. No additional considerations like sector constraints, company size, mutual
correlation of portfolio components nor any kind of investment analysis are taken
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into account with these portfolios. We used 7 stocks from London Stock Exchange
(LSE), Astrazeneca (AZN), Bae Systems (BA), Lonmin (LMI), Rio Tinto (RIO),
Smith & Nephew (SN), Tesco (TSCO) and Vodafone (VOD). All data are taken from
www.advfn.com and www.finance.yahoo.com sites. VaR is computed on the basis
of 500 daily returns from February 13, 2006 to February 12, 2008 with confidence
level 0.95. We considered four types of problems:

P1 - there are no transaction costs,

P2 - the models of permanent and temporary impact are linear,

P3 - the model of permanent impact is linear and the model of temporary impact
is nonlinear,

P4 - the model of permanent impact is nonlinear and the model of temporary
impact is linear.

All cases are observed for a large institutional investor and a small investor. The
value of portfolio for the large investor was hundred million pounds and in the case
of small investor it was hundred thousand pounds. For the initial portfolio we used
equal weights, i.e.

x̂ =

(
1

7
, . . . ,

1

7

)
.

Initial smoothing parameter was set to ε = 10−3. Step 2 of the algorithm was
performed using Matlab built-in function fmincon. In the vast majority of cases
the problem of SVaR optimal portfolio from Step 2 was successfully solved. The
smoothing parameter reduction was done by ρ = 0.25, while tol = 10−5 was taken.

Figures 1a and 1b show the efficient frontiers for large and small institutional
investors, respectively. The horizontal axis at these figures shows the VaR values
expressed in percents relative to the portfolio value. The vertical axis shows the
minimal expected return expressed in basis points. The black curve depicts the
results without transaction costs. The red curve shows the results for P2. The
efficient frontier for P3 is presented by the green curve and the blue curve is used for
the results for P4. As we can see, the transaction costs decrease the value of VaR i.e.
increase the lowest bound for portfolio return underperformance. Notice that the
values of optimal VaR with transaction costs for the large investor are between 1.6%
and 1.85% of portfolio value, but for the small investor they are between 1.7% and
1.85%. That means that the values of optimal VaR are larger for smaller portfolio,
that is the VaR optimal portfolio is more risky for small investors than for large
investors. One can also observe at Figure 1b that the choice of impact model has no
influence for small investors, but that is not the case for large investors. Hence the
fixed costs are indeed dominant for small portfolio while the impact costs prevail in
the case of large investor.
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Remaining figures show the VaR optimal portfolio for different minimal expected
returns µ. The horizontal axis on these figures shows the minimal expected return
expressed in basis points. The vertical axis shows the weights of all assets relative
to the portfolio value. Figure 2 gives results for the problems without transaction
costs. These results are the same for both large and small investors. The VaR
optimal portfolios for large investor with transaction costs where the model of market
impact is linear are presented at figure 3a. The results for linear permanent impact
and nonlinear temporary impact and the results for nonlinear permanent impact
and linear temporary impact are given at figures 4a and 5a, respectively. Figures
3b, 4b and 5b show the VaR optimal portfolios for small investor with transaction
costs using the linear permanent and temporary impact model, linear permanent and
nonlinear temporary impact model and nonlinear permanent and linear temporary
impact model, respectively. We can see that the transaction costs significantly
influence VaR optimal portfolio and that for higher values of µ the difference between
the initial portfolio and VaR optimal portfolio decreases. Occasional jumps that are
obvious are due to the termination of the algorithm at local minima.
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Figure 1a: P1 Efficient frontier - large
investor
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Figure 1b: P2 Efficient frontier - small
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Figure 2: P1 VaR optimal portfolio weights
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Figure 3a: P2 VaR optimal portfolio
weights - large investor
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Figure 3b: P2 VaR optimal portfolio
weights - small investor
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Figure 4a: P3 VaR optimal portfolio
weights - large investor
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Figure 4b: P3 VaR optimal portfolio
weights - small investor
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Figure 5a: P4 VaR optimal portfolio
weights - large investor
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Figure 5b: P4 VaR optimal portfolio
weights - small investor
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