
Line search methods with variable sample size
for unconstrained optimization

Nataša Krejić∗ Nataša Krklec†

June 28, 2011

Abstract

Minimization of unconstrained objective function in the form of
mathematical expectation is considered. Sample Average Approxima-
tion - SAA method transforms the expectation objective function into
a real-valued deterministic function using large sample and thus deals
with deterministic function minimization. The main drawback of this
approach is its cost. A large sample of the random variable that de-
fines the expectation must be taken in order to get a reasonably good
approximation and thus the sample average approximation method
assumes very large number of function evaluations. We will present a
line search strategy that uses variable sample size and thus makes the
process significantly cheaper. Two measures of progress - lack of pre-
cision and decrease of function value are calculated at each iteration.
Based on these two measures a new sample size is determined. The
rule we will present allows us to increase or decrease the sample size in
each iteration until we reach some neighborhood of the solution. An
additional safeguard check is performed to avoid unproductive sample
decrease. Eventually the maximal sample size is reached so the vari-
able sample size strategy generates a solution of the same quality as

∗Department of Mathematics and Informatics, Faculty of Science, University of Novi
Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, e-mail: natasak@uns.ac.rs.
Research supported by Serbian Ministry of Education and Science, grant no. 174030
†Department of Mathematics and Informatics, Faculty of Science, Univer-

sity of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia, e-mail:
natasa.krklec@dmi.uns.ac.rs. Research supported by Serbian Ministry of Education
and Science, grant no. 174030

1

SAA method but with significantly smaller number of function evalu-
ations. The algorithm is tested on a couple of examples including the
discrete choice problem.

Key words: stochastic optimization, line search, simulations,
sample average approximation, variable sample size

1 Introduction

The problem under consideration is

min
x∈Rn

f(x). (1)

Function f : Rn → R is in the form of mathematical expectation

f(x) = E(F (x, ξ)),

where F : Rn×Rm → R, ξ is a random vector ξ : Ω→ Rm and (Ω,F , P) is a
probability space. The form of mathematical expectation makes this problem
difficult to solve as very often one can not find its analytical form. This is
the case even if the analytical form of F is known, what will be assumed in
this paper.

One way of dealing with this kind of problem is to use sample average in
order to approximate the original objective function as follows

f(x) ≈ f̂N(x) =
1

N

N∑
i=1

F (x, ξi). (2)

This is the approach that we use as well. Here N represents the size of
sample that is used to make approximation (2). Important assumption is
that we form the sample by random vectors ξ1, . . . , ξN that are independent
and identically distributed. If F is bounded then Law of large numbers [18]
implies that for every x almost surely

lim
N→∞

f̂N(x) = f(x). (3)

In practical applications one can not have unbounded sample size but can get
close to the original function by choosing a sample size that is large enough
but still finite. So, we will focus on finding an optimal solution of

min
x∈Rn

f̂N(x), (4)

2

where N is a fixed integer and ξ1, . . . , ξN is a sample realization that is gen-
erated at the beginning of optimization process. Thus the problem we are
considering is in fact deterministic and standard optimization tools are ap-
plicable. This approach is called the sample path method or the stochastic
average approximation (SAA) method and it is subject of many research ef-
forts, see for example [18] and [19]. The main disadvantage of SAA method
is the need to solve an individual optimization problem for each iteration
with the objective function defined by (2). As N in (4) needs to be large
the evaluations of f̂N become very costly. That is particularly true in prac-
tical applications where the output parameters of models are expensive to
calculate. Given that almost all optimization methods include some kind
of gradient information or even second order information, the cost becomes
even higher.

Various attempts to reduce the costs of SAA methods are presented in the
literature. Roughly speaking the main idea is to use some kind of variable
sample size strategy and work with smaller samples whenever possible, at
least at the beginning of optimization process. One can distinguish two
types of variable sample size results. The first type deals with unbounded
samples and seeks convergence in stochastic sense. The strategies of this type
in general start with small samples and increase their size during iterative
procedure. Up to our best knowledge no such method allows us to decrease
the sample size during the process. One efficient method of this kind is
presented in [6]. The proposed method uses Bayesian scheme to determine
a suitable sample size in each iteration within the trust region framework.
It yields almost sure convergence towards a solution of (1). In general the
sample size in this method is unbounded but in some special cases it can
even stay bounded.

The dynamic of increasing the sample size is the main issue of papers
[10] and [16] as well. In [10], convergence is ensured if (3) is satisfied and
sample size posses sufficient growth. For example, the sample size that is at
least as big as the square root of current iteration’s number is a suitable one.
On the other hand, the method includes a signal that indicates whether the
increase is really necessary. For that purpose the paired t-test is being used to
compare the neighboring iterations objective function values. The method
in [16] states an auxiliary problem that is solved before the optimization
process is started. The solution of that auxiliary problem provides an efficient
variable sample size strategy. However, this strategy does not allow decrease
in the sample size.

3

The second type of algorithms deals directly with problems of type (4) and
seeks convergence towards stationary points of that problem. The algorithms
proposed in [2] and [3] introduce variable sample size strategy that allows
decrease of the sample size as well as increase during optimization process.
Roughly speaking, the main idea is to use the decrease of function value
and a measure of the width of confidence interval to determine the change
in sample size. The optimization process is conducted in the trust region
framework. We will adopt these ideas to the line search framework in this
paper and propose an algorithm that allows both increase and decrease of
sample size during the optimization process. Given that the final goal is to
make the overall process less costly we also introduce an additional safeguard
rule that prohibits unproductive sample decreases. As common for this kind
of problems by cost we will always assume the number of function evaluations
[14].

The paper is organized as follows. In Section 2 we will state the problem in
more details and present the assumptions needed for the proposed algorithm.
The algorithm is presented in Section 3 and convergence results are derived
in Section 4. Numerical results are presented in the last section.

2 Preliminaries

In order to solve (4) we will assume that we know the analytical form of
a gradient ∇xF (x, ξ). This implies that we are able to calculate the true
gradient of a function f̂N , that is

∇f̂N(x) =
1

N

N∑
i=1

∇xF (x, ξi).

Once the sample is generated, we observe the function f̂N and the problem
(4) as a deterministic one [9]. This approach simplifies the definition of
stationary points which is much more complicated in stochastic environment.
It also provides us with standard optimization tools. Various optimization
algorithms are described in [15], for example. The one that we will apply
belongs to the line search type of algorithms. The main idea is to determine
a suitable direction and search along that direction in order to find a step
that provides a sufficient decrease of the objective function value.

In order to make problem (4) close enough to the original problem (1),
the sample size N has to be substantially large. On the other hand, in

4

practical implementations, evaluating the function F (x, ξ) can be very costly.
Therefore, working with a large sample size N during the whole optimization
process can be very expensive. In order to overcome this difficulty, algorithms
that vary the sample size have been developed. In [3] and [2], methods that
allow the sample size to decrease are proposed. In these algorithms, the trust
region approach is used as a tool for finding the upcoming iteration. They are
constructed to solve problem (4) with N being some finite number defined at
the beginning of a process. We will follow this approach in the framework of
line search methods thus allowing the sample size to vary across iterations,
being increased or decreased.

Suppose that we are at the iteration xk. Every iteration has its own
sample size Nk, therefore we are observing the function

f̂Nk
(x) =

1

Nk

Nk∑
i=1

F (x, ξi)

We perform line search along the direction pk which is decreasing for the
observed function, i.e. it satisfies the condition

pTk∇f̂Nk
(xk) < 0. (5)

In order to obtain a sufficient decrease of the objective function, we use
the backtracking technique to find a step size αk which satisfies the Armijo
condition

f̂Nk
(xk + αkpk) ≤ f̂Nk

(xk) + ηαkp
T
k∇f̂Nk

(xk), (6)

for some η ∈ (0, 1). More precisely, starting from α = 1, we decrease α
by multiplying it with factor β ∈ (0, 1) until the Armijo condition (6) is
satisfied. This can be done in a finite number of trials if the iteration xk is
not a stationary point of f̂Nk

as this function is continuously differentiable
and bounded from below. For more information about this technique see
[15], for example.

After the suitable step size αk is found, we define the next iteration as
xk+1 = xk+αkpk. Now, the main issue is how to determine a suitable sample
size Nk+1 for the following iteration. In the algorithm that we propose the
rule for determining Nk+1 is based on the decrease measure dmk, the lack of
precision denoted by εNk

δ (xk) and the safeguard rule parameter ρk. The two
measures of progress, dmk and εNk

δ (xk) are taken from [3] and [2] and adopted
to suit the line search methods while the third parameter is introduced to
avoid unproductive decrease of the sample size as will be explained below.

5

The decrease measure is defined as

dmk = −αkpTk∇f̂Nk
(xk). (7)

This is exactly the decrease in the linear model function, i.e.

dmk = mNk
k (xk)−mNk

k (xk+1),

where
mNk
k (xk + s) = f̂Nk

(xk) + sT∇f̂Nk
(xk).

The lack of precision represents an approximate measure of the width of
confidence interval for the original objective function f , i.e.

εNk
δ (xk) ≈ c,

where
P (f(xk) ∈ [f̂Nk

(xk)− c, f̂Nk
(xk) + c]) ≈ δ.

The confidence level δ is usually equal to 0.9, 0.95 or 0.99. It will be an input
parameter of our algorithm. We know that c = σ(xk)αδ/

√
Nk, where σ(xk) is

a standard deviation of a random variable F (xk, ξ) and αδ is the quantile of
Normal distribution, i.e. P (−αδ ≤ X ≤ αδ) = δ, where X : N (0, 1). Usually
we can not find σ(xk) so we use the centered sample variance estimator

σ̂2
Nk

(xk) =
1

Nk − 1

Nk∑
i=1

(F (xk, ξi)− f̂Nk
(xk))

2.

Finally, we define the lack of precision as

εNk
δ (xk) = σ̂Nk

(xk)
αδ√
Nk

. (8)

The algorithm that provides us with a candidate N+
k for the next sample

size will be described in more details in the following section. The main idea is
to compare the previously defined lack of precision and the decrease measure.
Roughly speaking if the decrease in function’s value is large compared to the
width of the confidence interval then we decrease the sample size in the
next iteration. In the opposite case, when the decrease is relatively small in
comparison with the precision then we increase the sample size. Furthermore,
if the candidate sample size is lower than current one, that is if N+

k < Nk,

6

one more test is applied before making the final decision about the sample
size to be used in the next iteration. In that case, we calculate the safeguard
parameter ρk. It is defined as ratio between the decrease in the candidate
function and the function that has been used to obtain the next iteration,
that is

ρk =
f̂N+

k
(xk)− f̂N+

k
(xk+1)

f̂Nk
(xk)− f̂Nk

(xk+1)
. (9)

The role of ρk is to prevent unproductive sample size decrease i.e. we calcu-
late the progress made by the new point and the candidate sample size and
compare it with the progress achieved with Nk. So if ρk is relatively small we
will not allow the decrease of the sample size.

Now, we present the assumptions needed for proving the convergence
result of the algorithm that will be presented in Section 3 and analyzed in
Section 4.

A1 Random vectors ξ1, . . . , ξN are independent and identically distributed.

A2 For every ξ, F (·, ξ) ∈ C1(Rn).

A3 There exists a constant M1 > 0 such that for every ξ, x

‖∇xF (x, ξ)‖ ≤M1.

A4 There are finite constants MF and MFF such that for every ξ, x,

MF ≤ F (x, ξ) ≤MFF .

The role of the first assumption is already clear. It ensures that our
approximation function f̂Nk

is, in fact, a centered estimator of the function
f at each point. This is not a fundamental assumption that makes the
upcoming algorithm convergent, but it is important for making the problem
(4) close to the original one for N large enough.

The assumption A2 ensures the continuity and differentiability of F as
well as of f̂N .

One of the crucial assumptions for proving the convergence result is A4.
Moreover, A4 makes our problem solvable.

An important consequence of the previous assumptions is that the inter-
change between the mathematical expectation and the gradient operator is
allowed (see [18]), i.e. the following is true

∇xE(F (x, ξ)) = E(∇xF (x, ξ)). (10)

7

Having this in mind, we can use the Law of large numbers again, and conclude
that for every x almost surely

lim
N→∞

∇f̂N(x) = ∇f(x).

This justifies using ∇f̂N(x) as an approximation of the measure of stationar-
ity for problem (1). We have influence on that approximation because we can
change the sample size N and, hopefully, make problem (4) closer to problem
(1). Therefore (10), together with A1, helps us measure the performance of
our algorithm regarding (1).

Having these assumptions in mind, one can easily prove the following
three lemmas.

Lemma 2.1. If A2 and A3 hold, then for every x ∈ Rn and every N ∈ N
the following is true

‖∇f̂N(x)‖ ≤M1.

Lemma 2.2. If A2 is satisfied, then for every N ∈ N the function f̂N is in
C1(Rn).

Lemma 2.3. If A4 holds, then for every x ∈ Rn and every N ∈ N the
following is true

MF ≤ f̂N(x) ≤MFF .

We also state the following important lemma which, together with the
previous two, guaranties that the line search is well defined.

Lemma 2.4. [15] Suppose that function h : Rn → R is continuously differen-
tiable and let dk be a descent direction for function h at point xk. Also, sup-
pose that h is bounded below on {xk + αdk|α > 0}. Then if 0 < c1 < c2 < 1,
there exist interval of step lengths satisfying the Wolf conditions (11) and
(12)

h(xk + αkdk) ≤ h(xk) + c1αkd
T
k∇h(xk) (11)

∇h(xk + αkdk)
Tdk ≥ c2∇h(xk)

Tdk (12)

Backtracking technique that we use in order to find step size that satis-
fies the Armijo condition (11) will provide us with an αk that satisfies the
curvature condition (12) as well.

8

3 The Algorithm

The algorithm below is constructed to solve the problem (4) with the sample
size N equal to some Nmax which is observed as an input parameter. More
precisely, we are searching for a stationary point of the function f̂Nmax . The
sample realization that defines the objective function f̂Nmax is generated at
the beginning of optimization process. Therefore, we can say that the aim
of the algorithm is to find a point x which satisfies

‖∇f̂Nmax(x)‖ = 0.

In this paper we assume that the suitable maximal sample size Nmax can be
determined without entering into details of such process.

As already stated the algorithm is constructed to let the sample size vary
across the iterations and to let it decrease every time there is enough reason
for that. Let us state the main algorithm here leaving the additional ones to
be stated latter.

ALGORITHM 1.

S0 Input parameters: Nmax, N
min
0 ∈ N, x0 ∈ Rn, δ, η, β, γ3, ν1 ∈ (0, 1), η0 <

1.

S1 Generate the sample realization: ξ1, . . . , ξNmax .

Put k = 0, Nk = Nmin
0 .

S2 Compute f̂Nk
(xk) and εNk

δ (xk) using (2) and (8).

S3 Test

If ‖∇f̂Nk
(xk)‖ = 0 and Nk = Nmax then STOP.

If ‖∇f̂Nk
(xk)‖ = 0, Nk < Nmax and εNk

δ (xk) > 0 put
Nk = Nmax and Nmin

k = Nmax and go to step S2.

If ‖∇f̂Nk
(xk)‖ = 0, Nk < Nmax and εNk

δ (xk) = 0 put
Nk = Nk + 1 and Nmin

k = Nmin
k + 1 and go to step S2.

S4 Determine pk such that pTk∇f̂Nk
(xk) < 0.

S5 Using the backtracking technique with the parameter β, find αk such
that

f̂Nk
(xk + αkpk) ≤ f̂Nk

(xk) + ηαkp
T
k∇f̂Nk

(xk).

9

S6 Put sk = αkpk, xk+1 = xk + sk and compute dmk using (7).

S7 Determine the candidate sample size N+
k using Algorithm 2.

S8 Determine the sample size Nk+1 using Algorithm 3.

S9 Determine the lower bound of sample size Nmin
k+1 .

S10 Put k = k + 1 and go to step S2.

Before stating the auxiliary algorithms, let us briefly comment this one.
The point x0 is an arbitrary starting point. The sample realization generated
in step S1 is the one that is used during the whole optimization process. For
simplicity, if the required sample size is Nk < Nmax, we take the first Nk

realizations in order to calculate all relevant values. On the other hand,
Nmin

0 is the lowest sample size that is going to be used in algorithm. The
role of lower sample bound Nmin

k will be clear after we state the remaining
algorithms. The same is true for parameters η0, γ3 and ν1.

Notice that the algorithm terminates after a finite number of iterations
only if xk is a stationary point of the function f̂Nmax . Moreover, step S3
guaranties that we have a decreasing search direction in step S5, therefore
the backtracking is well defined.

As we already mentioned, one of the main issues is how to determine
the sample size that is going to be used in the next iteration. Algorithms
2 and 3 stated below provide details. As already mentioned Algorithm 2
is adopted from [2] and [3] to fit the line search framework and it leads us
to the candidate sample size N+

k . Acceptance of that candidate is decided
within Algorithm 3. We will explain latter how to update Nmin

k . For now,
the important thing is that the lower bound is determined before we get to
step S7 and it is considered as an input parameter in algorithm described
below. Notice that the following algorithm is constructed to provide Nmin

k ≤
N+
k ≤ Nmax.

ALGORITHM 2.

S0 Input parameters: dmk, N
min
k , εNk

δ (xk), ν1 ∈ (0, 1).

S1 Determine N+
k

1) dmk = εNk
δ (xk) → N+

k = Nk.

10

2) dmk > εNk
δ (xk)

Starting with N = Nk, while dmk > εNδ (xk) and N > Nmin
k ,

decrease N by 1 and calculate εNδ (xk) → N+
k .

3) dmk < εNk
δ (xk)

i) dmk ≥ ν1ε
Nk
δ (xk)

Starting with N = Nk, while dmk < εNδ (xk) and N < Nmax,
increase N by 1 and calculate εNδ (xk) → N+

k .

ii) dmk < ν1ε
Nk
δ (xk) → N+

k = Nmax.

The basic idea for this kind of reasoning can be found in [2] and [3]. The
main idea is to compare two main measures of the progress, dmk and εNk

δ (xk),
and to keep them as close as possible to each other.

Let us consider dmk as the benchmark. If dmk < εNk
δ (xk), we say that

εNk
δ (xk) is too big or that we have a lack of precision. That implies that

the confidence interval is too wide and we are trying to narrow it down by
increasing the sample size and therefore reducing the error made by approx-
imation (2). On the other hand, in order to work with as small as possible
sample size, if dmk > εNk

δ (xk) we deduce that it is not necessary to have that
much of precision and we are trying to reduce the sample size.

On the other hand, if we set the lack of precision as the benchmark,
we have the following reasoning. If the reduction measure dmk is too small
(smaller than εNk

δ (xk)), we say that there is not much that can be done for

the function f̂Nk
in the sense of decreasing its value and we move on to the

next level, trying to get closer to the final objective function f̂Nmax if possible.
Previously described mechanism provides us with the candidate for the

upcoming sample size. Before accepting it, we have one more test. First
of all, if the precision is increased, that is if Nk ≤ N+

k , we continue with
Nk+1 = N+

k . However, if we have the signal that we should decrease the
sample size, i.e. if N+

k < Nk, then we compare the reduction that is already
obtained using the current step sk and the sample size Nk with the reduction
this step would provide if the sample size was N+

k . In order to do that, we
compute ρk using (9). If ρk < η0 < 1, we do not approve the reduction
because these two functions are too different and we choose to work with
more precision and therefore put Nk+1 = Nk. More formally, the algorithm
is described as follows.

ALGORITHM 3.

11

S0 Input parameters: N+
k , Nk, xk, xk+1, η0 < 1.

S1 Determine Nk+1

1) If N+
k > Nk then Nk+1 = N+

k .

2) If N+
k < Nk compute

ρk =
f̂N+

k
(xk)− f̂N+

k
(xk+1)

f̂Nk
(xk)− f̂Nk

(xk+1)
.

i) If ρk > η0 put Nk+1 = N+
k .

ii) If ρk < η0 put Nk+1 = Nk.

Now we will describe how to update the lower bound Nmin
k .

• If Nk+1 ≤ Nk then Nmin
k+1 = Nmin

k .

• If Nk+1 > Nk and

– ifNk+1 is a sample size which has not been used so far thenNmin
k+1 =

Nmin
k .

– if Nk+1 is a sample size which had been used and if we have made
big enough decrease of the function f̂Nk+1

since the last time we
used it, then Nmin

k+1 = Nmin
k .

– if Nk+1 is a sample size which had been used and if we have not
made big enough decrease of the function f̂Nk+1

since the last time
we used it, then Nmin

k+1 = Nk+1.

We say that we have not made big enough decrease of the function f̂Nk+1

if for some constants γ3, ν1 ∈ (0, 1) the following inequality is true

f̂Nk+1
(xh(k))− f̂Nk+1

(xk+1) < γ3ν1(k + 1− h(k))ε
Nk+1

δ (xk+1),

where h(k) is the iteration at which we started to use the sample size Nk+1 for
the last time. For example, if k = 7 and (N0, ..., N8) = (3, 6, 6, 4,6, 6, 3, 3, 6),
then Nk = 3, Nk+1 = 6 and h(k) = 4. So, the idea is that if we come back
to some sample size Nk+1 that we had already used and if, since then, we
have not done much in order to decrease the value of f̂Nk+1

we choose not
to go below that sample size anymore, i.e. we put it as the lower bound.
At the end, notice that the sequence of the sample size lower bounds is
nondecreasing.

12

4 Convergence analysis

This section is devoted to the convergence results for Algorithm 1. The
following important lemma states that after a finite number of iterations the
sample size becomes Nmax and stays that way.

Lemma 4.1. Suppose that assumptions A2 - A4 are true. Furthermore,
suppose that there exist a positive constant κ and number n1 ∈ N such that
εNk
δ (xk) ≥ κ for every k ≥ n1. Then, either Algorithm 1 terminates after a

finite number of iterations with Nk = Nmax or there exists q ∈ N such that
for every k ≥ q the sample size is maximal, i.e. Nk = Nmax.

Proof. First of all, recall that Algorithm 1 terminates only if ‖∇f̂Nk
(xk)‖ =

0 and Nk = Nmax. Therefore, we will observe the case where the number
of iterations is infinite. Notice that Algorithm 3 implies that Nk+1 ≥ N+

k is
true for every k. Now, let us prove that sample size can not be stacked at a
size that is lower than the maximal one.

Suppose that there exists ñ > n1 such that for every k ≥ ñ Nk =
N1 < Nmax. We have already explained that step S3 of Algorithm 1 provides
the decreasing search direction pk at every iteration. Therefore, denoting
gNk
k = ∇f̂Nk

(xk), we know that for every k ≥ ñ

f̂N1(xk+1) ≤ f̂N1(xk) + ηαk(g
N1

k)Tpk,

i.e., for every s ∈ N

f̂N1(xñ+s) ≤ f̂N1(xñ+s−1) + ηαñ+s−1(gN
1

ñ+s−1)Tpñ+s−1 ≤ ...

≤ f̂N1(xñ) + η

s−1∑
j=0

αñ+j(g
N1

ñ+j)
Tpñ+j. (13)

Now, from (13) and Lemma 2.3 we know that

−η
s−1∑
j=0

αñ+j(g
N1

ñ+j)
Tpñ+j ≤ f̂N1(xñ)− f̂N1(xñ+s) ≤ f̂N1(xñ)−MF . (14)

The inequality (14) is true for every s so

0 ≤
∞∑
j=0

−αñ+j(g
N1

ñ+j)
Tpñ+j ≤

f̂N1(xñ)−MF

η
:= C.

13

Therefore
lim
j→∞
−αñ+j(∇f̂N1(xñ+j))

Tpñ+j = 0. (15)

Let us observe the Algorithm 2 and iterations k > ñ. The possible sce-
narios are the following.

1) dmk = εNk
δ (xk). This implies

−αk(gNk
k)Tpk = εNk

δ (xk) ≥ κ

2) dmk > εNk
δ (xk). This implies

−αk(gNk
k)Tpk > εNk

δ (xk) ≥ κ

3) dmk < εNk
δ (xk) and dmk ≥ ν1ε

Nk
δ (xk). In this case we have

−αk(gNk
k)Tpk ≥ ν1ε

Nk
δ (xk) ≥ ν1κ

4) The case dmk < ν1ε
Nk
δ (xk) is impossible because it would yield Nk+1 ≥

N+
k = Nmax > N1.

Therefore, in every possible case we know that for every k > ñ

−αk(gN
1

k)Tpk ≥ κν1 := C̃ > 0

and therefore
lim inf
k→∞

−αk(gN
1

k)Tpk ≥ C̃ > 0,

which is in contradiction with (15).
We have just proved that sample size can not stay on N1 < Nmax. There-

fore, the remaining two possible scenarios are as follows:

L1 There exists ñ such that for every k ≥ ñ Nk = Nmax.

L2 The sequence of sample sizes oscillates.

Let us suppose that scenario L2 is the one that happens. Notice that this
is the case where Nmin

k can not reach Nmax for any k. This is true because
sequence of sample size lower bounds {Nmin

k }k∈N is nondecreasing and the

14

existence of k such that Nmin
k = Nmax would imply scenario L1. Therefore,

for every k we know that
Nmin
k < Nmax.

Furthermore, this implies that the signal for increasing Nmin
k could come only

finitely many times, i.e. Nmin
k+1 = Nk+1 happens at most finitely many times

because this case implies

Nmin
k+1 = Nk+1 > Nk ≥ N+

k−1 ≥ Nmin
k−1 .

So, we conclude that there exists an iteration r such that for every k ≥ r we
have one of the following scenarios:

M1 Nk+1 < Nk

M2 Nk+1 > Nk and we have enough decrease in f̂Nk+1

M3 Nk+1 > Nk and we did not use the sample size Nk+1 before

M4 Nk+1 = Nk.

Now, let N̄ be the maximal sample size that is used at infinitely many
iterations. Furthermore, define the set of iterations K̄0 at which sample size
changes to N̄ and set K̄ = K̄0

⋂
{r, r + 1, . . .}. Notice that for every k ∈ K̄

Nk < Nk+1 = N̄ .

This implies that every iteration in K̄ excludes the scenarios M1 and M4.
Moreover, without loss of generality, we can say that scenario M3 is the one
that can also be excluded. This leads us to the conclusion that M2 is the
only possible scenario for iterations in K̄. Therefore, for every k ∈ K̄ the
following is true

f̂N̄(xh(k))− f̂N̄(xk+1) ≥ γ3ν1(k + 1− h(k))εN̄δ (xk+1).

Now, defining the set of iterations K1 = K̄
⋂
{n1, n1 + 1, . . .} we can say that

for every k ∈ K1 we have

f̂N̄(xh(k))− f̂N̄(xk+1) ≥ γ3ν1κ > 0.

Recall that h(k) defines the iteration at which we started to use the sample
size N̄ for the last time before the iteration k + 1. Therefore, previous

15

inequality implies that we have reduced the function f̂N̄ for the positive
constant γ3ν1κ infinitely many times, which is in contradiction with Lemma
2.3. From everything above, we conclude that the only possible scenario is in
fact L1, i.e. there exists iteration ñ such that for every k ≥ ñ, Nk = Nmax.
�

Now, we will prove the main result. Before we state the theorem, we will
make one more assumption about the search direction.

A5 The sequence of directions pk generated at S4 of Algorithm 1 satisfies
the following implication:

lim
k∈K

pTk∇f̂Nk
(xk) = 0 ⇒ lim

k∈K
∇f̂Nk

(xk) = 0,

for any subset of iterations K.

This assumption is obviously satisfied for pk = −∇f̂Nk
(xk).

Theorem 4.1. Suppose that assumptions A2 - A5 are true. Furthermore,
suppose that there exist a positive constant κ and number n1 ∈ N such that
εNk
δ (xk) ≥ κ for every k ≥ n1 and that the sequence {xk}k∈N generated by

Algorithm 1 is bounded. Then, either Algorithm 1 terminates after a finite
number of iterations at a stationary point of function f̂Nmax or every accu-
mulation point of the sequence {xk}k∈N is a stationary point of f̂Nmax.

Proof. First of all, recall that Algorithm 1 terminates only if ‖∇f̂Nmax(xk)‖ =
0, that is if the point xk is stationary for the function f̂Nmax . Therefore, we
will observe the case where the number of iterations is infinite. In that case,
the construction of Algorithm 1 provides us with a decreasing search direc-
tion at every iteration. Furthermore, Lemma 4.1 implies the existence of
iteration n̂ such that for every k ≥ n̂ Nk = Nmax and

f̂Nmax(xk+1) ≤ f̂Nmax(xk) + ηαk(g
Nmax
k)Tpk,

where gNmax
k = ∇f̂Nmax(xk). Equivalently, for every s ∈ N

f̂Nmax(xn̂+s) ≤ f̂Nmax(xn̂+s−1) + ηαn̂+s−1(gNmax
n̂+s−1)Tpn̂+s−1 ≤ ...

≤ f̂Nmax(xn̂) + η

s−1∑
j=0

αn̂+j(g
Nmax
n̂+j)Tpn̂+j.

16

Again, this inequality and Lemma 2.3 imply

−η
s−1∑
j=0

αn̂+j(g
Nmax
n̂+j)Tpn̂+j ≤ f̂Nmax(xn̂)− f̂Nmax(xn̂+s) ≤ f̂Nmax(xn̂)−MF .

This is true for every s ∈ N, therefore

0 ≤
∞∑
j=0

−αn̂+j(g
Nmax
n̂+j)Tpn̂+j ≤

f̂Nmax(xn̂)−MF

η
:= C.

This implies that

lim
j→∞
−αn̂+j(∇f̂Nmax(xn̂+j))

Tpn̂+j = 0. (16)

We will prove that
lim
k→∞
−(∇f̂Nmax(xk))

Tpk = 0. (17)

Suppose the contrary, i.e. suppose that there exists a positive constant M
and a subset of iterations K such that for every k ∈ K1 = K ∩ {n̂, n̂+ 1, ...}

−(∇f̂Nmax(xk))
Tpk ≥M > 0.

In that case, (16) implies that limk∈K1 αk = 0. Therefore, there exists k̂ such
that for every k ∈ K2 = K1 ∩ {k̂, k̂ + 1, ...} the step size αk that satisfies the
Armijo condition (6) is smaller than 1. That means that for every k ∈ K2

there exists α′k such that αk = βα′k and

f̂Nmax(xk + α′kpk) > f̂Nmax(xk) + ηα′k(∇f̂Nmax(xk))
Tpk,

which is equivalent to

f̂Nmax(xk + α′kpk)− f̂Nmax(xk)

α′k
> η(∇f̂Nmax(xk))

Tpk. (18)

Notice that limk∈K2 α
′
k = 0. Taking the limit in (18) and using Lemma 2.2,

we obtain
(∇f̂Nmax(xk))

Tpk ≥ η(∇f̂Nmax(xk))
Tpk. (19)

On the other hand, we know that η ∈ (0, 1) and pk is decreasing direction,
i.e. (∇f̂Nmax(xk))

Tpk < 0. This implies that

(∇f̂Nmax(xk))
Tpk < η(∇f̂Nmax(xk))

Tpk,

17

which is in obvious contradiction with (19). This leads us to the conclusion
that (17) must be true. Now, assumption A5 implies that

lim
k→∞
∇f̂Nmax(xk) = 0.

Notice that, since the sequence of iterations {xk}k∈N is bounded, we know
that there exists at least one accumulation point of that sequence. Let x∗ be
an arbitrary accumulation point of {xk}k∈N,

lim
j→∞

xkj = x∗.

Finally, using Lemma 2.2 we conclude that

0 = lim
k→∞
∇f̂Nmax(xk) = lim

j→∞
∇f̂Nmax(xkj) = ∇f̂Nmax(lim

j→∞
xkj) = ∇f̂Nmax(x∗).

We have just proved that every accumulation point of the sequence {xk}k∈N
is a stationary point of function f̂Nmax . This completes the proof �

5 Numerical implementation

In this section, we are going to present some numerical results obtained
by Algorithm 1. The first subsection contains the results obtained on two
academic test examples while the second subsection deals with the discrete
choice problem that is relevant in many applications. The test examples
presented in 5.1 are Allufi - Pentini’s [13] and Rosenbrock problem [6] in noisy
environment. Both of them are convenient for initial testing purposes as one
can solve them analytically and thus we can actually compute some quality
indicators of the approximate solutions obtained by the presented variable
sample size line search methods. One of the assumptions in this paper is that
the analytical form of the gradient ∇xF (x, ξ) is available. This assumption
is not satisfied in many real applications. We have used some of the test
examples with gradient approximations in order to check the applicability of
the presented algorithm in cases where the analytical gradient is unavailable.
The Mixed Logit problem is slightly different than the problem (4). Given
the practical importance of this problem we introduce minor adjustments of
Algorithm 1 and report the results in 5.2.

Algorithm 1 uses an unspecified descent direction pk at step S4. We report
the results for two possible directions, the steepest descent direction for f̂Nk

,

pk = −∇f̂Nk
(xk), (20)

18

and the second order direction obtained by

pk = −Hk∇f̂Nk
(xk), (21)

where Hk is a positive definite matrix that approximates the inverse Hessian
matrix (∇2f̂Nk

(xk))
−1. Among many options for Hk we have chosen the

BFGS approach. We also let H0 = I where I denotes the identity matrix.
Other possibilities for the initial approximation H0 can be seen in [15] and
[19]. The inverse Hessian approximation is updated by the famous BFGS
formula that can be found in [15]. More precisely, we compute sk as in step
S6 of Algorithm 1 and let

yk = ∇f̂Nk+1
(xk+1)−∇f̂Nk

(xk).

We compute yk after step S8 when the next iteration xk+1 and the relevant
sample size Nk+1 are determined. Then, if yTk sk > 0, we use BFGS update
formula to obtain

Hk+1 = (I − sky
T
k

yTk sk
)Hk(I −

yks
T
k

yTk sk
) +

sks
T
k

yksTk
.

Otherwise, we put Hk+1 = Hk. This way we can be sure that our approxi-
mation matrix remains positive definite, therefore providing the decreasing
search direction (21).

Notice also that the assumption A5 is satisfied for both direction (20) or
(21), but in the case of (21) we need to assume that F (·, ξ) ∈ C2 instead of
A2. Furthermore, some kind of boundedness for Hk is also necessary. BFGS
matrix in noisy environment is analyzed in [11].

If we choose to apply the safeguard rule presented in Algorithm 3, we
set the input parameter η0 to be some finite number smaller than 1. On the
other hand, if we set η0 = −∞ the safeguard rule is not applied and thus the
algorithm accepts the candidate sample size for the next iteration. In other
words, for every iteration k we have that Nk+1 = N+

k .
Based on the descent direction choice and the safeguard rule application,

four different implementations of Algorithm 1 are to be specified. NG repre-
sents the algorithm that uses negative gradient search directions (20) without
the safeguard rule i.e. with η0 = −∞, while NG - ρ uses the negative gradi-
ent direction and enforces the safeguard rule. Analogously, BFGS stands for
second order type directions (21) with BFGS - ρ being the algorithm with
the safeguard rule. All of them are tested in the following subsections.

19

5.1 Numerical results for noisy problems

First of all, we are going to present numerical results obtained by applying
Algorithm 1 to Aluffi - Pentini’s problem which can be found in [13]. Origi-
nally, this is deterministic problem with box constraints. Following the ideas
from [6], we added the noise to the first component of decision variable and
removed the constraints, so the objective function becomes

f(x) = E(0.25(x1ξ)
4 − 0.5(x1ξ)

2 + 0.1ξx1 + 0.5x2
2),

where ξ represents a random variable with Normal distribution

ξ : N (1, σ2). (22)

We observed this problem with three different levels of variance. As we
are able to calculate the real objective function and analytical form of its
gradient, we can actually see how close are the approximate and the true
stationary points. Table 1 contains the stationary points for various levels of
noise and the global minimums of the relevant objective functions.

σ2 global minimizer - x∗ local minimizer maximizer f(x∗)
0.01 (−1.02217, 0) (0.922107, 0) (0.100062, 0) -0.340482
0.1 (−0.863645, 0) (0.771579, 0) (0.092065, 0) -0.269891
1 (−0.470382, 0) (0.419732, 0) (0.05065, 0) -0.145908

Table 1: Stationary points for Allufi - Pentini’s problem

The parameters are set as follows. The stopping criterion is

‖∇f̂Nmax(xk)‖ < 10−2.

The initial sample size is set to be Nmin
0 = 3, the Armijo parameter η = 10−4,

while the confidence level is δ = 0.95. The backtracking is performed using
β = 0.5 and the input parameters for Algorithm 2 are

ν1 =
1√
Nmax

and γ3 = 0.5.

The safeguard parameter in algorithms NG - ρ and BFGS - ρ is η0 = 0.7,
while the initial approximation is x0 = (1, 1)T . These parameters are the
same for all levels of noise.

We conducted 50 independent runs of each algorithm. The sample of size
Nmax is generated for each run and all algorithms are tested with that same

20

sample realization. The results in the following tables are the average values
obtained from these 50 runs. Columns ‖∇f̂Nmax‖ and ‖∇f‖ give, respec-
tively, the average values of the gradient for the approximate problem (4)
and the initial problem (1) objective function at the last iteration, while fev
represents the average number of function evaluations with one gradient eval-
uation being counted as n function evaluations. The final column fevNmax
represents the average number of function evaluations when Nk = Nmax at
every iteration of algorithm i.e. the cost of the sample path method.

σ2 = 0.01, Nmax = 100

Algorithm ‖∇f̂Nmax
‖ ‖∇f‖ fev fevNmax

NG 0.008076 0.014906 1402 1868
NG - ρ 0.008002 0.013423 1286
BFGS 0.003575 0.011724 840 928

BFGS - ρ 0.003556 0.012158 793

σ2 = 0.1 , Nmax = 200

Algorithm ‖∇f̂Nmax
‖ ‖∇f‖ fev fevNmax

NG 0.007545 0.027929 3971 4700
NG - ρ 0.006952 0.028941 3537
BFGS 0.003414 0.027991 2155 2968

BFGS - ρ 0.003879 0.027785 2152

σ2 = 1 , Nmax = 600

Algorithm ‖∇f̂Nmax
‖ ‖∇f‖ fev fevNmax

NG 0.006072 0.050208 13731 15444
NG - ρ 0.005149 0.058036 10949
BFGS 0.003712 0.054871 7829 14760

BFGS - ρ 0.002881 0.055523 8372

Table 2: Allufi - Pentini’s problem

As expected, the results in Table 2 confirm that the variable sample size
strategy is significantly cheaper than the sample path line search with the
maximal sample size. At the same time, given thatNmax is eventually reached
the approximate solutions obtained by the four tested methods are of the
same quality as the sample path solutions i.e. they are the stationary points
of f̂Nmax . One can also notice that the algorithms that use the second order
search directions performed better than their negative gradient counterparts.
The application of the safeguard rule decreases the cost in all tested cases
except in the last case with the highest variance and second order search
direction.

Given that the considered problems have more than one stationary point
we report the distribution of the approximate stationary points in Table

21

3. Column global counts how many times we had convergence towards the
global minimizer, column local shows how many replications converged to
the local minimizer and column max counts convergence to the stationary
point that is the maximizer of objective function f . Columns fgm and flm
represent the average values of function f in the runs that converged to the
global minimizer and local minimizer, respectively.

σ2 = 0.01, Nmax = 100
Algorithm global local max fgm flm

NG 0 50 0 - -0.14543
NG - ρ 0 50 0 - -0.14545
BFGS 0 50 0 - -0.14546

BFGS - ρ 0 50 0 - -0.14545

σ2 = 0.1, Nmax = 200
Algorithm global local max fgm flm

NG 11 39 0 -0.26940 -0.10562
NG - ρ 15 35 0 -0.26940 -0.10563
BFGS 12 38 0 -0.26948 -0.10559

BFGS - ρ 12 38 0 -0.26946 -0.10560

σ2 = 1, Nmax = 600
Algorithm global local max fgm flm

NG 28 19 3 -0.14537 -0.05625
NG - ρ 35 15 0 -0.14529 -0.05626
BFGS 30 19 1 -0.14537 -0.05612

BFGS - ρ 31 19 0 -0.14538 -0.05613

Table 3: The approximate stationary points for Allufi - Pentini’s problem

Notice that as the variance increases, the number of replications that are
converging towards global minimizers increases as well. However, we also
registered convergence towards maximizers when we increased the variance.

The next example relays on Rosenbrock function. Following the example
from [6], we added the noise to the first component in order to make it
random. We obtained the following objective function

f(x) = E(100(x2 − (x1ξ)
2)2 + (x1ξ − 1)2), (23)

where ξ is the random variable defined with (22). This kind of function has
only one stationary point which is global minimizer, but it depends on level
of noise. The algorithms are tested with the dispersion parameter σ2 equal
to 0.001, 0.01 and 0.1. An interesting observation regarding this problem

22

is that the objective function (23) becomes more and more ”optimization
friendly” when the variance increases. Therefore, we put the same maximal
sample size for all levels of noise. The stationary points and the minimal
values of the objective function are given in Table 4.

σ2 global minimizer - x∗ f(x∗)
0.001 (0.711273, 0.506415) 0.186298
0.01 (0.416199, 0.174953) 0.463179
0.1 (0.209267, 0.048172) 0.634960

Table 4: Rosenbrock problem - the global minimizers

Minimization of the Rosenbrock function is a well known problem and
in general the second order directions are necessary to solve it. The same
appears to be true in noisy environment. As almost all runs with the negative
gradient failed, only BFGS type results are presented in Table 5. All the
parameters are the same as in the previous example except that the initial
iteration is set to be x0 = (−1, 1.2)T .

σ2 = 0.001 , Nmax = 3500

Algorithm ‖∇f̂Nmax
‖ ‖∇f‖ fev fevNmax

BFGS 0.003413 0.137890 56857 246260
BFGS - ρ 0.003068 0.137810 49734

σ2 = 0.01 , Nmax = 3500

Algorithm ‖∇f̂Nmax‖ ‖∇f‖ fev fevNmax
BFGS 0.002892 0.114680 56189 213220

BFGS - ρ 0.003542 0.114160 52875

σ2 = 0.1 , Nmax = 3500

Algorithm ‖∇f̂Nmax‖ ‖∇f‖ fev fevNmax
BFGS 0.003767 0.093363 67442 159460

BFGS - ρ 0.003561 0.093290 59276

Table 5: Rosenbrock problem

The same conclusion is valid for this example as for Aluffi - Pentini’s
problem - the variable sample size strategy reduces the number of function
evaluations. Moreover, as far as this example is concerned, clear advantage
is assigned to the algorithm that uses the safeguard rule.

So far we have compared the number of function evaluations for algo-
rithms proposed in this paper and the sample path algorithm with Nmax

sample size. The existing methods include the line search sample path meth-
ods where the sample size is increasing during the iterative process. Such

23

methods in general start with a modest sample size and increase it as the
iterates progress. Therefore the natural question here is how different is the
strategy advocated in this paper i.e. how often do we have decrease in the
sample size. The percentage of iterations in which decrease of the sample size
occurs varies across the problems and algorithms. It depends both on noise
level and search direction. Observing the average of 50 runs in the previous
two examples the percentage of the decreasing sample size iterations varies
between 11% and 32%. The lowest number occurred in Aluffi - Pentini’s
problem with σ2 = 0.01 and BFGS - ρ algorithm while the highest one was
detected when BFGS - ρ algorithm was applied on Rosenbrock function with
the highest tested noise level.

Percentage of iterations where the decrease of a sample size was rejected
due to safeguard rule from Algorithm 3 also differs. In Rosenbrock problem
it was approximately in 25% of cases for all levels of noise, while in Aluffi -
Pentini’s problem it varied more. The lowest percentage occurred in case of
BFGS - ρ algorithm with σ2 = 0.1 and it was 32%. The highest one was 66%
and it was detected in case where variance was equal to 1 and the negative
gradient search direction was used. In this particular case, comparing the
algorithm with and without safeguard rule, the greatest decrease in num-
ber of function evaluations, around 20%, was obtained as well. The results
thus clearly indicate that the decrease in sample size is happening frequently
enough to lower the number of function evaluations. Also, ρ type algorithms
clearly outperform the algorithms without the safeguard in almost all tested
cases and thus this rule indeed prevents at least some of the unproductive
sample decreases. Clearly, the conclusions and comments presented here are
influenced by the considered examples and more testing is needed to establish
the optimal values of all parameters that are used.

Let us now recall that one of the assumptions in this paper is that the
analytical form of gradient ∇xF (x, ξ) is available. This assumption is not
too realistic as the gradient is unavailable very often. This is the case, for
example, when we are dealing with black-box mechanisms. There are also
various examples where simulations are used in order to approximate the
value of the objective function. Therefore, it seems important to investigate
the behavior of the proposed algorithms if the true gradient is unavailable.
The approximate gradient values in noisy environment are complicated is-
sue and a lot of research is devoted to that topic, see [1, 8, 9, 12, 19]. We
will present some initial results obtained with two types of gradient approx-
imation for Allufi - Pentini’s problem. The purpose of these results is to

24

demonstrate that the algorithms could be used even if the analytical gra-
dient is not available. However, further research is needed for any kind of
conclusion regarding the choice of gradient approximation. We tested two
of the well know approximation methods. First we consider the finite differ-
ence technique to approximate the gradient in optimization process. More
precisely, we used the central (two-sided symmetric) difference gradient es-
timator for each component of the gradient function. The ith component of
the gradient is therefore approximated by

∇xi f̂N(x) ≈
f̂N(x+ hei)− f̂N(x− hei)

2h
, (24)

where ei is the ith column of identity matrix. In our example, parameter h
is set to be 10−4. This is a special case of an estimator that can be found
for example, in [8]. One can see in the same paper some other methods
for gradient estimation as well. Some tests were performed with the one
sided finite difference estimator which is cheaper but they did not provide
satisfactory results and they are not reported.

The second gradient approximation we tested are the simultaneous per-
turbations estimators. These gradient estimators can also be found in [8] and
their main advantage is that they require only 2 evaluations of function f̂N
regardless of the problem dimension. The first one that we used is

∇xi f̂N(x) ≈ f̂N(x+ h∆)− f̂N(x− h∆)

2h∆i

, (25)

where ∆ = (∆1, ...,∆n)T is a vector whose components are i.i.d. random
variables with mean zero and finite inverse second moment. We specified the
distribution for each ∆i to be symmetric Bernoulli i.e. ∆i can take values 1
and -1, both with probability 0.5. Parameter h was like in finite difference
estimator case. Unfortunately, this estimator did not provide satisfactory
results. On the other hand, the similar estimator from [8] performed much
better. Its form is slightly different from (25), but it permits the usage of a
Normal distribution for perturbation sequence. We specified it to be

∇xi f̂N(x) ≈ (f̂N(x+ h∆)− f̂N(x− h∆))∆i

2h
, (26)

where h = 10−4 and each ∆i follows standardized Normal distribution.

25

Retaining all the other parameters as in previous testings, we obtained
the following results for Aluffi - Pentini’s problem. First part of the Table
6 corresponds to the finite difference estimator (FD) given by (24), while
the remaining one refers to the simultaneous perturbations estimator (SP)
defined by (26). In the following table column g represents the average value
of the corresponding gradient estimators.

FD SP
σ2 = 0.01, Nmax = 100

Algorithm g ‖∇f‖ fev g ‖∇f‖ fev
NG 0.008076 0.014906 2632 0.003578 0.091941 1903

NG - ρ 0.008003 0.013423 2423 0.003514 0.102590 1850
BFGS 0.003575 0.011724 1504 0.004309 0.284110 8240

BFGS - ρ 0.003556 0.012158 1431 0.005287 0.286170 8402

σ2 = 0.1 , Nmax = 200
Algorithm g ‖∇f‖ fev g ‖∇f‖ fev

NG 0.007545 0.027929 7341 0.003684 0.069363 5147
NG - ρ 0.006952 0.028941 6504 0.003265 0.121340 4432
BFGS 0.003414 0.027991 3863 0.004889 0.350460 14715

BFGS - ρ 0.003879 0.027786 3858 0.004617 0.310260 9102

σ2 = 1 , Nmax = 600
Algorithm g ‖∇f‖ fev g ‖∇f‖ fev

NG 0.006072 0.050209 21391 0.004383 0.126370 22796
NG - ρ 0.005149 0.058036 17352 0.004516 0.163630 17202
BFGS 0.003685 0.054723 14289 0.004861 1.079000 62671

BFGS - ρ 0.002880 0.055522 15351 0.005141 1.151800 62779

Table 6: Gradient approximation algorithms for Allufi - Pentini’s problem

The application of gradient approximations yielded significantly weaker
results but nevertheless FD approximation seems to generate reasonably good
approximations of the stationary points. The distribution of approximate
stationary points is quite similar to the distribution presented in Table 3.
Roughly speaking, the number of function evaluations is twice as large as the
number of evaluations with analytical gradient estimator ∇f̂N . The values
of ‖∇f‖ are reasonably small given the stopping criteria and the algorithms
were successful in all runs. The algorithms that use BFGS directions were
cheaper than the ones with the negative gradient approximations and the
safeguard rule application saved some function evaluations. On the other
hand, SP approximation performed significantly worse as it approximates
the real gradient quite poorly. The number of function evaluations was sig-
nificantly smaller with NG type algorithms if compared with FD approach

26

but the quality of approximate solutions is also worse. The BFGS algorithms
were clearly outperformed by NG algorithms which is consistent with poor
quality of gradient estimation in SP approach. In this case, the second order
direction is in fact worse than the first order direction as the errors propa-
gate. SP algorithms were also rather unstable if we consider the distribution
of achieved stationary points. The number of runs which resulted with global
minimizers increased but the number of runs in which algorithms were con-
verging towards maximizers is larger too. Furthermore some of the 50 runs
were unsuccessful within 500000 function evaluations - one run of BFGS al-
gorithm with σ2 = 0.1 and one run of BFGS - ρ for σ2 = 1. NG algorithm
did not manage to converge in 8 runs with the largest variance level. The
results presented in Table 6 are the average values of the successful runs only.

In general, the problem of finding the suitable gradient estimator is very
tempting. As we already mentioned, some of the gradient free approaches,
see for example [5, 7], will probably make these algorithms more applicable
in practice. Therefore, it will be the subject of future research.

5.2 Application to discrete choice theory - Mixed Logit
models

In this section we are going to present numerical results obtained by applying
slightly modified algorithms on simulated data. That data represent real
world problems that come from the discrete choice theory. Discrete choice
problems are subject of various disciplines like econometrics, transportation,
psychology etc. The problem that will be considered is an unconstrained
parameter estimation problem. We will briefly describe the problem while
the more detailed description with further references can be found in [2, 3, 4].

Let us consider a set of ra agents and rm alternatives. Suppose that
every agent chooses one of finitely many alternatives. The choice is made
according to rk characteristics that each alternative has. Suppose that they
are all numerical. Further, each agent chooses the alternative that maximizes
his utility. Utility of agent i for alternative j is given by

Ui,j = Vi,j + εi,j,

where Vi,j depends on the vector of characteristics of alternative j (mj =
(kj1, ..., k

j
rk

)T) and εi,j is the error term. We will observe probably the most

27

popular model in practice where Vi,j is a linear function, that is

Vi,j = Vi,j(β
i) = mT

j β
i.

We specified βi, i = 1, 2, ..., ra to be a vector with rk Normally distributed
components. More precisely,

βi = (βi1, ..., β
i
rk

)T = (µ1 + ξi1σ1, ..., µrk + ξirkσrk)T ,

where ξij, i = 1, 2, ..., ra, j = 1, 2, ..., rk are i.i.d. random variables with
standardized Normal distribution. In other words, βik : N (µk, σ

2
k) for every

i. The parameters µk and σk, k = 1, 2, ..., rk are the ones that we are trying
to estimate. Therefore, they will constitute the vector x of unknowns and
the dimension of our problem is going to be n = 2rk. The term εi,j is a
random variable whose role is to collect all the factors that are not included
in the function Vi,j. It can also be viewed as the taste of each agent. Different
assumptions about these terms lead to different models. We will assume that
for every i and every j the random variable εi,j follows Gumbel distribution
with mean 0 and scale parameter 1. Gumbel distribution is also known as
type 1 extreme value distribution.

Now, suppose that every agent made his own choice among these alterna-
tives. The problem we want to solve is to maximize the likelihood function.
Under the assumptions that we made, if the realization ξ̄i of ξi = (ξi1, ..., ξ

i
rk

)T

is known, the probability that agent i chooses alternative j becomes

Li,j(x, ξ̄i) =
eVi,j(x,ξ̄i)

rm∑
s=1

eVi,s(x,ξ̄i)

.

Moreover, the unconditional probability is therefore given by

Pi,j(x) = E(Li,j(x, ξ
i)).

Now, if we denote by j(i) the choice of agent i, the problem becomes

max
x∈Rn

ra∏
i=1

Pi,j(i)(x). (27)

The equivalent form of (27) is given by

min
x∈Rn

− 1

ra

ra∑
i=1

lnE(Li,j(i)(x, ξ
i)).

28

Notice that this problem is similar, but not exactly the same as (1). The
objective function is now

f(x) = − 1

ra

ra∑
i=1

lnE(Li,j(i)(x, ξ
i)),

so the approximating function will be

f̂N(x) = − 1

ra

ra∑
i=1

ln(
1

N

N∑
s=1

Li,j(i)(x, ξ
i
s)).

Here ξi1, ..., ξ
i
N are independent realizations of the random vector ξi. The

realizations are independent across the agents as well. Notice that it is not
too difficult to calculate the exact gradient of f̂N . Therefore, we have the
problem where derivative-based approach is suitable.

One of the main differences between algorithms presented in previous
sections and the ones that are used for Mixed Logit problem is the way that
we calculate the ”lack of precision” εNδ (x). We will define the approximation
of the confidence interval radius just like it is proposed in [4],

εNδ (x) =
αδ
ra

√√√√ ra∑
i=1

σ̂2
N,i,j(i)(x)

NP 2
i,j(i)(x)

. (28)

Here, αδ represents the same parameter as in (8) and σ̂2
N,i,j(i)(x) is the sample

variance estimator, i.e.

σ̂2
N,i,j(i)(x) =

1

N − 1

N∑
s=1

(Li,j(i)(x, ξ
i
s)−

1

N

N∑
k=1

(Li,j(i)(x, ξ
i
k))

2.

Confidence level that is used for numerical testings is retained at 0.95, there-
fore αδ ≈ 1.96. The reason for taking (28) is the fact that it can be shown, by
using Delta method [17, 18], that in this case

√
N(f(x) − f̂N(x)) converges

in distribution towards random variable with Normal distribution with mean

zero and variance equal to 1
N2

∑ra
i=1

σ2
i,j(i)

(x)

P 2
i,j(i)

(x)
.

Let us briefly analyze the convergence conditions for the adjusted algo-
rithm. First of all, notice that for every N , function f̂N is nonnegative and
thus the lower bound in Lemma 2.3 is zero. Assumptions A2, A3 and A4
can be reformulated in a following way

29

B2 For every N, f̂N ∈ C1(Rn).

B3 There is a positive constant M1 such that for every N, x, ‖∇f̂N(x)‖ ≤
M1.

B4 There exists positive constant MFF such that for every N, x, f̂N(x) ≤
MFF .

The following result holds.

Theorem 5.1. Suppose that B2 - B4 and A5 are satisfied. Furthermore,
suppose that there exist a positive constant κ and number n1 ∈ N such that
εNk
δ (xk) ≥ κ for every k ≥ n1 and that the sequence {xk}k∈N generated by

the adjusted Algorithm 1 is bounded. Then, either the adjusted Algorithm 1
terminates after a finite number of iterations at a stationary point of f̂Nmax

or every accumulation point of the sequence {xk}k∈N is a stationary point of
f̂Nmax.

The test problem is generated as follows. The number of alternatives and
characteristics is 5. Therefore, we generated a matrix M of size 5×5 using the
standardized Normal distribution. Each column of that matrix represents the
characteristics for one of the alternatives. The number of agents is assumed
to be 500. Furthermore, we generated a matrix B with 5 rows and 500
columns where ith column represents the realization of random vector βi.
More precisely, we set each component of matrix B to be a realization of
Normally distributed random variable with mean 0.5 and variance 1, i.e.
B(i, j) : N (0.5, 1). At the end, we formed a matrix of random terms εi,j with
5 rows and 500 columns. Each component of that matrix is a realization
of Gumbel distribution with mean 0 and scale parameter 1. We used these
matrices to find the vector of choices for the agents.

The results presented in Table 7 are obtained after 10 independent runs of
each algorithm, including the algorithms with fixed sample size. At each run,
the initial iteration is set to be x0 = (0.1, . . . , 0.1)T . The maximal sample size
for each agent is Nmax = 500. Since we use independent samples across the
agents, the total maximal sample size is 250000. Thus, this is the number of
realizations of random vector ξ which are generated at the beginning of the
optimization process. In algorithms with variable sample size, the starting
sample size for each agent is Nmin

0 = 3. The other parameters are set as in
the previous subsection.

30

Since this is a real world problem which can hardly be solved without
some numerical algorithm, we are not able to calculate the value of the true
objective function nor the gradient at any point. Therefore, we used sample
of size N = 2000 to approximate the true value of the gradient. Empirically,
we noticed that sample size 2000 did not yield much discrepancy from sample
size 10000. The average values of ∇f̂2000 at the final iterations are presented
in column g̃ of Table 7. The remaining notation is just like in previous
subsection.

Algorithm ‖∇f̂Nmax‖ g̃ fev fevNmax
NG 0.008888 0.008101 4.4668E+07 9.5300E+07

NG - ρ 0.009237 0.008530 3.8611E+07
BFGS 0.004128 0.003498 6.2430E+06 1.7750E+07

BFGS - ρ 0.004616 0.004256 5.7895E+06

Table 7 : Mixed Logit Problem

According to fev columns, the algorithms with variable sample size strat-
egy once again did better than their fixed-size counterparts. This is even
more obvious in the BFGS search direction cases. Moreover, these algo-
rithms clearly outperformed their negative gradient competitors. Notice also
that the safeguard rule managed to decrease the average number of function
evaluations. The decrease is over 13% for NG algorithm. In that case, the
algorithm tried to decrease the sample size in 34% of iterations on average.
However, the decrease was not allowed in 21% of trials. On the other hand,
in BFGS algorithms, the signal for decreasing came in 24% of iterations, but
the decrease was allowed only for half of them.

References

[1] S. Andradottir, A review of simulation optimization techniques,
Proceedings of the 1998 Winter Simulation Conference, 1998, pp. 151-
158.

[2] F. Bastin, Trust-Region Algorithms for Nonlinear Stochastic Pro-
gramming and Mixed Logit Models, PhD thesis, University of Namur,
Belgium, (2004).

[3] F. Bastin, C. Cirillo, P. L. Toint, An adaptive monte carlo
algorithm for computing mixed logit estimators, Computational Man-
agement Science, 3(1), 2006, pp. 55-79.

31

[4] F. Bastin, C. Cirillo, P. L. Toint, Convergence theory for non-
convex stochastic programming with an application to mixed logit,
Math. Program., Ser. B 108, 2006, pp. 207-234.

[5] A. R. Conn, K. Scheinberg, L. N. Vicente, Introduction to
Derivative-Free Optimization, MPS-SIAM Book Series on Optimiza-
tion, SIAM, Philadelphia, 2009.

[6] G. Deng, M. C. Ferris, Variable-Number Sample Path Optimiza-
tion, Mathematical Programming, Vol. 117, No. 1-2, 2009, pp. 81-109.

[7] M.A. Diniz-Ehrhardt, J. M. Martinez, M. Raydan, A
derivative-free nonmonotone line-search technique for unconstrained
optimization, Journal of Computational and Applied Mathematics, Vol.
219, Issue 2, 2008, pp. 383-397.

[8] M. C. Fu, Gradient Estimation, S.G. Henderson and B.L. Nelson
(Eds.), Handbook in OR & MS, Vol. 13, 2006, pp. 575-616.

[9] M. C. Fu, Optimization via simulation: A review, Annals of Opera-
tional Research 53, 1994, pp. 199-247.

[10] T. Homem-de-Mello, Variable-Sample Methods for Stochastic Op-
timization, ACM Transactions on Modeling and Computer Simulation,
Vol. 13, Issue 2, 2003, pp. 108-133.

[11] C. Kao, W. T. Song, S. Chen, A modified Quasi-Newton Method
for Optimization in Simulation, Int. Trans. O.R., Vol.4, No.3, 1997,
pp. 223-233.

[12] K. Marti, Solving Stochastical Structural Optimization Problems by
RSM-Based Stochastic Approximation Methods - Gradient Estimation
in Case of Intermediate Variables, Mathematical Methods of Opera-
tional Research 46, 1997, pp. 409-434.

[13] M. Montaz Ali, C. Khompatraporn, Z. B. Zabinsky, A Numer-
ical Evaluation of Several Stochastic Algorithms on Selected Continous
Global Optimization Test Problems, Journal of Global Optimization,
Vol. 31, Issue 4, 2005, pp.635-672 .

32

[14] J. J. More, S. M. Wild, Benchmarking derivative-free optimization
algorithms SIAM J. Optim, Vol. 20, No. 1, 2009, pp. 172-191.

[15] J. Nocedal, S. J. Wright, Numerical Optimization, Springer,
1999.

[16] E. Polak, J. O. Royset, Eficient sample sizes in stochastic nonlinear
programing, Journal of Computational and Applied Mathematics, Vol.
217, Issue 2, 2008, pp. 301-310.

[17] R.Y. Rubinstein, A. Shapiro, Discrete Event Systems, John Wiley
& Sons, Chichester, England, 1993.

[18] A. Shapiro, A. Ruszczynski, Stochastic Programming, Vol. 10 of
Handbooks in Operational Research and Management science. Elsevier,
2003, pp. 353-425.

[19] J. C. Spall, Introduction to Stochastic Search and Optimization,
Wiley-Interscience serises in discrete mathematics, New Jersey, 2003.

33

