Some Applications of Higher Commutators to Mal'cev Algebras

Erhard Aichinger ${ }^{1}$ and Nebojša Mudrinski ${ }^{2}$

${ }^{1}$ Institute of Algebra, University Linz, Austria
${ }^{2}$ Department of Mathematics and Informatics, University of Novi Sad, Serbia erhard@algebra.uni-linz.ac.at, nmudrinski@im.ns.ac.yu

Novi Sad, August 2008

Some Notions

Mal'cev algebras: A has a Mal'cev term m

$$
\begin{aligned}
& m(x, y, y)=x \\
& m(x, x, y)=y
\end{aligned}
$$

for all $x, y \in A$.

Some Notions

Mal'cev algebras: A has a Mal'cev term m

$$
\begin{aligned}
& m(x, y, y)=x \\
& m(x, x, y)=y
\end{aligned}
$$

for all $x, y \in A$.
Expanded groups: $\mathbf{V}=\left\langle V,+, f_{1}, \ldots, f_{n}\right\rangle$
f_{1}, \ldots, f_{n} are operations on A and + is a group operation

Centralizers

Definition. (Hobby,McKenzie $C\left(\alpha_{1}, \alpha_{2} ; \eta\right)$) Let \mathbf{A} be an algebra, $\alpha_{1}, \alpha_{2}, \eta \in \operatorname{Con} \mathbf{A}$. Then we say that α_{1} centralizes α_{2} modulo η if for all polynomials $f\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ and vectors $\mathbf{a}_{1}, \mathbf{b}_{1}, \mathbf{u}, \mathbf{v}$ from \mathbf{A} satisfying $\mathbf{a}_{1} \equiv \mathbf{b}_{1}\left(\bmod \alpha_{1}\right), \mathbf{u} \equiv \mathbf{v}\left(\bmod \alpha_{2}\right)$ and

$$
f\left(\mathbf{a}_{1}, \mathbf{u}\right) \equiv f\left(\mathbf{a}_{1}, \mathbf{v}\right) \quad(\bmod \eta),
$$

we have

$$
f\left(\mathbf{b}_{1}, \mathbf{u}\right) \equiv f\left(\mathbf{b}_{1}, \mathbf{v}\right) \quad(\bmod \eta) .
$$

Comutators and Nilpotent Property

Definition. $\left[\alpha_{1}, \alpha_{2}\right]:=\bigwedge\left\{\eta \in \operatorname{Con} \mathbf{A} \mid C\left(\alpha_{1}, \alpha_{2} ; \eta\right)\right\}$

Comutators and Nilpotent Property

Definition. $\left[\alpha_{1}, \alpha_{2}\right]:=\bigwedge\left\{\eta \in \operatorname{Con} \mathbf{A} \mid C\left(\alpha_{1}, \alpha_{2} ; \eta\right)\right\}$
Definition. (Hobby, McKenzie) Let \mathbf{A} be an algebra from a congruence modular variety. A is nilpotent (of class $n, n \in \mathbb{N}$) if

$$
[\underbrace{1 \ldots[1,1]]}_{n}=0
$$

The Polynomial Equivalence Problem

Let \mathbf{A} be an algebra.

- Given: s and t arbitrary polynomial terms of \mathbf{A}

The Polynomial Equivalence Problem

Let \mathbf{A} be an algebra.

- Given: s and t arbitrary polynomial terms of \mathbf{A}
- Do s and t induce the same polynomial functions on \mathbf{A} ?

The Polynomial Equivalence Problem

Let \mathbf{A} be an algebra.

- Given: s and t arbitrary polynomial terms of \mathbf{A}
- Do s and t induce the same polynomial functions on \mathbf{A} ?

Theorem. (Hunt, Stearns 1990, Burris, Lawrence 1993) For a finite nilpotent ring, term equivalence problem can be decided in polynomial time.

Affine Completeness

Definition. An algebra \mathbf{A} is k-affine complete if every k-ary function on A that preserves congruences of \mathbf{A} is a polynomial.

Affine Completeness

Definition. An algebra \mathbf{A} is k-affine complete if every k-ary function on A that preserves congruences of \mathbf{A} is a polynomial.

An algebra \mathbf{A} is affine complete if it is k-affine complete for every $k \geq 1$.

Affine Completeness

Definition. An algebra \mathbf{A} is k-affine complete if every k-ary function on A that preserves congruences of \mathbf{A} is a polynomial.

An algebra \mathbf{A} is affine complete if it is k-affine complete for every $k \geq 1$.

Theorem. (E. Aichinger, J. Ecker) There is an algorithm that decides whether a finite nilpotent group is affine complete.

Affine Completeness

Definition. An algebra \mathbf{A} is k-affine complete if every k-ary function on A that preserves congruences of \mathbf{A} is a polynomial.

An algebra \mathbf{A} is affine complete if it is k-affine complete for every $k \geq 1$.

Theorem. (E. Aichinger, J. Ecker) There is an algorithm that decides whether a finite nilpotent group is affine complete.

Is there a wider class of algebras where affine completeness is a decidable property?

Clone Theory

A Clone is a set of operations that is closed under compositions and contains all projections.

Clone Theory

A Clone is a set of operations that is closed under compositions and contains all projections.

A polynomial Mal'cev clone is a clone that contains a Mal'cev term and all constant operations.

Clone Theory

A Clone is a set of operations that is closed under compositions and contains all projections.

A polynomial Mal'cev clone is a clone that contains a Mal'cev term and all constant operations.

Theorem. (E. Aichinger, P. Mayr) For different primes p, q there are precisely 17 clones on $\mathbb{Z}_{p q}$ that contain the addition of $\mathbb{Z}_{p q}$ and all constant operations.

Clone Theory

A Clone is a set of operations that is closed under compositions and contains all projections.

A polynomial Mal'cev clone is a clone that contains a Mal'cev term and all constant operations.

Theorem. (E. Aichinger, P. Mayr) For different primes p, q there are precisely 17 clones on $\mathbb{Z}_{p q}$ that contain the addition of $\mathbb{Z}_{p q}$ and all constant operations.

Theorem. (A. Bulatov) There are countably many clones on $\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ that contain $f(x, y, z)=x-y+z$ and all constant operations.

Number of Mal'cev Clones

Theorem. (P. Idziak) For $|A| \geq 4$ there are infinitely many clones on A that contain a ternary Mal'cev operation.

Number of Mal'cev Clones

Theorem. (P. Idziak) For $|A| \geq 4$ there are infinitely many clones on A that contain a ternary Mal'cev operation.

Is there a finite set A such that there are uncountably many clones on A that contain a Mal'cev operation?

Number of Mal'cev Clones

Theorem. (P. Idziak) For $|A| \geq 4$ there are infinitely many clones on A that contain a ternary Mal'cev operation.

Is there a finite set A such that there are uncountably many clones on A that contain a Mal'cev operation?

Given a finite algebra \mathbf{A} with a Mal'cev operation, is there an $n \in \mathbb{N}$ such that the following is true: if a function f preserves all n-ary relations that are invariant under all polynomial functions, then f is a polynomial function?

Higher Centralizers

Definition. (Bulatov $C\left(\alpha_{1}, \ldots, \alpha_{n} ; \eta\right)$) Let \mathbf{A} be an algebra, $\alpha_{1}, \ldots, \alpha_{n}, \eta \in \operatorname{Con} \mathbf{A}$. Then we say that $\alpha_{1}, \ldots, \alpha_{n-1}$ centralize α_{n} modulo η if for all polynomials $f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right)$ and vectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{n-1}, \mathbf{b}_{1} \ldots, \mathbf{b}_{n-1}, \mathbf{u}, \mathbf{v}$ from \mathbf{A} satisfying $\mathbf{a}_{i} \equiv \mathbf{b}_{i}\left(\bmod \alpha_{i}\right)$, $1 \leq i \leq n, \mathbf{u} \equiv \mathbf{v}\left(\bmod \alpha_{n}\right)$ and

$$
f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}, \mathbf{u}\right) \equiv f\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}, \mathbf{v}\right) \quad(\bmod \eta)
$$

for all $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}\right) \in\left\{\mathbf{a}_{1}, \mathbf{b}_{1}\right\} \times \cdots \times\left\{\mathbf{a}_{n-1}, \mathbf{b}_{n-1}\right\}$ and $\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{n-1}\right) \neq\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}\right)$, we have

$$
f\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}, \mathbf{u}\right) \equiv f\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n-1}, \mathbf{v}\right) \quad(\bmod \eta)
$$

Higher Commutators

$$
\left[\alpha_{1}, \ldots, \alpha_{n}\right]:=\bigwedge\left\{\eta \in \operatorname{Con} \mathbf{A} \mid C\left(\alpha_{1}, \ldots, \alpha_{n} ; \eta\right)\right\}
$$

Higher Commutators

$\left[\alpha_{1}, \ldots, \alpha_{n}\right]:=\bigwedge\left\{\eta \in \operatorname{Con} \mathbf{A} \mid C\left(\alpha_{1}, \ldots, \alpha_{n} ; \eta\right)\right\}$
Higher commutators can not be obtained by composing binary commutators

Higher Commutators

$$
\left[\alpha_{1}, \ldots, \alpha_{n}\right]:=\bigwedge\left\{\eta \in \operatorname{Con} \mathbf{A} \mid C\left(\alpha_{1}, \ldots, \alpha_{n} ; \eta\right)\right\}
$$

Higher commutators can not be obtained by composing binary commutators

Example:

$$
\left[1_{V},\left[1_{V}, 1_{V}\right]\right] \neq\left[1_{V}, 1_{V}, 1_{V}\right] \text { for } \mathbf{V}=\left\langle\mathbb{Z}_{4},+, 2 x y z\right\rangle
$$

Bulatov's Properties

Proposition. A an arbitrary algebra and $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \operatorname{Con} \mathbf{A}$

- $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$

Bulatov's Properties

Proposition. A an arbitrary algebra and $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \operatorname{Con} \mathbf{A}$

- $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$
- $\alpha_{1} \leq \beta_{1}, \ldots, \alpha_{n} \leq \beta_{n} \Rightarrow\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\beta_{1}, \ldots, \beta_{n}\right]$

Bulatov's Properties

Proposition. A an arbitrary algebra and $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \operatorname{Con} \mathbf{A}$

- $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$
- $\alpha_{1} \leq \beta_{1}, \ldots, \alpha_{n} \leq \beta_{n} \Rightarrow\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\beta_{1}, \ldots, \beta_{n}\right]$
- $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\alpha_{1}, \ldots, \alpha_{n-1}\right]$

Bulatov's Properties

Proposition. A an arbitrary algebra and
$\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \operatorname{Con} \mathbf{A}$

- $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq \bigwedge_{i=1}^{n} \alpha_{i}$
- $\alpha_{1} \leq \beta_{1}, \ldots, \alpha_{n} \leq \beta_{n} \Rightarrow\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\beta_{1}, \ldots, \beta_{n}\right]$
- $\left[\alpha_{1}, \ldots, \alpha_{n}\right] \leq\left[\alpha_{1}, \ldots, \alpha_{n-1}\right]$

Claim. If \mathbf{A} is in a congruence modular variety and π is any permutation of $\{1, \ldots, n\}$ then

$$
\left[\alpha_{1}, \ldots, \alpha_{n}\right]=\left[\alpha_{\pi(1)}, \ldots, \alpha_{\pi(n)}\right]
$$

Some Properties of Higher Commutators in Mal'cev Algebras

Proposition.

- $\left[\alpha_{0}, \ldots, \alpha_{k}\right] \leq \eta$ iff $C\left(\alpha_{0}, \ldots, \alpha_{k} ; \eta\right)$

Some Properties of Higher Commutators in Mal'cev Algebras

Proposition.

- $\left[\alpha_{0}, \ldots, \alpha_{k}\right] \leq \eta$ iff $C\left(\alpha_{0}, \ldots, \alpha_{k} ; \eta\right)$
- If $\eta \leq \alpha_{0}, \ldots, \alpha_{k}$, then

$$
\left[\alpha_{0} / \eta, \ldots, \alpha_{k} / \eta\right]=\left(\left[\alpha_{0}, \ldots, \alpha_{k}\right] \vee \eta\right) / \eta
$$

Some Properties of Higher Commutators in Mal'cev Algebras

Proposition.

- $\left[\alpha_{0}, \ldots, \alpha_{k}\right] \leq \eta$ iff $C\left(\alpha_{0}, \ldots, \alpha_{k} ; \eta\right)$
- If $\eta \leq \alpha_{0}, \ldots, \alpha_{k}$, then
$\left[\alpha_{0} / \eta, \ldots, \alpha_{k} / \eta\right]=\left(\left[\alpha_{0}, \ldots, \alpha_{k}\right] \vee \eta\right) / \eta$
- $\bigvee_{i \in I}\left[\alpha_{0}, \ldots, \alpha_{j-1}, \rho_{i}, \alpha_{j+1}, \ldots, \alpha_{k}\right]=$
$\left[\alpha_{0}, \ldots, \alpha_{j-1}, \bigvee_{i \in I} \rho_{i}, \alpha_{j+1}, \ldots, \alpha_{k}\right]$.

Some Properties of Higher Commutators in Mal'cev Algebras

Proposition.

- $\left[\alpha_{0}, \ldots, \alpha_{k}\right] \leq \eta$ iff $C\left(\alpha_{0}, \ldots, \alpha_{k} ; \eta\right)$
- If $\eta \leq \alpha_{0}, \ldots, \alpha_{k}$, then
$\left[\alpha_{0} / \eta, \ldots, \alpha_{k} / \eta\right]=\left(\left[\alpha_{0}, \ldots, \alpha_{k}\right] \vee \eta\right) / \eta$
- $\bigvee_{i \in I}\left[\alpha_{0}, \ldots, \alpha_{j-1}, \rho_{i}, \alpha_{j+1}, \ldots, \alpha_{k}\right]=$
$\left[\alpha_{0}, \ldots, \alpha_{j-1}, \bigvee_{i \in I} \rho_{i}, \alpha_{j+1}, \ldots, \alpha_{k}\right]$.
- $\left[\alpha_{0}, \ldots, \alpha_{j},\left[\alpha_{j+1}, \ldots, \alpha_{k}\right]\right] \leq\left[\alpha_{0}, \alpha_{1}, \ldots, \alpha_{k}\right]$.

Supernilpotent Algebras

Definition. An algebra is called supernilpotent, if there exists a $k \geq 0$ such that

$$
[\underbrace{1, \ldots, 1}_{k+1}]=0 \text {. }
$$

Supernilpotent Algebras

Definition. An algebra is called supernilpotent, if there exists a $k \geq 0$ such that

$$
[\underbrace{1, \ldots, 1}_{k+1}]=0 \text {. }
$$

An algebra is k-supernilpotent if k is the smallest natural number with the property: $[\underbrace{1, \ldots, 1}_{k+1}]=0$.

Supernilpotent Algebras

Definition. An algebra is called supernilpotent, if there exists a $k \geq 0$ such that

$$
[\underbrace{1, \ldots, 1}_{k+1}]=0 \text {. }
$$

An algebra is k-supernilpotent if k is the smallest natural number with the property: $[\underbrace{1, \ldots, 1}_{k+1}]=0$.

Abelian Algebras \subseteq Supernilpotent Algebras \subseteq Nilpotent Algebras

How Does the Supernilpotency Help?

Proposition. Let \mathbf{A} be a finite nilpotent algebra of finite type that generates a congruence modular variety. If \mathbf{A} factors as a direct product of algebras of prime power cardinality then \mathbf{A} is a supernilpotent Mal'cev algebra.

How Does the Supernilpotency Help?

Proposition. Let \mathbf{A} be a finite nilpotent algebra of finite type that generates a congruence modular variety. If \mathbf{A} factors as a direct product of algebras of prime power cardinality then \mathbf{A} is a supernilpotent Mal'cev algebra.

Proposition. Let \mathbf{A} be an n-supernilpotent Mal'cev algebra. Then the polynomial clone of \mathbf{A} is generated by all polynomials of arity at most $n-1$ and the Mal'cev term.

The Polynomial Equivalence Problem

Theorem. The polynomial equivalence problem for a finite nilpotent algebra \mathbf{A} of finite type that is a product of algebras of prime power order and generates a congruence modular variety has polynomial time complexity in the length of the input terms.

Affine Completeness

Theorem. There is an algorithm that decides whether a finite nilpotent algebra of finite type that is a product of algebras of prime power order and generates a congruence modular variety is affine complete.

Mal'cev Clones

Theorem. Let \mathbf{A} be a finite Mal'cev algebra with congruence lattice of height two. Then there is an $n \in \mathbb{N}$ such that: if a function f preserves all n-ary relations that are invariant under all polynomial functions, then f is a polynomial function.

