
Introduction
Three Problems About Polynomials

Higher Commutators
Results

Some Applications of Higher Commutators to
Mal’cev Algebras

Erhard Aichinger1 and Neboǰsa Mudrinski2
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Some Notions

Mal’cev algebras: A has a Mal’cev term m

m(x , y , y) = x

m(x , x , y) = y ,

for all x , y ∈ A.

Expanded groups: V = 〈V ,+, f1, . . . , fn〉
f1, . . . , fn are operations on A and + is a group operation
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Centralizers

Definition. (Hobby,McKenzie C (α1, α2; η)) Let A be an algebra,
α1, α2, η ∈ ConA. Then we say that α1 centralizes α2 modulo η if
for all polynomials f (x1, x2) and vectors a1,b1,u, v from A
satisfying a1 ≡ b1 (mod α1), u ≡ v (mod α2) and

f (a1,u) ≡ f (a1, v) (mod η),

we have
f (b1,u) ≡ f (b1, v) (mod η).
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Comutators and Nilpotent Property

Definition. [α1, α2] :=
∧
{η ∈ ConA |C (α1, α2; η)}

Definition. (Hobby, McKenzie) Let A be an algebra from a
congruence modular variety. A is nilpotent (of class n, n ∈ N) if

[1 . . . [1︸ ︷︷ ︸
n

, 1]] = 0
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The Polynomial Equivalence Problem

Let A be an algebra.

� Given: s and t arbitrary polynomial terms of A

� Do s and t induce the same polynomial functions on A?

Theorem. (Hunt, Stearns 1990, Burris, Lawrence 1993)
For a finite nilpotent ring, term equivalence problem can be
decided in polynomial time.
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Affine Completeness

Definition. An algebra A is k-affine complete if every k-ary
function on A that preserves congruences of A is a polynomial.

An algebra A is affine complete if it is k-affine complete for every
k ≥ 1.

Theorem. (E. Aichinger, J. Ecker) There is an algorithm that
decides whether a finite nilpotent group is affine complete.

Is there a wider class of algebras where affine completeness is a
decidable property?
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Erhard Aichinger and Neboǰsa Mudrinski Some Applications of Higher Commutators to Mal’cev Algebras



Introduction
Three Problems About Polynomials

Higher Commutators
Results

Affine Completeness

Definition. An algebra A is k-affine complete if every k-ary
function on A that preserves congruences of A is a polynomial.

An algebra A is affine complete if it is k-affine complete for every
k ≥ 1.

Theorem. (E. Aichinger, J. Ecker) There is an algorithm that
decides whether a finite nilpotent group is affine complete.

Is there a wider class of algebras where affine completeness is a
decidable property?
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Clone Theory

A Clone is a set of operations that is closed under compositions
and contains all projections.

A polynomial Mal’cev clone is a clone that contains a Mal’cev term
and all constant operations.

Theorem. (E. Aichinger, P. Mayr) For different primes p, q there
are precisely 17 clones on Zpq that contain the addition of Zpq and
all constant operations.

Theorem. (A. Bulatov) There are countably many clones on
Zp × Zp that contain f (x , y , z) = x − y + z and all constant
operations.
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Number of Mal’cev Clones

Theorem. (P. Idziak) For |A| ≥ 4 there are infinitely many clones
on A that contain a ternary Mal’cev operation.

Is there a finite set A such that there are uncountably many clones
on A that contain a Mal’cev operation?

Given a finite algebra A with a Mal’cev operation, is there an
n ∈ N such that the following is true: if a function f preserves all
n-ary relations that are invariant under all polynomial functions,
then f is a polynomial function?
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Higher Centralizers

Definition. (Bulatov C (α1, . . . , αn; η)) Let A be an algebra,
α1, . . . , αn, η ∈ ConA. Then we say that α1, . . . , αn−1 centralize
αn modulo η if for all polynomials f (x1, . . . , xn) and vectors
a1, . . . , an−1,b1 . . . ,bn−1,u, v from A satisfying ai ≡ bi (mod αi ),
1 ≤ i ≤ n, u ≡ v (mod αn) and

f (x1, . . . , xn−1,u) ≡ f (x1, . . . , xn−1, v) (mod η),

for all (x1, . . . , xn−1) ∈ {a1,b1} × · · · × {an−1,bn−1} and
(x1, . . . , xn−1) 6= (b1, . . . ,bn−1), we have

f (b1, . . . ,bn−1,u) ≡ f (b1, . . . ,bn−1, v) (mod η).
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Higher Commutators

[α1, . . . , αn] :=
∧
{η ∈ ConA |C (α1, . . . , αn; η)}

Higher commutators can not be obtained by composing binary
commutators

Example:

[1V , [1V , 1V ]] 6= [1V , 1V , 1V ] for V = 〈Z4,+, 2xyz〉

Erhard Aichinger and Neboǰsa Mudrinski Some Applications of Higher Commutators to Mal’cev Algebras



Introduction
Three Problems About Polynomials

Higher Commutators
Results

Higher Commutators

[α1, . . . , αn] :=
∧
{η ∈ ConA |C (α1, . . . , αn; η)}

Higher commutators can not be obtained by composing binary
commutators

Example:

[1V , [1V , 1V ]] 6= [1V , 1V , 1V ] for V = 〈Z4,+, 2xyz〉
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Bulatov’s Properties

Proposition. A an arbitrary algebra and
α1, . . . , αn, β1, . . . , βn ∈ ConA

� [α1, . . . , αn] ≤
∧n

i=1 αi

� α1 ≤ β1, . . . , αn ≤ βn ⇒ [α1, . . . , αn] ≤ [β1, . . . , βn]

� [α1, . . . , αn] ≤ [α1, . . . , αn−1]

Claim. If A is in a congruence modular variety and π is any
permutation of {1, . . . , n} then

[α1, . . . , αn] = [απ(1), . . . , απ(n)].
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Some Properties of Higher Commutators in Mal’cev
Algebras

Proposition.

� [α0, . . . , αk ] ≤ η iff C (α0, . . . , αk ; η)

� If η ≤ α0, . . . , αk , then
[α0/η, . . . , αk/η] = ([α0, . . . , αk ] ∨ η)/η

�

∨
i∈I [α0, . . . , αj−1, ρi , αj+1, . . . , αk ] =

[α0, . . . , αj−1,
∨

i∈I ρi , αj+1, . . . , αk ].

� [α0, . . . , αj , [αj+1, . . . , αk ]] ≤ [α0, α1, . . . , αk ].
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Supernilpotent Algebras

Definition. An algebra is called supernilpotent, if there exists a
k ≥ 0 such that

[ 1, . . . , 1︸ ︷︷ ︸
k+1

] = 0.

An algebra is k-supernilpotent if k is the smallest natural number
with the property: [ 1, . . . , 1︸ ︷︷ ︸

k+1

] = 0.

Abelian Algebras ⊆ Supernilpotent Algebras ⊆ Nilpotent Algebras
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How Does the Supernilpotency Help?

Proposition. Let A be a finite nilpotent algebra of finite type that
generates a congruence modular variety. If A factors as a direct
product of algebras of prime power cardinality then A is a
supernilpotent Mal’cev algebra.

Proposition. Let A be an n-supernilpotent Mal’cev algebra. Then
the polynomial clone of A is generated by all polynomials of arity
at most n − 1 and the Mal’cev term.
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The Polynomial Equivalence Problem

Theorem. The polynomial equivalence problem for a finite
nilpotent algebra A of finite type that is a product of algebras of
prime power order and generates a congruence modular variety has
polynomial time complexity in the length of the input terms.
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Affine Completeness

Theorem. There is an algorithm that decides whether a finite
nilpotent algebra of finite type that is a product of algebras of
prime power order and generates a congruence modular variety is
affine complete.
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Mal’cev Clones

Theorem. Let A be a finite Mal’cev algebra with congruence
lattice of height two. Then there is an n ∈ N such that: if a
function f preserves all n-ary relations that are invariant under all
polynomial functions, then f is a polynomial function.
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