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Abstract

We construct some large families of permutations of Zn such that
the sum of any two permutations from a family is again a permutation
of Zn (not necessarily in the same family). Our families are significant-
ly larger than the largest such families known so far in the literature
(depending on the value of n, the improvement can be as large as expo-
nential). We also show that our families are maximal in the sense that
no permutations can be added to them while maintaining the required
property.
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1 Introduction

In recent years there were many interesting results concerning the maximum
size of a family of permutations such that each pair among them satisfies
some prescribed relation. Various techniques are employed in such works. For
example, Kovács and Soltész [6] considered families of k-neighbor separated
permutations using the natural correspondence between permutations of n
elements and Hamiltonian paths in the complete graph Kn. Ellis, Friedgut
and Pilpel [3] used Fourier analysis on symmetric groups in order to obtain
their well-known result on intersecting families of permutations. Cibulka [2]
studied reverse-free sets of permutations and at one point in the proof of his
main result appealed to a deep result concerning the size of gaps between
consecutive primes. Reverse-free codes and permutations have also been the
subject of the article by Füredi, Kantor, Monti and Sinaimeri [5].

The last two mentioned articles motivated Chandran, Rajendraprasad and
Singh [1] to consider the following two quantities.

∗corresponding author
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• For a positive integer n, let s(n) denote the maximal possible size of a
family of permutations of Zn such that the sum of any two permutations
from a family is again a permutation of Zn (not necessarily in the family).

• For a positive integer n, let t(n) denote the maximal possible size of a
family of permutations of Zn such that the sum of any two permutations
from a family is never again a permutation of Zn.

If n is even, the situation is not really interesting, since it can be easily shown
that in that case we have s(n) = 1 and t(n) = n!. However, if n is odd, then
the problem of estimating s(n) and t(n) is much harder. The authors of [1]
showed the following bounds for that case:

nϕ(n)

2ω(n)
6 s(n) 6

n!(
n−1
2

)
! · 2n−1

2

;(
n− 1

2

)
! · 2

n−1
2 6 t(n) 6

2ω(n)(n− 1)!

ϕ(n)
,

(1)

where ω(n) denotes the number of distinct prime divisors of n. The lower
bounds were obtained by constructions of such families of the corresponding
cardinalities, while the upper bounds were obtained as a consequence of the
lower bounds, by showing an interesting inequality s(n) · t(n) 6 n!.

Our aim in this article is to present a considerable improvement of the low-
er bound on s(n) given above for composite (and odd) n; this also implies an
improvement of the upper bound on t(n) (because of the mentioned inequal-
ity). It is hard to quantify for how much our lower bound surpasses the one
from (1) in general (it depends on the prime factorization of n), but in some
cases (e.g., when n is a prime power) Corollary 3 gives an idea: for example, if

n = 3α, (1) gives s(n) > 32α−1 = n2

3
, while we obtain s(n) > 3

3α−1
2 = 3

n−1
2 ; see

also Table 1 for the results for some small values of n (not necessarily prime
powers).

At the end, we would like to add that the problem we consider here bears
a resemblance to the problem of finding a family of maximal cardinality of the
permutations of the set Zn such that the difference of any two permutations
from the family is again a permutation (better known as a family of orthogo-
nal orthomorphisms of the group Zn). For the current status of this problem
see [4]. Such families have been used (see, e.g., [8]) to construct codes with
good cross-correlation and auto-correlation properties, which have many real
world applications; for example, codes with good cross-correlation are used in
PSK, 4G LTE, GPS communications, and are also useful for generating good
jamming-resistant signals [7].

2 Lower bound

We begin by stating our main result.

2



Theorem 1. Let n be an odd composite positive integer. Then:

s(n) > max
d|n, d 6=1,n

s(d)s
(n
d

)d
. (2)

The theorem will be proved by constructing a set of maxd|n, d 6=1,n s(d)s
(
n
d

)d
distinct permutations with the required property.

Before we proceed to the construction, let us introduce the necessary no-
tation. For a positive integer n, let Sn denote a set of permutations of Zn such
that, for any two permutations π′, π′′ ∈ Sn, their sum π′ + π′′ is again a per-
mutation, and that Sn has the maximal cardinality among all such sets (that
is, |Sn| = s(n)). Let idn denote the permutation (0, 1, . . . , n − 1). Finally, we
add that, in order to make the notation less cumbersome, the sign “+” will
denote the addition in all the groups Zn, Zd, Zn

d
etc. (instead of differentiating

them by +n, +d, +n
d

etc.), and it should always be clear from the context in
which group we are performing the operation.

The following lemma will be needed.

Lemma 2. If π ∈ Sn, then π + i ∈ Sn for any i, i ∈ {0, . . . , n− 1}.

Proof. Let π′ ∈ Sn. It is enough to show that (π + i) + π′ is a permutation
(then the result follows by the maximality of |Sn|, since if π+ i /∈ Sn, we could
add it to Sn and thus obtain a larger set). We have (π+ i) + π′ = (π+ π′) + i,
and since π+π′ is a permutation (by the definition of Sn, because π, π′ ∈ Sn),
it follows that (π+π′) + i is also a permutation. This completes the proof.

We are now ready for the proof of the main theorem.

Proof of Theorem 1. Fix d | n, d 6= 1, n, for which the value s(d)s
(
n
d

)d
is

maximal. Also, fix one set Sn
d

such that (w.l.o.g.) idn
d
∈ Sn

d
, and fix one set Sd

such that idd ∈ Sd. Let

S = {(dπ0 + σ(0))a(dπ1 + σ(1))a · · ·a(dπd−1 + σ(d− 1))

: π0, π1, . . . , πd−1 ∈ Sn
d
, σ ∈ Sd},

(3)

where a denotes the concatenation of two permutations (more formally, but
less clear, each permutation π from S is given by π(i) = dπ⌊ i

n
d

⌋(i mod n
d
) +

σ
(⌊

i
n
d

⌋)
); note that π0, . . . , πd−1 are not necessarily different. We easily see

that each member of S is a permutation of Zn: indeed, the first n
d

elements are
all the elements that leave the remainder σ(0) when divided by d, the next n

d

elements are all the elements that leave the remainder σ(1) when divided by
d etc.

We are now going to show that the sum of any two permutations obtained
by the construction above is again a permutation. Let π′, π′′ ∈ S, where
π′ is obtained from the parameters π′0, . . . , σ

′, and π′′ from the parameters
π′′0 , . . . , σ

′′. Let σ′ + σ′′ = τ (τ is also a permutation of Zd, since σ′, σ′′ ∈ Sd).
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We shall consider the summation π′ + π′′ “blockwise,” where blocks are as
presented in (3): the kth block of the sum, for k = 0, 1, . . . , d − 1, will be the
tuple (dπ′k + σ′(k)) + (dπ′′k + σ′′(k)).

The kth block is d(π′k+π′′k)+(σ′(k)+σ′′(k)), that is, d(π′k+π′′k)+τ(k). Since
π′k + π′′k is a permutation of Zn

d
(because π′k, π

′′
k ∈ Sn

d
), we conclude that the

kth block consists precisely of all the elements of Zn that leave the remainder
τ(k) when divided by d. But since τ is a permutation of Zd, we conclude that
π′ + π′′ is a permutation of Zn, as needed.

We now easily calculate:

s(n) > |S| = |Sn
d
|d · |Sd| = s

(n
d

)d
s(d),

which was to be proved.

In the following corollary we give a nonrecursive lower bound on s(n) that
can be deduced from Theorem 1.

Corollary 3. a) Let p be an odd prime number and α a positive integer.
Then

s(pα) > s(p)
pα−1
p−1 >

(
p

2

) pα−1
p−1

. (4)

b) Let n = pα1
1 p

α2
2 · · · p

αk
k , where p1, p2, . . . , pk are different primes enumer-

ated in the following order: 5, 3, 7, 11, 13, 17, 19, 23 . . . Then:

s(n) >
k∏
t=1

s(pαtt )
∏k
j=t+1 p

αj
j >

k∏
t=1

(
pt
2

) p
αt
t −1

pt−1

∏k
j=t+1 p

αj
j

.

Proof. a) Let us first show the first inequality. We proceed by induction on α.
The conclusion is trivial for α = 1. Assume now that the inequality holds for all
the numbers less than a given α, and let us prove it for α. Fix any i, 1 6 i < α.
With respect to Theorem 1, together with the inductive assumption, we have:

s(pα) > s(pi)s(pα−i)p
i

> s(p)
pi−1
p−1 (s(p)

pα−i−1
p−1 )p

i

= s(p)
pi−1
p−1

+ pα−pi
p−1 = s(p)

pα−1
p−1 ,

which was to be proved.
The second inequality follows from the first inequality and the lower bound

from (1) (which, for a prime number p, reduces to s(p) >
(
p
2

)
).

b) We show only the first inequality (the second one directly follows by (4)).
We proceed by induction on k. The base (for k = 1) is trivial (the inequality
becomes s(n) > s(n)). Assume now that the inequality holds for k− 1 and let
us prove it for k. Since pαkk | n, by choosing d = pαkk in (2) and then using the
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inductive assumption, we get:

s(n) > s(pαkk )s

(
k−1∏
i=1

pαii

)p
αk
k

> s(pαkk )

(
k−1∏
t=1

s(pαtt )
∏k−1
j=t+1 p

αj
j

)p
αk
k

= s(pαkk )
k−1∏
t=1

s(pαtt )
∏k
j=t+1 p

αj
j ,

which was to be proved.

Remark 4. Later in Section 3, for n = pα1
1 p

α2
2 · · · p

αk
k , it will be more conve-

nient to write n = p′1p
′
2 · · · p′k′ with k′ = α1 + α2 + · · · + αk and p′1 = p′2 =

· · · = p′α1
= p1 etc. Let us show that allowing this way of representing n does

not affect the rightmost bound from Corollary 3b). Indeed, starting from the
considered bound that corresponds to the representation n = p′1p

′
2 · · · p′k′ , we

have:

k′∏
t=1

(
p′t
2

)∏k′
j=t+1 p

′
j

=

 α1∏
t=1

(
p′t
2

)∏k′
j=t+1 p

′
j

 k′∏
t=α1+1

(
p′t
2

)∏k′
j=t+1 p

′
j


=

(
p1
2

)(
∑α1
t=1 p

α1−t
1 )

∏k′
j=α1+1 p

′
j

 k′∏
t=α1+1

(
p′t
2

)∏k′
j=t+1 p

′
j


=

(
p1
2

) p
α1
1 −1

p1−1

∏k
j=2 p

αj
j

 k′∏
t=α1+1

(
p′t
2

)∏k′
j=t+1 p

′
j


= · · · =

k∏
t=1

(
pt
2

) p
αt
t −1

pt−1

∏k
j=t+1 p

αj
j

,

which was to be shown.

Note that the ordering of the primes mentioned in the statement of Corol-
lary 3b) was never used in the proof (that is, the assertion holds for any
ordering), but the corollary was stated in the presented way because in that
case we get the strongest inequality that is possible to obtain from (2) if for the
prime values of n (needed during the recursion) we use the bound s(n) >

(
n
2

)
.

More formally, we have the following claim.

Claim 5. Let s′(n) be defined on odd integers n greater than 1 in the following
way:

s′(n) =


(
n

2

)
, if n is a prime number;

max
d|n, d 6=1,n

s′(d)s′
(n
d

)d
, otherwise.
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Then s′(n) equals the rightmost bound from Corollary 3b).

Since the proof of this claim is quite technical, we give it in a separate
section.

Note. In Table 1 we give a comparison of the old and the new lower bound
on s(n) for composite odd values of n less than 40, where for the prime values
of n we have used the bound s(n) >

(
n
2

)
.

n 9 15 21 25 27 33 35 39
old bound 27 30 63 250 243 165 210 234
new bound 81 3000 45 927 1 000 000 1 594 323 9 743 085 210 000 000 124 357 194

Table 1: Comparison of the lower bounds for composite odd n less than 40.

With the help of a computer, we calculated that the lower bounds for
s(3), s(5), s(7), s(9) and s(11) are sharp (in other words, these five numbers
are known exactly: they equal 3, 10, 21, 81 and 55, respectively). However, we
have also been able to calculate the number s(13), and we were quite surprised
by the discovery that s(13) = 91, instead of the “expected” value 78 (this is
actually the smallest possible improvement, since it is not hard to show that,
in general, n | s(n); however, it was still unexpected). One of the families
achieving this value is given by:

{(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), (0, 1, 2, 3, 6, 7, 8, 4, 12, 9, 11, 5, 19),

(0, 3, 5, 9, 4, 1, 10, 7, 2, 6, 8, 11, 12), (0, 3, 9, 2, 6, 1, 8, 5, 7, 11, 12, 10, 4),

(0, 7, 9, 6, 1, 10, 11, 12, 2, 3, 4, 5, 8), (0, 9, 6, 1, 5, 7, 10, 12, 3, 11, 8, 4, 2),

(0, 11, 12, 3, 5, 2, 9, 4, 8, 1, 7, 10, 6)}

plus all the translations of these seven permutations (that is, their sum with a
constant). This is not the only possible 91-member family: we have enumerated
that there are exactly 273 such families (with an additional constraint that id13

belongs to all the families; this is not a loss of generalization, because we can
always permute the order of elements in any considered family and thus obtain
a family that contains id13), but been unable to find any noticeable pattern in
any of them.

We would like to add: note that the equality s(13) = 91 leads to a further
improvement of the lower bound on s(39) from Table 1; namely, we now have
s(39) > 145 083 393.

3 Proof of Claim 5

We first need the following two lemmas.
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Lemma 6. For any positive integers n and m greater than 2, we have(
n

2

)m−1
>

(
m

2

)n−1
whenever n precedes m in the following order: 4, 5, 3, 6, 7, 8, 9, 10, 11 . . .

Proof. It is easy to see that the function x 7→ (x(x−1)
2

)
1

x−1 is decreasing for

x > 4 (its first derivative equals 1
(x−1)2 (x(x−1)

2
)

1
x−1 (2 − 1

x
− ln x(x−1)

2
), which

is negative for x > 4). We also directly check
(
5
2

) 1
4 >

(
3
2

) 1
2 >

(
6
2

) 1
5 , which

completes the proof.

For the rest of this section, whenever a sequence of integers follows the
order from the previous lemma, we shall say that those integers are in the
happy order (we do not require that those integers are different, unless stated
otherwise; for example, 4, 5, 5, 3, 9, 9, 10 . . . are in the happy order). Note that
this is precisely the order in which the primes from the statement of Corollary
3b) are assumed to be.

Lemma 7. Let a positive integer l, l > 2, be given. Assume that different
primes p1, p2, . . . , pl are given in the happy order, and let β1, β2, . . . , βl−1 be
any positive integers. Then:

(
pl
2

)∏l−1
j=1 p

βj
j −1

<

l−1∏
t=1

(
pt
2

) p
βt
t −1

pt−1
(
∏l−1
j=t+1 p

βj
j )(pl−1)

. (5)

Proof. We proceed by induction on l. For l = 2, the asserted inequality reduces
to (

p2
2

)pβ11 −1
<

(
p1
2

) p
β1
1 −1

p1−1
(p2−1)

,

which is equivalent to (
p2
2

)p1−1
<

(
p1
2

)p2−1
,

and this is true by the previous lemma.
Assume now that the assertion holds for l− 1 and let us prove it for l. We

have: (
pl
2

)∏l−1
j=1 p

βj
j −1

=

(
pl
2

)∏l−1
j=1 p

βj
j −p

βl−1
l−1 +p

βl−1
l−1 −1

=

((
pl
2

)∏l−2
j=1 p

βj
j −1

)p
βl−1
l−1 (

pl
2

)pβl−1
l−1 −1

.
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By the inductive assumption, as well as the base case, we have:

(
pl
2

)∏l−2
j=1 p

βj
j −1

<
l−2∏
t=1

(
pt
2

) p
βt
t −1

pt−1
(
∏l−2
j=t+1 p

βj
j )(pl−1)

and (
pl
2

)pβl−1
l−1 −1

<

(
pl−1

2

) p
βl−1
l−1

−1

pl−1−1
(pl−1)

.

The asserted inequality now clearly follows.

We are now ready for the main part of this section.

Proof of Claim 5. During the course of the proof, we let n = p1p2p3 · · · pk,
where p1, p2, . . . , pk are (not necessarily different) primes in the happy order.
We proceed by total induction on k. For k = 1, that is, a prime n, the assertion
reduces to s′(n) =

(
n
2

)
, which is true by the definition. Assume now that the

assertion holds for all numbers less than a given k, and let us prove it for k.
The proof will be divided into two parts.

Part 1. In this part we prove that, if d is a proper divisor of n of the form
d = plpl+1pl+2 · · · pk for some l, 1 < l 6 k, then, for each such divisor d, we
have:

s′(d)s′
(n
d

)d
=

k∏
t=1

(
pt
2

)∏k
j=t+1 pj

(note that the right-hand side does not depend on d; further note, the right-
hand side is exactly the bound we want to prove, because of Remark 4). We
show this by direct calculation, relying on the inductive assumption:

s′(d)s′
(n
d

)d
= s′

(
k∏
j=l

pj

)
s′

(
l−1∏
j=1

pj

)∏k
j=l pj

=

(
k∏
t=l

(
pt
2

)∏k
j=t+1 pj

)(
l−1∏
t=1

(
pt
2

)∏l−1
j=t+1 pj

)∏k
j=l pj

=

(
k∏
t=l

(
pt
2

)∏k
j=t+1 pj

)(
l−1∏
t=1

(
pt
2

)∏k
j=t+1 pj

)

=
k∏
t=1

(
pt
2

)∏k
j=t+1 pj

,

which was to be proved.
Part 2. Let d be a divisor of n, d 6= 1, n, for which s′(d)s′(n

d
)d reaches its

maximal value. It is enough to prove that d can be represented in the form
considered in Part 1. The divisor d can be written in the form pu1pu2 · · · pua
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where 1 6 u1 < u2 < · · · < ua 6 k; we may also assume, without loss of
generality, that whenever pi = pj for i < j, then it is not possible that i is
among u1, u2, . . . , ua while j is not (in other words, within each cluster of same
primes, all the “selected ones” have larger indices than all those that are not
“selected”). Let v1, v2, . . . , vb be such that 1 6 v1 < v2 < · · · < vb 6 k and
{v1, v2, . . . , vb} = {1, 2, . . . , k}\{u1, u2, . . . , ua} (note that then pv1pv2 · · · pvb =
n
d
). We need to prove that (v1, v2, . . . , vb) = (1, 2, . . . , b) and, consequently,

(u1, u2, . . . , ua) = (b+ 1, b+ 2, . . . , k).
Let d′ = pvbd. Note that d′ | n. Also, d′ is a proper divisor, unless b = 1;

this exceptional case will be treated at the end of the proof, for now we assume
d′ 6= n. By the choice of d, we have

s′(d)s′
(n
d

)d
> s′(d′)s′

( n
d′

)d′
.

By the inductive assumption, this reduces to:(
a∏
t=1

(
put
2

)∏a
j=t+1 puj

)(
b∏
t=1

(
pvt
2

)∏b
j=t+1 pvj

)∏a
j=1 puj

>

 a∏
t=1
ut<vb

(
put
2

)(
∏a
j=t+1 puj )pvb

(pvb
2

)∏k
j=vb+1 pj

(
k∏

t=vb+1

(
pt
2

)∏k
j=t+1 pj

)

·

(
b−1∏
t=1

(
pvt
2

)∏b−1
j=t+1 pvj

)(
∏a
j=1 puj )pvb

.

(6)

The third and the fourth factor on the right-hand side also appear on the
left-hand side (the fourth factor is obviously a part of the second parenthesis,
while we can see that the third factor is a part of the first parenthesis, since
vb + 1, vb + 2, . . . , k are exactly those ut’s that are larger than vb). Canceling
them leaves: a∏

t=1
ut<vb

(
put
2

)∏a
j=t+1 puj

(pvb
2

)∏a
j=1 puj

>

 a∏
t=1
ut<vb

(
put
2

)(
∏a
j=t+1 puj )pvb

(pvb
2

)∏k
j=vb+1 pj

.

We now note that there are further cancellations possible, which reduces the
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considered inequality to:(
pvb
2

)(
∏

16j6a, uj<vb
puj−1)

∏k
j=vb+1 pj

>
a∏
t=1
ut<vb

(
put
2

)(
∏a
j=t+1 puj )(pvb−1)

.

Raising both sides to the power 1∏k
j=vb+1 pj

leaves:

(
pvb
2

)∏
16j6a, uj<vb

puj−1

>
a∏
t=1
ut<vb

(
put
2

)(
∏
t+16j6a, uj<vb

puj )(pvb−1)

. (7)

We are now left only to note that, if there existed a number uj less than vb, the
last inequality would contradict Lemma 7. Indeed, in that case, for p1, p2, . . . , pl
in the lemma we can take all the different primes from {puj : 1 6 j 6 a, uj <
vb} ∪ {pvb} (enumerated in the happy order), and for β1, β2, . . . , βl−1 we take
their multiplicities (of all but pvb); then the left-hand side of (5) is exactly the
left-hand side of (7), while the right-hand side of (5) can also be seen to be
equal to the right-hand side of (7), because of Remark 4. This completes the
proof, unless (recall) the exceptional case b = 1 and d = n

pv1
.

Finally, assume that s′(d)s′(n
d
)d achieves its maximal value in the described

exceptional case. We need to show that in this case the only possibility is
v1 = 1. We have:

s′
(
n

pv1

)
s′(pv1)

n
pv1 >

k∏
t=1

(
pt
2

)∏k
j=t+1 pj

(since the value on the right-hand side has been reached in Part 1, and the
expression on the left-hand side is assumed to be the maximum). However, we
can see (by direct comparison) that this inequality is again (6), and thus we
again conclude that there does not exist a number uj less than v1, which gives
v1 = 1. The proof is thus finished.

4 A kind of optimality

It turns out that the collection constructed in the proof of Theorem 1 is max-
imal in the sense that it is not possible to add any more permutations to it
while maintaining the required property (note that, of course, this does not
imply that the obtained lower bound is the best possible).

Claim 8. Let S be the set (3) from the proof of Theorem 1. Then for any
permutation π of Zn such that π /∈ S there exists π′ ∈ S such that π + π′ is
not a permutation of Zn.

Proof. Let S be as in (3) (the necessary notation is transferred from the proof
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of Theorem 1). Let π be a permutation of Zn such that π + π′ is also a
permutation whenever π′ ∈ S. We need to prove that π ∈ S.

Let

π′ = (0, d, . . . , n− d)a(1, d+ 1, . . . , n− d+ 1)a · · ·a (d− 1, 2d− 1, . . . , n− 1);

in other words, π′ is obtained as in (3) for π0 = π1 = · · · = πd−1 = idn
d

and
σ = idd.

First we are going to show that for a fixed i ∈ Zd there exists q ∈ Zd such
that, for all x ∈ Zn

d
, we have π(n

d
i + x) ≡ q (mod d). Suppose that this were

not the case. We claim that there exist x, y ∈ Zd and i, j ∈ Zn
d
, where i 6= j,

such that:

(π + π′)
(n
d
i+ x

)
≡ (π + π′)

(n
d
j + y

)
(mod d). (8)

Indeed, since π + π′ is a permutation of Zn, it is enough to show that there
exists i ∈ Zn

d
such that (π+π′)(n

d
i+x) is not constant modulo d for x ∈ Zd. But

such i must exist, since otherwise, having in mind that π′(n
d
i+ x) is constant

modulo d for x ∈ Zd, it would follow that π(n
d
i+ x) is also constant modulo d

for x ∈ Zd, which was supposed not to be the case (for at least one i).
Since π′(n

d
i+ x) = dx+ i (and similarly for j, y), (8) reduces to:

π
(n
d
i+ x

)
+ dx+ i ≡ π

(n
d
j + y

)
+ dy + j (mod d).

Let π(n
d
i + x) + dx + i = dk + u and π(n

d
j + y) + dy + j = dr + u for some

k, r ∈ Zn
d

and u ∈ Zd. Clearly, k 6= r, and we may assume, w.l.o.g., k > r. Let
now π′′ be a permutation obtained from the same parameters as π′, with the
only change that instead of πj = idn

d
(which was the case for π′) we now let

πj = idn
d

+k − r. Since idn
d

+k − r ∈ Sn
d

(by Lemma 2), we conclude π′′ ∈ S.
Now we have:

(π + π′′)
(n
d
i+ x

)
= (π + π′)

(n
d
i+ x

)
= dk + u

and

(π + π′′)
(n
d
j + y

)
= π

(n
d
j + y

)
+ (d(y + k − r) + j)

= π
(n
d
j + y

)
+ dy + j + d(k − r) = dr + u+ d(k − r)

= dk + u,

which is a contradiction.
Therefore, we conclude:

π = (dπ0 + σ(0))a(dπ1 + σ(1))a · · ·a (dπd−1 + σ(d− 1)),

11



where π0, π1, . . . , πd−1 are permutations of Zn
d

and σ is a permutation of Zd.
It remains to show that σ ∈ Sd and πi ∈ Sn

d
for i ∈ {0, 1, . . . , d− 1}.

Since π + π′ is a permutation for every π′ ∈ S, it easily follows that σ + σ′

is a permutation for every σ′ ∈ Sd, which implies σ ∈ Sd. The argument that
πi ∈ Sn

d
for i ∈ {0, 1, . . . , d− 1} is similar. This completes the proof.
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