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Abstract

The number of palindromic factors of a given finite word is bound-
ed above by its length increased by 1. The difference between this
upper bound and the actual number of palindromic factors of a given
word is called the palindromic defect (or only defect) of a given word
(by definition, the defect is always nonnegative). Though the defini-
tion of defect fundamentally relies on finiteness of a given word, it
can be naturally extended to infinite words. There are many results
in the literature about words of defect 0, but there are significantly
less results about infinite words of finite positive defect. In this article
we construct a new family of infinite words whose defect is finite, and
in many cases positive (with fully characterized cases when the defec-
t is 0). All the words from our family have the set of factors closed
under reversal, and each of them is either periodic (which is a less
interesting case, and explicitly characterized), or recurrent but not
uniformly recurrent. The fact that they are not uniformly recurrent
(unless they are periodic) is of a particular significance since: first,
there are some results and examples here and there featuring uni-
formly recurrent words of finite defect, while next to nothing is known
about aperiodic words that are not uniformly recurrent; second, it is
known that any uniformly recurrent word of finite defect is a morphic
image of some word of zero defect, which suggests that uniformly re-
current words are in a way pretty “tame,” and that those that are not
uniformly recurrent are an unexplored territory that deserves a closer
look.

Mathematics Subject Classification (2010): 68R15
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1 Introduction

The notion of the so-called palindromic defect of a given word was sparked
by the result of Droubay, Justin and Pirillo [13], who noted that the number
of palindromic factors of a given finite word is bounded above by its length
increased by 1. The difference between this upper bound and the actual num-
ber of palindromic factors of a given word is called the palindromic defect (or
only defect) of a given word [7] (by definition, the defect is always nonnega-
tive). Though the definition of defect fundamentally relies on finiteness of a
given word, it turns out that it can be naturally extended to infinite words
(the defect of an infinite word is defined as the supremum of defects of all of
its finite factors). Words of defect 0 are called full [7] or rich [14], and there
are many results about them in the literature [9, 15, 17, 19, 20, 22, 24, 25].

However, infinite words of finite positive defect have been studied signifi-
cantly less. One of the reasons for that is the fact that explicit constructions
of such words (maybe with some additional constraints, such as aperiodicity,
since periodic words are more-or-less straightforward to analyze) are some-
what deficient in the literature. For example, aperiodic words of finite positive
defect, having the set of factors closed under reversal, had been deemed in-
teresting from the point of view of some (then open) conjectures [6, 8], but
examples of such words were missing. In the article [5], the second author
constructed an infinite family of infinite words, called highly potential words,
which are all aperiodic, have the set of factors closed under reversal, and are
of finite positive defect (in fact, the presented construction shows a method
to obtain such a word from any finite nonpalindromic word). As one can
see in that article, those words seem to be a useful supply of examples and
counterexamples for various problems of words (which explains their name).
We should also say that chronologically the first example of an aperiodic
infinite word of finite positive defect, whose set of factors is closed under
reversal, had been given somewhat earlier: see [2, Example 3.4], where such
a word has been constructed, one that is uniformly recurrent. In the article
[4] an example that is not uniformly recurrent has been constructed, which
was used to demonstrate a flaw in a proof from the article [3]; this word,
although it has much in common with the family of highly potential words,
does not belong to that family.

In this article we construct a new family of infinite words whose defect
is finite, and in many cases positive (with fully characterized cases when the
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defect is 0). The constructed family contains, as two special cases, both the
family of highly potential words (because of this, we dub them generalized
highly potential words), as well as the mentioned word from [4]. Further, in
[14, Proposition 2.10] the authors show the existence of rich infinite words
that are recurrent but not uniformly recurrent, by providing three examples;
it turns out that all these three words also belong to the class of generalized
highly potential words. We believe that all this suggests that our construction
extends the class of highly potential words in a fairly noteworthy way. All
the words from our family have the set of factors closed under reversal, and
each of them is either periodic (which is a less interesting case, and explic-
itly characterized), or recurrent but not uniformly recurrent. The fact that
they are not uniformly recurrent (unless they are periodic) is of a particular
significance since: first, there are some results and examples here and there
featuring uniformly recurrent words of finite defect (see, e.g., [14, Proposi-
tion 4.8], or the article [2], or the counterexample to the so-called Zero defect
conjecture from [11], which is defined as a fixed point of a primitive mor-
phism, and it is known [1, Theorem 10.9.5] that fixed points of primitive
morphisms are always uniformly recurrent), while next to nothing is known
about aperiodic words that are not uniformly recurrent; second, it is shown
in [18, Theorem 2] that any uniformly recurrent word of finite defect is a
morphic image of some word of zero defect (while the result that the authors
obtain without assuming uniform recurrence is weaker, and in the last sec-
tion they discuss the significance of uniform recurrence and leave as an open
question whether the stronger result is valid without it), everything of which
suggests that uniformly recurrent words are somewhat easier to work with,
and that those that are not uniformly recurrent are less explored territory
that deserves a closer look.

2 On words

In this section we recall basic definitions and properties that will be needed
through the article.

A word (respectively infinite word) is a finite (respectively infinite) se-
quence of symbols taken from a nonempty finite set Σ, which is called the
alphabet. (We shall sometimes abuse the terminology and say only “word”
when it is clear from the context that it must be infinite, or additionally em-
phasize “finite word” when we feel that this is appropriate.) Let Σ∗ denote
the set of all finite words and by Σ∞ the set of all finite or infinite words. If
w = a1a2...an with a1, a2, . . . , an ∈ Σ, we say that the length of w is n, and
write |w| = n. The unique word of length 0, called the empty word, is denoted
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by ε. The concatenation (or product) of words u and v, u = a1a2 . . . an and
v = b1b2 . . . bm, is the word a1a2 . . . anb1b2 . . . bm, denoted by uv. The product
uv for u ∈ Σ∗ and v ∈ Σ∞\Σ∗ can be similarly defined. For a word w and a
positive integer k we write wk for the word ww . . . w︸ ︷︷ ︸

k

and w∞ for the infinite

word wwww . . . ; it is also convenient to define w0 = ε for any word w. A
word w ∈ Σ∗ is primitive if and only if it is not of the form zk for z ∈ Σ∗\{ε}
and an integer k, k > 2. We define the map ˜ : Σ∗ → Σ∗, called reversal, as
follows: if w = a1a2 . . . an, where a1, a2, . . . , an ∈ Σ, then w̃ = anan−1 . . . a1.

A word u ∈ Σ∗ is called a factor (respectively prefix, suffix ) of a word
w ∈ Σ∞ if and only if there exist words x ∈ Σ∗ and y ∈ Σ∞ such that
w = xuy (respectively w = uy, w = xu). The set of all factors (respectively
prefixes, suffixes) of w is denoted by Fact(w) (respectively Pref(w), Suff(w)).

We write w[i] for the ith letter of a word w ∈ Σ∞, and for any pair (i, j)
of integers such that 1 6 i 6 j 6 |w| let w[i, j] denote the factor of w whose
first letter is the ith letter of w and whose last letter is the jth letter of w
(obviously, w[i, i] = w[i]). By convention, this operation has precedence over
concatenation; in other words, uv[i] (and similarly uv[i, j]) will always denote
u(v[i]), not (uv)[i].

For words u and v, let |u|v denote the number of distinct occurrences of
v in u, that is:

|u|v = |{i : 1 6 i 6 |u| − |v|+ 1, u[i, i + |v| − 1] = v}|.

An infinite word w is periodic if and only if it is of the form w = u∞ for
some u ∈ Σ∗, it is eventually periodic if and only if it is of the form vu∞

for some u, v ∈ Σ∗, and it is aperiodic if and only if it is not eventually
periodic. An infinite word w is recurrent if and only if each of its factors
occurs infinitely many times in w, and it is uniformly recurrent if and only if
for every finite factor u of w there exists an integer n such that u ∈ Fact(v)
for every v ∈ Fact(w) such that |v| = n.

The following three theorems are well-known; see [1]: Exercise 10.50a),
Example 10.9.1 and Exercise 10.37, respectively.

Theorem 2.1. For an infinite word w, if Fact(w) is closed under reversal,
then w is recurrent.

Theorem 2.2. Every periodic word is uniformly recurrent.

Theorem 2.3. Every recurrent, eventually periodic word is periodic.

Before the next theorem (also well-known, see [16, Proposition 1.3.2]), we
need the following notion: a word w′ is a conjugate of a word w if there exist
words x and y such that w = xy and w′ = yx.

4



Theorem 2.4. Let x, y ∈ Σ∗\{ε}. Then xy = yx if and only if there exist
t ∈ Σ∗ and positive integers p, q such that x = tp, y = tq. In other words, if
a word is equal to one of its conjugates (different from itself), then it must
be a power of exponent at least 2.

A word u is a palindrome (or palindromic) if and only if u = ũ. Let
Pal(w) = {u ∈ Fact(w) : u = ũ}. The following inequality was noted by
Droubay, Justin and Pirillo [13, Proposition 2].

Theorem 2.5. Let w be a finite word. Then:

|Pal(w)| 6 |w|+ 1.

Inspired by this inequality, Brlek et al. [7] introduced the notion of palin-
dromic defect (or only defect) of a word w, denoted by D(w), and defined
as:

D(w) = |w|+ 1− |Pal(w)|.

They noticed that the defect of a word w is no smaller than the defect of any
of its factors; in other words:

Theorem 2.6. Let w be a finite word and v ∈ Fact(w). Then

D(v) 6 D(w).

This motivates the following extension of the definition of defect to infinite
words: for w ∈ Σ∞\Σ∗, we define

D(w) = sup
v∈Fact(w)

D(v).

(Of course the previous equality also holds for finite words.) Note that the
defect of any finite or infinite word is always nonnegative.

For the end of this section, we present a theorem [7, Corollary 8] that
gives a way to calculate the defect of an infinite word in a particular case.

Theorem 2.7. If p is a primitive word that is a product of two palindromes
(one of which can be empty), then there exists a conjugate p′ of p such that

D(p∞) = D(p′).
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3 Highly potential words

A class of infinite words called highly potential words has been introduced
by the second author in [5]. Given a word w that is not a palindrome, let c
denote any letter that does not appear in w, and let:

w0 = w;

wi = wi−1c
iw̃i−1, i ∈ N;

hpw(w) = lim
i→∞

wi.

(Note that N denotes the set of positive integers, while N0 denotes the set
of nonnegative integers.) The infinite word hpw(w) is called highly potential
word generated by w.

The main properties of highly potential words are given in the following
theorem.

Theorem 3.1. Let hpw(w) be a highly potential word. Then:

• Fact(hpw(w)) is closed under reversal;

• hpw(w) is recurrent;

• hpw(w) is not uniformly recurrent;

• hpw(w) is aperiodic;

• D(hpw(w)) = D(w) + 1.

4 Generalized highly potential words

In this section we define generalized highly potential words and investigate
their properties. We give a necessary and sufficient condition for periodicity.
We show that their set of factors is closed under reversal (which implies that
they are recurrent), and we further show that the ones that are not periodic
are not uniformly recurrent. We also prove that their defect is always finite,
and give a necessary and sufficient condition for the defect to be positive.
In a separate subsection at the end we analyze periodic generalized highly
potential words (which is a less interesting case).
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4.1 Construction

Definition 4.1. Let w, u, v ∈ Σ∗, where wuv 6= ε and u and v are palin-
dromes, and let A = (ai)i∈N be a strictly increasing sequence of positive
integers. We recursively define:

w0 = w;

wi = wi−1(uv)aiuw̃i−1, i ∈ N;

and then:
ghpw(w, u, v, A) = lim

i→∞
wi. (1)

(The limit is well-defined since each wi is a prefix of wi+1.) The infinite word
ghpw(w, u, v, A) is called generalized highly potential word generated by w, u,
v and A.

We first note that generalized highly potential words are indeed a gener-
alization of highly potential words: if w is a nonpalindromic word, c a letter
that does not appear in w, and I the sequence (i)i∈N, then we clearly have

hpw(w) = ghpw(w, ε, c, I).

Also, the word from [4] mentioned in the Introduction is ghpw(1213121, 3, 2, I).
The three words from [14] that served as a demonstration of existence of rich
infinite words that are recurrent but not uniformly recurrent (also mentioned
in the Introduction) are the following ones: 1) ϕ∞(a) where ϕ : a 7→ aba, b 7→
bb (an example taken from [12], where it was considered for another purpose);
2) the Cantor word (also known as the Sierpiński word), that is, ϕ∞(a) where
ϕ : a 7→ aba, b 7→ bbb (a well-known word; see, for example, [21], which the
authors cite); 3) ϕ∞(a) where ϕ : a 7→ abab, b 7→ b (the authors’ own exam-
ple). It is easy to see that they can be represented as ghpw(a, ε, b, (2i−1)i∈N),
ghpw(a, ε, b, (3i−1)i∈N) and ghpw(a, ε, b, I), respectively.

4.2 Standard form

Different quadruples of parameters (w, u, v, A) can lead to the same gener-
alized highly potential word. In the following lemma we shall prove that for
each generalized highly potential word there can be chosen a quadruple with
some particular properties that will be very useful.

Lemma 4.2. Let ghpw(w, u, v, A) be a generalized highly potential word.
Then there are words wS, uS, vS and a sequence AS such that wS is a palin-
drome, uSvS is primitive, and

ghpw(w, u, v, A) = ghpw(wS, uS, vS, AS).

7



Proof. We first show that a quadruple can be chosen such that w is a palin-
drome. Suppose that w 6= w̃. Since w1 = w(uv)a1uw̃, we see that w1 is always
a palindrome. It is not hard to see that

ghpw(w, u, v, A) = ghpw(w1, u, v, B),

where B = (bi)i∈N, bi = ai+1.
Suppose now that uv is not primitive, that is, uv = tn for a word t and

an integer n, n > 2. We can assume that t is primitive. Note that we can
write t = u′v′ where u′ ∈ Suff(u) and v′ ∈ Pref(v) (one of u′ and v′ can be
ε). Then we have:

u = (u′v′)ku′,

v = v′(u′v′)l

for some integers k and l that satisfy k + l = n − 1. Also, since u′ is both
the prefix and the suffix of the palindrome u, we conclude that u′ is also a
palindrome; in a similar manner, v′ is a palindrome, too. We prove that

ghpw(w, u, v, A) = ghpw(w, u′, v′, C),

where C is an increasing sequence defined by C = (ci)i∈N,

ci = nai + k.

This follows by induction, noting that

wi+1 = wi(uv)ai+1uwi = wi((u
′v′)n)ai+1(u′v′)ku′wi

= wi(u
′v′)nai+1+ku′wi = wi(u

′v′)ci+1u′wi.

The proof is completed. �

If a quadruple (w, u, v, A) is such that w is a palindrome and uv is prim-
itive, we shall say that ghpw(w, u, v, A) is in standard form. The previous
lemma shows that each generalized highly potential word can be presented
in standard form.

Remark 4.3. The assumption that uv is primitive will be used very much,
most of the times in the form of the following consequence: in that case,
by Theorem 2.4, uv appears as a factor of uvuvuv . . . only at the “obvious
positions” (in other words, |uvuv|uv = 2; to be more precise, by this term we
shall onward refer to the appearances of uv within uvuvuv . . . that begin at
a position i where i ≡ 1 (mod |uv|)); furthermore, the same also holds for
each conjugate of uv (each conjugate of a primitive word is again primitive,
which is also easily seen by Theorem 2.4).

8



Another (technical) consequence of the assumption that uv is primitive
(that will also be useful) is given in the following lemma.

Lemma 4.4. Assume that u and v are palindromes, uv 6= ε, such that the
word uv is primitive. Let x be a palindrome such that |x| > 2|uv| − 1 and

x
[
1,
⌊ |x|

2

⌋
+ |uv|

]
= (vu)∞

[
1,
⌊ |x|

2

⌋
+ |uv|

]
. Then there exists a positive integer

m such that x = (vu)mv.

Proof. Let y = x
[⌊ |x|

2

⌋
+ 1,

⌊ |x|
2

⌋
+ |uv|

]
. By the lemma’s assumption, y is a

conjugate of vu, and thus we may write y = (vuvu)[i, j] for some i and j,
where 1 6 i, j 6 |vuvu| and j − i + 1 = |uv|. Since x matches (vu)∞ for the

first
⌊ |x|

2

⌋
+ |uv| letters, Remark 4.3 leads to⌊

|x|
2

⌋
+ 1 ≡ i (mod |uv|).

We also have ỹ = (ṽuvu)[2|uv| − j + 1, 2|uv| − i + 1] = (uvuv)[2|uv| − j +

1, 2|uv|− i+ 1] and (since x is palindromic) ỹ = x
[⌈ |x|

2

⌉
−|uv|+ 1,

⌈ |x|
2

⌉]
; this

implies (by again appealing to Remark 4.3 in a similar manner)⌈
|x|
2

⌉
≡ |v|+ (2|uv| − i + 1) ≡ |v|+ 1− i (mod |uv|).

Adding the two congruences together gives
⌊ |x|

2

⌋
+1+

⌈ |x|
2

⌉
≡ |v|+1 (mod |uv|),

that is, |x| ≡ |v| (mod |uv|). Together with the lemma’s assumption and the
fact that x is palindromic, this gives the required conclusion. �

4.3 Basic properties

We first present a necessary and sufficient condition for a generalized highly
potential word to be periodic.

Theorem 4.5. Let ghpw(w, u, v, A) be given in standard form. Then ghpw(w, u, v, A)
is periodic if and only if either w = (vu)mv for a nonnegative integer m, or
exactly one of the words w, u and v is nonempty.

Proof. We first assume w = (vu)mv. Then

ghpw((vu)mv, u, v, A) = (vu)mv(uv)a1u(vu)mv(uv)a2u . . . = (vu)∞.

Also, if exactly one of w, u, v is nonempty, we have

ghpw(w, ε, ε, A) = w∞;

ghpw(ε, u, ε, A) = u∞;

ghpw(ε, ε, v, A) = v∞.
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We conclude that in all these cases the constructed word is periodic, which
completes the (⇐) part.

To prove the converse, we assume that ghpw(w, u, v, A) is periodic. Then
we can write

ghpw(w, u, v, A) = w(uv)a1−1uvuwuv(uv)a2−1uw(uv)a1uw · · · = s∞,

where s can be chosen (long enough) such that vuwuv ∈ Fact(s). Assume that
at least one of u and v is nonempty (there is nothing to prove if u = v = ε).
Then we can choose i large enough such that s ∈ Fact((uv)ai), which implies
vuwuv ∈ Fact((uv)ai). Recall (by Remark 4.3) that vu and uv appear in
(uv)ai only at the obvious positions. If u 6= ε, then the above gives

w = (vu)mv for a nonnegative integer m, (2)

which was to be proved (note that w = v = ε is a special case of this); if
u = ε, then we conclude w = vl for a nonnegative integer l, that is, w is
again of the form (2), or w = u = ε. This completes the proof. �

We shall now prove that each generalized highly potential word is either
periodic, or recurrent but not uniformly recurrent. We first need the following
assertion.

Proposition 4.6. Fact(ghpw(w, u, v, A)) is closed under reversal.

Proof. Let x ∈ Fact(ghpw(w, u, v, A)). Choose a large enough integer i such
that x ∈ Fact(wi). Since

wi+1 = wi(uv)ai+1uw̃i,

we have

x̃ ∈ Fact(w̃i) ⊆ Fact(wi+1) ⊆ Fact(ghpw(w, u, v, A)),

which was to be proved. �

Now, in view of Theorem 2.1, we have the following corollary.

Corollary 4.7. Each generalized highly potential word is recurrent.

Concerning uniform recurrence, we have:

Proposition 4.8. A generalized highly potential word is uniformly recurrent
if and only if it is periodic.
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Proof. The part (⇐) is clear by Theorem 2.2. Let us prove the other di-
rection. Suppose the contrary: ghpw(w, u, v, A) is uniformly recurrent but
not periodic. Since vuwuv is a factor of ghpw(w, u, v, A), there exists a pos-
itive integer n such that vuwuv is a factor of any factor of ghpw(w, u, v, A)
of length n. Choose x such that |x| = n and x ∈ Fact((uv)ai) for some i.
Now in the same manner as in the proof of Theorem 4.5 we get that either
w = (vu)mv for a nonnegative integer m, or that exactly one of the words w,
u and v is nonempty; in other words, ghpw(w, u, v, A) is periodic, which is a
contradiction. �

Finally, we have the following proposition.

Proposition 4.9. If a generalized highly potential word is not periodic, then
it is aperiodic.

Proof. Suppose the contrary: ghpw(w, u, v, A) is eventually periodic but not
periodic. By Corollary 4.7, it is recurrent, but then Theorem 2.3 implies that
it must be periodic; contradiction. �

4.4 Defect of generalized highly potential words

In this subsection we prove that the defect of a generalized highly potential
word is always finite. Before proceeding to the main theorem, we need two
technical lemmas.

Lemma 4.10. Let a nonperiodic ghpw(w, u, v, A) be given in standard form,
where vu /∈ Pref(wuv). Assume that there exists an integer i such that i > 3
and

|wi|(uv)aiu = 1. (3)

Then
|wi+1|wi

= 2 (4)

and
|wi+1|(uv)ai+1−1u = 2 + 2|wi|(uv)ai+1−1u.

Proof. Let us first prove (4). Write

wi+1 = wi(uv)ai+1uwi.

Clearly, |wi+1|wi
> 2. Suppose that there is a third copy of wi in wi+1.

Note that (uv)aiu occurs in the center of the considered copy of wi, and
we now conclude that this copy of (uv)aiu must (partly) overlap the central
copy of (uv)ai+1u in wi+1 (otherwise we would have |wi|(uv)aiu > 2, which is
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impossible). Suppose that the length of the overlapping part is greater than
or equal to |uv|. Then the overlapping part contains the factor vu or uv, and
by Remark 4.3 this factor is positioned within the central copy of (uv)ai+1u at
one of the obvious positions. But this means that the central copy of (uv)aiu
in wi must be preceded by uv or followed by vu, and since it is preceded
by vuw and followed by wuv, we have a contradiction with vu /∈ Pref(wuv)
(or, which is the same, uv /∈ Suff(vuw)). Therefore, the overlapping part
is shorter than |uv|. We may assume, without loss of generality, that the
overlapping part and the considered copy of (uv)aiu have a common endpoint
(the other possibility: that they have a common starting point, is analogous).
The part of the considered copy of (uv)aiu that does not overlap presents
a suffix of wi. Suppose that its length is greater than or equal to |vuw|.
Since vuw ∈ Suff(wi), we have that vuw is a suffix of the considered part
of (uv)aiu. But then Remark 4.3 gives that the beginning of that suffix vuw
must coincide with an obvious position of vu within the considered copy of
(uv)aiu; since that suffix vuw is followed by uv, altogether we obtain that
wuv begins with vu, which is in contradiction with the lemma’s assumption.
Finally, we need to check the case when the length of the non-overlapping
part of the considered copy of (uv)aiu is less than |vuw|. But then we have
(uv)aiu ∈ Fact(vuwuv), and since vuwuv ∈ Fact(wi−1) (recall that i > 3),
we conclude (uv)aiu ∈ Fact(wi−1), which contradicts (3). This proves (4).

Let us now prove

|wi+1|(uv)ai+1−1u = 2 + 2|wi|(uv)ai+1−1u.

The inequality (>) is clear (there are two copies of (uv)ai+1−1u in the center
of wi+1, plus the copies in the starting and the ending wi). We are left to show
only that there are no copies of (uv)ai+1−1u in wi+1 that overlap the central
copy of (uv)ai+1u but are not encompassed within it. Suppose the contrary,
that there exists such a copy. Suppose first that the overlapping part is of
length |uv| or more. Then the overlapping part contains the factor vu or uv,
and Remark 4.3 gives that this factor is positioned within the central copies
of (uv)ai+1u at one of the obvious positions. But this means that the central
copy of (uv)ai+1u in wi+1 must be preceded by uv or followed by vu, and
since it is preceded by vuw and followed by wuv, we have a contradiction
with vu /∈ Pref(wuv) (or uv /∈ Suff(vuw)). That leaves only the case when
the overlapping part is of length less than |uv|, but this case also leads to a
contradiction in completely the same manner as in the previous paragraph.
This completes the proof of the lemma. �

Lemma 4.11. Let a nonperiodic ghpw(w, u, v, A) be given in standard form,
where vu /∈ Pref(wuv). Then there exists a positive integer i such that:
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1) |wi|(uv)aiu = 1 (where that one copy of (uv)aiu is in the center of wi);

2) |wi+1|wi
= 2 (where those two copies of wi are at the beginning and at

the end of wi+1);

3) |wi+1|(uv)ai+1−1u = 2 + 2|wi|(uv)ai+1−1u (which equals either 2 or 4, depend-
ing on whether ai+1 − 1 is greater than ai or equal to it, respectively).

Furthermore, if i is any number that satisfies 1), 2) and 3), then each number
k, k > i, has the same properties.

Note. Since Lemmas 4.10 and 4.11 seem to somewhat overlap and might
confuse the reader, before we proceed to the proof, we shall say a few words
on their mutual relationship (including a sketch of the proof of Lemma 4.11,
in order to let the reader know what structure of the proof to expect, and
what will be the role of Lemma 4.10 there).

The proof of Lemma 4.11 consists of two parts: in the first part we prove
that such a number i exists, and then in the second part we prove the last
sentence from the lemma’s statement.

We do the first part by finding a number i, i > 3, that has the property
1). Lemma 4.10 then automatically implies that the same value i also has
the properties 2) and 3), which finishes the first part of the proof.

We then proceed to the second part of the proof, which we do by induc-
tion. We assume that a number k − 1 is given that has all the properties 1),
2) and 3), and then prove that the number k also has the properties 1), 2)
and 3), which we show one by one (the inductive assumption stands for the
whole time, assuming that k − 1 has all three properties simultaneously). In
this part of the proof we have to show all the three properties one by one,
that is, we cannot only show the property 1) and then refer to Lemma 4.10
for 2) and 3) (as we do in the first part of the proof), because for that we
would need the condition k > 3, which might not hold. However, the proofs
for 2) and 3) here are not just repeating the proof of Lemma 4.10 all over
(although some of the steps are indeed quite similar), since the assumptions
are different: in Lemma 4.10 we proved that, if k had the property 1) and
k > 3, then k also had the properties 2) and 3), while in this proof we do not
have the inequality k > 3 anymore, but instead have the assumption that
k − 1 has all the properties 1), 2) and 3).

We hope that this additional explanation will clear any eventual confusion
of the reader. We also add that Lemma 4.11 is a key result that we shall refer
to multiple times in the article, while Lemma 4.10 is a technical device that
we use in the proof of Lemma 4.11 (only in the first part of the proof), and
after that we shall not refer to it anymore.
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Proof. We first show the existence of such an integer i. Let i be such that
i > 3 and |(uv)aiu| > |vuwuv|. Recall

wi = wi−1(uv)aiuwi−1.

Let us show that this choice of i satisfies the properties 1), 2) and 3) from
the statement. It is enough to show only the part 1), since then the parts 2)
and 3) will follow by Lemma 4.10.

We show that the factor (uv)aiu occurs exactly once in wi. We clearly have
one copy of it in the center, so we need to prove that there are no other copies.
Suppose the contrary, that there is another copy. Assume first that that copy
(partly) overlaps the central copy, and that, without loss of generality, it is
positioned to the left of the central copy. We again have, as in the proof of
Lemma 4.10, that the length of the overlapping part cannot be greater than or
equal to |uv|; therefore, the overlapping part is shorter than |uv|. The part of
the considered copy of (uv)aiu that does not overlap presents a suffix of wi−1
and its length is greater than |(uv)ai−1u|, which is, by the choice of i, at least
|vuw|. Since vuw ∈ Suff(wi−1), we have that vuw is a suffix of the considered
part of (uv)aiu. But then Remark 4.3 gives that the beginning of that suffix
vuw must coincide with an obvious position of vu within the considered copy
of (uv)aiu (the one that is not in the center of wi); since that suffix vuw is
followed by uv, altogether we obtain that wuv begins with vu, which is in
contradiction with the lemma’s assumption. Therefore, we are left to analyze
only the case when there is no overlap, that is, (uv)aiu ∈ Fact(wi−1). But
this implies in the same way (uv)aiu ∈ Fact(wi−2), then (uv)aiu ∈ Fact(wi−3)
etc., which is clearly a contradiction. This proves that the chosen value of i
indeed satisfies the properties 1), 2) and 3).

Let us now prove the last sentence from the lemma’s statement. Assume
that i is given as required. We proceed by induction on k. We have the base
for k = i. Now assume that the assertion holds for k − 1.

We first prove
|wk|(uv)aku = 1. (5)

Recall
wk = wk−1(uv)akuwk−1.

Clearly, |wk|(uv)aku > 1. Suppose that there is another copy of (uv)aku (besides
the one in the center) in wk. It cannot overlap the central copy of (uv)ak+1u for
a length of |uv| nor more (as we have already seen several times); therefore,
the length of the overlap is less than |uv|. Then there is a copy of (uv)ak−1u in
wk−1. Note that this copy contains the factor (uv)ak−1u, and by the inductive
assumption, we have that the only copy of this factor in wk−1 is the one in the
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center; however, it is followed by wuv and preceded by vuw (or only w both
times, in the special case k = 2), and now because of the assumption vu /∈
Pref(wuv) (then also uv /∈ Suff(vuw)) we get that this copy of (uv)ak−1u in
wk−1 cannot be a part of the considered copy of (uv)aku in wk, a contradiction.
This proves (5).

Let us now prove
|wk+1|wk

= 2. (6)

(Note that we cannot simply use Lemma 4.10 here, since the inequality k > 3
might not hold.) Recall

wk+1 = wk(uv)ak+1uwk.

Clearly, |wk+1|wk
> 2. Suppose that there is a third copy of wk in wk+1.

Note that (uv)aku occurs in the center of the considered copy of wk, and
we now conclude that this copy of (uv)aku must (partly) overlap the central
copy of (uv)ak+1u in wk+1 (otherwise we would have |wk|(uv)aku > 2, which is
impossible), and, by the argument that we have already seen, the length of
the overlapping part cannot be greater than or equal to |uv|. But then, since
the considered copy of (uv)aku is both preceded by and followed by wk−1, we
get that one of those two copies of wk−1 is encompassed inside wk, neither at
its beginning nor at its end. But this implies |wk|wk−1

> 3, which contradicts
the inductive assumption. This proves (6).

Finally, we need to prove

|wk+1|(uv)ak+1−1u = 2 + 2|wk|(uv)ak+1−1u.

We again assume that there is a “superfluous” copy of (uv)ak+1−1u in wk+1.
Then (again) it overlaps the central copy of (uv)ak+1u for a length of less
than |uv|, which means that the non-overlapping part of the considered copy
of (uv)ak+1−1u is of length at least |(uv)ak+1−2u|, which is at least |(uv)ak−1u|;
however, this non-overlapping part is encompassed within wk and we see that
it contains a copy of (uv)ak−1u that is “superfluous” in wk, in contrary to the
inductive assumption. This completes the proof of the lemma. �

We are now ready for the main theorem of this subsection (and arguably
of the whole article).

Theorem 4.12. Let ghpw(w, u, v, A) be a generalized highly potential word.
We have

D(ghpw(w, u, v, A)) <∞.
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Proof. If ghpw(w, u, v, A) is periodic, the proof will given in the next sub-
section. Therefore, assume that ghpw(w, u, v, A) is not periodic, and we may
further assume, without loss of generality, that it is given in standard form.
We shall first work under the assumption vu /∈ Pref(wuv) (and then also
uv /∈ Suff(vuw)), and then return to the general case at the end of the proof.

Let i be a number whose existence is guaranteed by Lemma 4.11. It is
enough to prove that for each k, k > i + 1, we have

D(wk) = D(wi+1). (7)

Indeed, in that case we would have, by Theorem 2.6 and the equality (1),

D(ghpw(w, u, v, A)) = sup
z∈Fact(ghpw(w,u,v,A))

D(z) = sup
j∈N0

D(wj) = D(wi+1),

as needed.
In order to show (7), it is enough to prove only

D(wi+2) = D(wi+1); (8)

indeed, in that case, by then choosing i + 1 instead of i (note that, by the
second part of Lemma 4.11, i + 1 indeed satisfies the same requirements as
i does), we would get D(wi+3) = D(wi+2) in the same way, then D(wi+4) =
D(wi+3) etc., which gives (7).

Therefore, in order to prove (8), our goal is to find |wi+2| − |wi+1| palin-
dromes in wi+2 that do not occur in wi+1. Since |wi+2| − |wi+1| = |wi+1| +
ai+2|uv| + |u| + |wi+1| − |wi+1| = |wi+1| + ai+2|uv| + |u|, we need to find
|wi+1| + ai+2|uv| + |u| new palindromes. (Note: by our construction of the
required number of palindromes, it will not be obvious that our list contains
all the new palindromes. But this is not relevant: it is enough to find at least
the required number of new palindromes, and Theorem 2.6 then implies that
there cannot be more of them.) We distinguish four types of palindromes
(after defining each type, we first explain why that type is disjoint from all
the types before it; these explanations are marked by the symbol “/”).

• We first enumerate new palindromes that have the factor (uv)ai+2u in
the center; they can be obtained by “expanding” (to the left and the
right side) the boxed part below:

wi+1 (uv)ai+2uwi+1.

Clearly, there is a total of |wi+1| palindromes of this type (not counting
the palindrome (uv)ai+2u itself), and all of them must be new because
(uv)ai+2u occurs only once in wi+2 (and does not occur in wi+1).
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• We now enumerate new palindromes that have the factor wi in the
center; they can be obtained by “expanding” the boxed part below:

wi+1(uv)ai+2uwi (uv)ai+1uwi.

/ This type is disjoint from the first type since, by the property
1) from Lemma 4.11, there is only one copy of (uv)ai+2u in wi+2,
which cannot be in the center of a palindrome of this type.

Since there are only two occurrences of wi in wi+1 (by the choice of
i: Lemma 4.11, property 2)), we get that all the palindromes x̃wix for
x ∈ Pref((uv)ai+1u) \ {ε} are new. But there may be even more new
palindromes. Note that wi begins with wuv. If

t = max{|p| : p ∈ Pref(wuv) ∩ Pref(vu)},

then the expanding can continue further for t more new palindromes
(and since vu /∈ Pref(wuv), this is the best we can do). In total, we
have

ai+1|uv|+ |u|+ t

new palindromes of this type.

• We now enumerate new palindromes that have the factor (uv)ai+2−1u in
the center; they can be obtained by “expanding” the boxed part below:

wi+1uv (uv)ai+2−1uwi+1.

/ This type is disjoint from both the previous types since, by the
property 3) from Lemma 4.11, there are either 2 or 4 copies of
(uv)ai+2−1u in wi+2, and none of them can be in the center of a
palindrome of one of the previous two types.

Note: these palindromes are new only if ai+2 > ai+1 + 1, and we shall
do the counting under this assumption (otherwise, all of them would
be factors of wi+1). Since wi+1 begins with wuv, we have a total of t
new palindromes here.

• Finally, we enumerate new palindromes that are factors of (uv)ai+2u.

/ This type is disjoint from the first type since each palindrome of
the first type is longer than each palindrome of this type.
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/ Let us prove that this type is disjoint from the second type.
Suppose the contrary: there is a palindrome p that is of both
the second and the fourth type. We shall soon see that all the
palindromes of the fourth type are of length strictly greater than
|(uv)ai+1−1u| + 2t, and thus strictly greater than |(uv)aiu| + 2t.
Since p is of the second type, p has (uv)aiu in the center (because
wi has (uv)aiu in the center). The letter at t + 1 positions right
of this copy of (uv)aiu in p is (wuv)[t+ 1], which is different from
(vu)[t+ 1] by the definition of t. However, by Remark 4.3 and the
fact that p ∈ Fact((uv)ai+2u) (because p is of the fourth type also),
we have that the observed copy of (uv)aiu in p has to be followed
by vu, a contradiction. This proves the claim.

/ Finally, we show that this type is disjoint from the third type.
As we shall see in a moment, this type will be divided into two
subtypes ((9) and (10) below). The first subtype is disjoint from
the third type since there are either 2 or 4 copies of (uv)ai+2−1u
in wi+2, none of which is in the center of (uv)ai+2u, while all the
palindromes of the first subtype are in the center of (uv)ai+2u,
and therefore they cannot have a copy of (uv)ai+2−1u in their cen-
ter. The second subtype is disjoint from the third type since each
palindrome of the third type is longer than each palindrome of the
second subtype.

Let us first consider palindromes of the form

((uv)ai+2u)[j, |(uv)ai+2u| − j + 1]. (9)

In other words, they can be obtained by removing one by one letter from
both ends of (uv)ai+2u simultaneously. At one moment, we shall arrive
to (uv)ai+1u or (uv)ai+1−1u (depending on whether ai+2 and ai+1 are of
the same parity or not, respectively). Assume, e.g., the second case (the
first one is similar but even easier). At this moment, the palindrome
that we arrive to belongs to Fact(wi+1), so there is no point to continue
further. We shall now check how many of all those palindromes exist
already in Fact(wi+1). Note that, by the choice of i (in particular, the
property 3) from Lemma 4.11), we know exact positions of all the copies
of (uv)ai+1−1u within wi+1: there are two copies that are parts of the
central (uv)ai+1u, and additionally, if they exist (that is, if ai+1−1 = ai),
two copies in the centers of the starting and ending wi. Since each of
these copies is either preceded by vuw or followed by wuv (or both), it is
easy to see that the number of the considered palindromes that belong
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to Fact(wi+1) is precisely t. The same conclusion holds if ai+2 and ai+1

are of the same parity. This means that so far we have enumerated
dai+2−ai+1

2
e|uv| − t new palindromes.

We now consider palindromes of the form

((uv)ai+2−1u)[j, |(uv)ai+2−1u| − j + 1]. (10)

We again remove one by one letter from both ends of (uv)ai+2−1u simul-
taneously until we reach (uv)ai+1u or (uv)ai+1−1u. The same argument
as in the previous paragraph shows that there are bai+2−ai+1

2
c|uv| − t

new palindromes here, but there is one exceptional case: namely, if
ai+2 = ai+1 + 1, then already the starting palindrome (uv)ai+2−1u be-
longs to Fact(wi+1), and thus then we get 0 new palindromes (the for-
mula above would give a senseless value of −t, the explanation of which
is that the subtracted t palindromes in this exceptional case are not fac-
tors of (uv)ai+2−1u, and thus we do not need to subtract them).

Since dai+2−ai+1

2
e + bai+2−ai+1

2
c = ai+2 − ai+1, we may conclude that,

altogether, there is a total of

(ai+2 − ai+1)|uv| − 2t

new palindromes of this type if ai+2 > ai+1 + 1, and

|uv| − t

if ai+2 = ai+1 + 1.

Finally, let us sum all the numbers. If ai+2 = ai+1 + 1, then we have found

|wi+1|+ (ai+1|uv|+ |u|+ t) + (|uv| − t) = |wi+1|+ (ai+1 + 1)|uv|+ |u|
= |wi+1|+ ai+2|uv|+ |u|

new palindromes (recall that we ignore the third bullet here); if ai+2 > ai+1+
1, then we have found

|wi+1|+(ai+1|uv|+ |u|+t)+t+((ai+2−ai+1)|uv|−2t) = |wi+1|+ |u|+ai+2|uv|

new palindromes. In both cases, we get what was to be proved.
We now need to address the case vu ∈ Pref(wuv). Let

s = min{j : (wuv)[j] 6= (vu)∞[j]} − |uv|

(such a number s must exist since otherwise Remark 4.3 would imply that
w is of the form vuvu . . . vuv and thus ghpw(w, u, v, A) would be periodic).
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Note that the assumption vu ∈ Pref(wuv) implies that s is positive. We

also show that s 6
⌊ |w|

2

⌋
: indeed, if this were not the case, then the word

vuwuv would be a palindromic word that would match (vu)∞ for the first

|vu|+
⌊ |w|

2

⌋
+|uv| (which is

⌊ |vuwuv|
2

⌋
+|uv|) letters, and then Lemma 4.4 would

imply vuwuv = (vu)mv; therefore, w would also be of the form vuvu . . . vuv,
which would contradict the fact that ghpw(w, u, v, A) is not periodic. Now,
let:

e = (|u|+ 2s) mod |uv|;
l = (−s) mod |uv|;

w′ = w[s + 1, |w| − s];

u′ = (uvuv)[l + 1, l + e];

v′ = (uvuv)[l + e + 1, l + |uv|];

A′ =
(
ai +

|u|+ 2s− e

|uv|

)∞
i=1

= (a′i)
∞
i=1.

(11)

Notice that u′v′ is a conjugate of uv, and we have

(u′v′)∞ = (uv)[l+1, |uv|](uv)∞ = (u′v′)∞[1, |uv|−l](uv)∞ = (u′v′)∞[1, s](uv)∞,
(12)

and also

(u′v′)∞[1, s]̃ = (uv)[l + 1, |uv|](uv)b
s
|uv| c̃

= (vu)b
s
|uv|c(vu)[1, |uv| − l] = (vu)∞[1, s].

Further, by the definition of s, we have

w[1, s] = (vu)∞[1, s] = (u′v′)∞[1, s]̃.

We claim:

ghpw(w, u, v, A) = w[1, s] ghpw(w′, u′, v′, A′). (13)

It is enough to prove that for each i we have

w[1, s]w′i = wi[1, |wi| − s]. (14)

Before we proceed, we shall first check what we get of the word (u′v′)a
′
iu′

when we erase the prefix and the suffix of the length s. By (12), we notice
that, after erasing the prefix, there remains a word of the form uvuvuv . . . .
Therefore, since (u′v′)a

′
iu′ is a palidrome, erasing both the prefix and the
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suffix leaves a word of the form (uv)ku for a nonnegative integer k. We have
k|uv|+ |u|+ 2s = a′i|uv|+ |u′|, which reduces to

k = a′i +
|u′| − |u| − 2s

|uv|
= ai +

|u|+ 2s− e

|uv|
+

e− |u| − 2s

|uv|
= ai.

The proof of (14) is now a straightforward induction: the base (for i = 0) is
clear, and for the induction step we have:

w[1, s]w′i+1 = w[1, s]w′i(u
′v′)a

′
i+1u′w′i

= wi[1, |wi| − s](u′v′)∞[1, s](uv)ai+1u(u′v′)∞[1, s]̃w′i
= wi(uv)ai+1uw[1, s]w′i = wi(uv)ai+1uwi[1, |wi| − s]

= wi+1[1, |wi+1| − s],

which was to be proved.
Now notice the following: w′ is a palindrome (by its definition), u′v′

is primitive (since it is a conjugate of uv, which is primitive), and v′u′ /∈
Pref(w′u′v′) (because of (v′u′)[|v′u′|] = (u′v′)[1] = (uv)[l + 1] = (vu)∞[s] =
(vu)∞[s + |uv|] and (w′u′v′)[|v′u′|] = (wuv)[s + |uv|], and these two letter-
s are different by the choice of s). Therefore, the word ghpw(w′, u′, v′, A′)
satisfies all the assumptions of the first part of the proof, and we conclude
that its defect is finite. Now, since ghpw(w, u, v, A) is recurrent, by (13) we
conclude that each its factor is also a factor of ghpw(w′, u′, v′, A′) (and the
other direction obviously holds, too), which finally implies:

D(ghpw(w, u, v, A)) = D(ghpw(w′, u′, v′, A′)) <∞.

The proof is completed. �

Since, as mentioned in the Introduction, infinite words of defect 0 have
been studied significantly more than infinite words of finite nonzero defect, it
makes sense to give a characterization of generalized highly potential words
of (non)zero defect. Such a characterization can easily be inferred from the
proof of Theorem 4.12. We give it in the following corollary (the corollary
assumes that a word is given in standard form, but if it is not, we can always
rechoose the defining parameters as in the proof of Lemma 4.2 and make it
in standard form).

Corollary 4.13. Given a nonperiodic ghpw(w, u, v, A) in standard form, we
have:

1◦ If vu /∈ Pref(wuv), we choose the smallest integer i that satisfies 1), 2)
and 3) from the statement of Lemma 4.11, and then D(ghpw(w, u, v, A)) =
D(wi+1).
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2◦ If vu ∈ Pref(wuv), we choose w′, u′, v′ and A′ as in (11), and then
D(ghpw(w, u, v, A)) = D(ghpw(w′, u′, v′, A′)), which is evaluated as in
1◦ above.

In particular, in this way we can determine whether D(ghpw(w, u, v, A))
is 0 or positive, which gives a characterization of generalized highly potential
words of (non)zero defect.

Also note, we can easily produce many examples of generalized highly
potential words of nonzero defect. The simplest way is just to take any of the
words w, u or v to have nonzero defect, and then ghpw(w, u, v, A) also has
nonzero defect. This is a sufficient, but not necessary condition: for example,
if w, u and v are all rich words, but such that one of the words wu or uv has
positive defect, then ghpw(w, u, v, A) again has positive defect.

In fact, if any two of the words w, u and v are such that they cannot be
factors of the same rich word, then ghpw(w, u, v, A) has positive defect. It
was an open question posed in [20] if it is decidable whether two rich words
can be factors of the same rich word; this question has been settled (in the
affirmative) very recently [23], though the deciding algorithm is not really
practical. An elegant necessary condition for two rich words to be factors of
the same rich words is as follows [10, Theorem 6]: no two different factors
of a rich word can have the same longest palindromic prefix as well as the
same longest palindromic suffix (therefore, if we want ghpw(w, u, v, A) to
have positive defect, it is sufficient to have the stated condition violated for
any two of the words w, u, v). It has been asked in [24, Open problem 6.2]
whether the stated condition is also sufficient (that is, whether any two rich
words that have different longest palindromic prefix or longest palindromic
suffix must be factors of the same rich word); if true, this would greatly
simplify the mentioned algorithm from [23], but up to the present authors’
knowledge, this problem is still open.

4.5 Periodic case

Finally, we show that periodic generalized highly potential words also have
finite defect.

Theorem 4.14. The defect of a periodic generalized highly potential word is
finite.

Proof. Let ghpw(w, u, v, A) be given in standard form, and let ghpw(w, u, v, A) =
p∞. We claim that we may assume that p is a primitive word that is a prod-
uct of two palindromes (where one of them is possibly ε). Indeed, Theorem
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4.5 implies that we may assume either p = vu or p ∈ {w, u, v}, but in the
latter case, if p is not primitive but, say, p = tn, we may take t in place of p
(t is then a palindrome since it is both a prefix and a suffix of a palindrome).
Now Theorem 2.7 gives D(ghpw(w, u, v, A)) <∞. �
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