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Abstract

Let the function sg map a positive integer to the sum of its digits
in the base g. A number k is called n-flimsy in the base g if sg(nk) <
sg(k). Clearly, given a base g, g > 2, if n is a power of g, then there
does not exist an n-flimsy number in the base g. We give a constructive
proof of the existence of an n-flimsy number in the base g for all the
other values of n (such an existence follows from the results of Schmidt
and Steiner, but the explicit construction is a novelty). Our algorithm
for construction of such a number, say k, is very flexible in the sense
that, by easy modifications, we can impose further requirements on k
such as, for example, that k ends with a given sequence of digits, k
begins with a given sequence of digits, k is divisible by a given number
(or belongs to a certain congruence class modulo a given number) etc.
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1 Introduction

Research on the sum of digits of particular multiples of positive integers
often leads to interesting results. See, for example, [7] (where an unexpected
phenomenon, now called Newman phenomenon, was discovered), [4, 2] (some
further investigation of the Newman phenomenon), [3, 1] (some results on
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the correlation between the sum of digits of a given number and the sum of
digits of its multiples), [5, 6] (some results on the distribution of numbers
that have a given remainder when divided by a given modulus such that their
sum of digits also has a given remainder when divided by a given modulus),
etc.

Roots of the present work can be found in a paper by Stolarsky [11], who
called a number k n-flimsy if the sum of binary digits of the number nk is
smaller than the sum of binary digits of the number k. A number k is called
flimsy if it is n-flimsy for some n ∈ N (here and onward, by N we denote the
set of positive integers, while the set of nonnegative integers is denoted by
N0). The sequence of flimsy numbers is the sequence A005360 in [8].

Although the Stolarsky’s definition considers only binary notation, there
is a natural way to extend this definition to any base. For a given base g > 2,
let the function sg map a positive integer to the sum of its digits in the base
g. We say that a number k is n-flimsy in the base g if sg(nk) < sg(k). Given
a base g and an integer n ∈ N, if n is a power of g, then there obviously does
not exist an n-flimsy integer in the base g (because in that case the equality
sg(nk) = sg(k) holds, since the only difference between the numbers nk and
k is a string of zeros at the end of nk). The results of Schmidt [9] (for the
case g = 2) and Steiner [10] (for the general case g > 2) imply the existence
of n-flimsy numbers in the base g for the other values of n. Although these
results even give some informations about the density of such numbers, their
drawback is the fact that they are not constructive, that is, given a base g
and an integer n, it is not clear how to find an n-flimsy number in the base
g.

In this paper we give a constructive proof of the following result.

Theorem 1.1. For every base g > 2 and every n ∈ N such that logg n /∈ N0,
there exists k ∈ N such that sg(nk) < sg(k).

Given g and n, we present an algorithm to construct such a number k. The
presented algorithm is very flexible in the sense that, by easy modifications,
we can impose further requirements on k such as, for example, that k ends
with a given sequence of digits, k begins with a given sequence of digits, k is
divisible by a given number (or belongs to a certain congruence class modulo
a given number) etc.
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2 Main section

Before we begin the proof of Theorem 1.1, we prove some necessary lemmas.
From this point onward, we assume that a base g is given, g > 2, and n is a
given number that is not a power of g. Whenever we speak about the digits
of a number, we mean the digits in the base g.

Lemma 2.1. For every a and j, where 2 6 a 6 g − 1 and j ∈ N0, there
exists l ∈ {g − 1, g − 2} such that al + j ends with a digit less than l.

Proof. If g − 1 is a suitable value for l, the proof is completed. Assume,
therefore, that g − 1 is not a suitable value of l, that is, a(g − 1) + j ends
with g − 1.

We claim that g − 2 is then a suitable value for l. Indeed, if this were
not the case, then either a(g − 2) + j ≡ g − 1 (mod g) or a(g − 2) + j ≡
g − 2 (mod g), which together with a(g − 1) + j ≡ g − 1 (mod g) gives
a ≡ 0 (mod g), respectively a ≡ 1 (mod g); a contradiction in both cases.
Therefore, g − 2 is indeed a suitable value for l. �

Lemma 2.2. For every b and j, where 1 6 b 6 g − 1 and j ∈ N0, there
exists l ∈ {g − 1, g − 2} such that bl + j ends with a digit different from 0.

Proof. If b(g−1)+j ends with a digit different from 0, we can take l = g−1.
Otherwise, because of b(g − 2) + j = b(g − 1) + j − b and 1 6 b 6 g − 1, it
follows that b(g− 2) + j ends with a digit different from 0; therefore, we can
take l = g − 2. �

We shall also need the following two properties of the floor function.

Lemma 2.3. For any m,m′ ∈ N0 and i ∈ N, if m ≡ m′ (mod gi), then⌊
m
g

⌋
≡
⌊

m′

g

⌋
(mod gi−1).

Proof. From m ≡ m′ (mod gi) we obtain m mod g = m′ mod g, and there-
fore

m−m′ =
(
g

⌊
m

g

⌋
+m mod g

)
−
(
g

⌊
m′

g

⌋
+m′ mod g

)
= g

(⌊
m

g

⌋
−
⌊
m′

g

⌋)
.

Since gi | m−m′, we get gi−1 |
⌊

m
g

⌋
−
⌊

m′

g

⌋
, which was to be proved. �
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Lemma 2.4. For any m, y, y′ ∈ N we have⌊⌊
m
y

⌋
y′

⌋
=

⌊
m

yy′

⌋
. (1)

Proof. Let m = wyy′ + p, where 0 6 p < yy′. Then⌊
m

yy′

⌋
=

⌊
w +

p

yy′

⌋
= w +

⌊
p

yy′

⌋
= w

and ⌊⌊
m
y

⌋
y′

⌋
=

⌊
wy′ +

⌊
p
y

⌋
y′

⌋
= w +

⌊⌊
p
y

⌋
y′

⌋
.

The assertion now follows because 0 6
b p

y
c

y′
6

p
y

y′
= p

yy′
< 1, that is,

⌊ b p
y
c

y′

⌋
=

0. �

Proof of Theorem 1.1. Clearly, we may assume g - n, that is, n ends with a
nonzero digit (because the ending sequence of zeros makes no difference to
sg(n) nor to sg(nk) for any integer k, and thus we may simply erase such a
sequence of zeros from a given n and work with what remains). Let n end
with a digit a. Since it will turn out that the proof is much more complicated
when a = 1 in comparison to any other value of a, we shall distinguish these
two cases.

The case a 6= 1. Let the function f(a, j) map the pair (a, j) (where
j ∈ N0) to a value l ∈ {g − 1, g − 2} such that al + j ends with a digit less
than l (such a value exists by Lemma 2.1); in case of multiple possibilities
for l, choose arbitrarily. Define d0 = f(a, 0), k0 = d0, and for u = 1, 2, . . .
recursively define

du = f
(
a,
⌊nku−1

gu

⌋)
,

ku = gudu + ku−1 = du . . . d1d0(g).

Let u ∈ N0 be fixed. For each v, 0 6 v 6 u, the (v+ 1)st digit from the right
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in the product nku equals⌊
nku

gv

⌋
mod g =

⌊
n(gv · dudu−1 . . . dv(g) + dv−1 . . . d1d0(g))

gv

⌋
mod g

=

⌊
n · dudu−1 . . . dv(g) +

n · dv−1 . . . d1d0(g)

gv

⌋
mod g

=

(
n · dudu−1 . . . dv +

⌊
nkv−1

gv

⌋)
mod g

=

(
adv +

⌊
nkv−1

gv

⌋)
mod g

=

(
a · f

(
a,
⌊nkv−1

gv

⌋)
+

⌊
nkv−1

gv

⌋)
mod g

6 f
(
a,
⌊nkv−1

gv

⌋)
− 1 = dv − 1

(the inequality at the end follows by the definition of f). Since nku < ngu+1,
we have that nku has at most blogg nc + u + 2 digits, and by the previous
and this observation it follows

sg(nku) 6 (g − 1)(blogg nc+ 1) +
u∑

z=0

(dz − 1)

=
u∑

z=0

dz + (g − 1)(blogg nc+ 1)− u− 1

= sg(ku) + (g − 1)(blogg nc+ 1)− u− 1.

Therefore, for a large enough u we have sg(nku) < sg(ku), which was to be
proved.

The case a = 1. Let b be the first nonzero digit from the right after the
final 1 (which exists since n is not a power of g), and let t, t > 0, be the
number of zeros between the final 1 and b, that is,

n = gt+2x+ gt+1b+ 1.

Having Lemma 2.2 in mind, let the function h(b, j) map the pair (b, j) to a
value l ∈ {g − 1, g − 2} such that bl + j ends with a digit different from 0;
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in case of multiple possibilities for l, choose arbitrarily. We define two more
auxiliary functions, namely

ι(m) =

{
0, if m mod g = 0;
1, otherwise

and

µ(m) =

⌊
m

g

⌋
+ ι(m). (2)

The required value k shall now be constructed in a way that is somewhat
similar to the one seen in the case a 6= 1, but more technically challenging.
Define d0 = h(b, 0), k0 = d0, and for u = 1, 2, . . . recursively define

du =


h
(
b, µt+1

(⌊
nku−1

gu

⌋))
, if

⌊
nku−1

gu

⌋
mod g = 0;

g − 1, otherwise,

ku = gudu + ku−1 = du . . . d1d0(g).

(3)

(By µt+1 we mean the function µ iterated t+ 1 times.)
We proceed by proving a few important claims about the behavior of the

construction. Claims 2.5 and 2.6 present some technical properties of the
function µ. Claim 2.7 provides a tie between the function µ and the digit du

returned by the procedure at the uth step. Claim 2.8 is an intermediate step
toward Claim 2.9, and Claim 2.9 toward Claim 2.10, which then provides
a crucial relationship between the numbers ku−1 and ku+t (of course, the
function µ is of a key importance here). Finally, Claims 2.11 and 2.12 are
the final ingredients for this theorem: we first show that the digits of nku

show some kind of tendency to be smaller than the digits of ku, and then
we use this behavior to show that the sum of digits of nku is indeed smaller
than the sum of digits of ku for u large enough.

Claim 2.5. For any m,m′ ∈ N0 we have

µ(gm+m′) = m+ µ(m′). (4)

Proof. Indeed, doing some simple transformations and having in mind that
ι depends only on the remainder modulo g of the argument, we obtain

µ(gm+m′) =

⌊
gm+m′

g

⌋
+ ι(gm+m′) = m+

⌊
m′

g

⌋
+ ι(m′) = m+ µ(m′),
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which proves the claim.

Claim 2.6. For any m,m′ ∈ N0 and i ∈ N, if m ≡ m′ (mod gi), then
µ(m) ≡ µ(m′) (mod gi−1).

Proof. If m ≡ m′ (mod gi), then m ≡ m′ (mod g), and thus ι(m) = ι(m′).
Further, from m ≡ m′ (mod gi), by Lemma 2.3 we also obtain

⌊
m
g

⌋
≡
⌊

m′

g

⌋
(mod gi−1). This gives µ(m) ≡ µ(m′) (mod gi−1), which proves the claim.

Claim 2.7. For each u ∈ N, we have

µ

(⌊
nku−1

gu

⌋)
=

⌊
du +

⌊
nku−1

gu

⌋
g

⌋
=

⌊
du + nku−1

gu

g

⌋
. (5)

Proof. We first note

⌊
du +

⌊
nku−1

gu

⌋
g

⌋
=


du + g

⌊⌊
nku−1

gu

⌋
g

⌋
+
⌊

nku−1

gu

⌋
mod g

g


=

⌊⌊
nku−1

gu

⌋
g

⌋
+

⌊
du +

⌊
nku−1

gu

⌋
mod g

g

⌋
.

(6)

Now, observe the way du is defined. If
⌊

nku−1

gu

⌋
mod g = 0, then whatever du

is, we have the inequality du +
⌊

nku−1

gu

⌋
mod g = du < g; on the other hand, if⌊

nku−1

gu

⌋
mod g 6= 0, then du = g−1, and we now have du+

⌊
nku−1

gu

⌋
mod g > g.

In other words, the last summand at (2.6) equals 0 if and only if
⌊

nku−1

gu

⌋
mod

g = 0, and equals 1 otherwise (since then g 6 du +
⌊

nku−1

gu

⌋
mod g < 2g); in

fact, it equals ι
(⌊

nku−1

gu

⌋)
(directly by the definition of ι). Therefore, we have⌊

du +
⌊

nku−1

gu

⌋
g

⌋
=

⌊⌊
nku−1

gu

⌋
g

⌋
+ ι

(⌊
nku−1

gu

⌋)
= µ

(⌊
nku−1

gu

⌋)
,

which proves the first equality in (2.5).
Further, we have⌊
du +

⌊
nku−1

gu

⌋
g

⌋
=

⌊⌊
dugu+nku−1

gu

⌋
g

⌋
(2.1)
=

⌊
dug

u + nku−1

gu+1

⌋
=

⌊
du + nku−1

gu

g

⌋
,

7



which completes the proof of the claim. (Here and onward, by
(2.1)
= we imply

that the equality holds because of the formula (2.1).)

Claim 2.8. For each u ∈ N, we have⌊
nku

gu+1

⌋
≡ µ

(⌊
nku−1

gu

⌋)
(mod gt).

Proof. The proof is a straightforward calculation:

⌊
nku

gu+1

⌋
=

⌊
n(dug

u + ku−1)

gu+1

⌋
=

⌊
ndu + nku−1

gu

g

⌋

=

⌊
(gt+2x+ gt+1b+ 1)du + nku−1

gu

g

⌋

= gt+1xdu + gtbdu +

⌊
du + nku−1

gu

g

⌋

≡

⌊
du + nku−1

gu

g

⌋
(2.5)
= µ

(⌊
nku−1

gu

⌋)
(mod gt).

Claim 2.9. For each u ∈ N, we have⌊
nku+t

gu+t+1

⌋
≡ µt

(⌊
nku

gu+1

⌋)
(mod g).

Proof. By induction on v, we shall prove that for each v, 0 6 v 6 t, we have⌊
nku+t

gu+t+1

⌋
≡ µv

(⌊
nku+t−v

gu+t−v+1

⌋)
(mod gt−v+1). (7)

For v = 0, the assertion is trivially true (the left-hand side and the right-hand
side are equal). For the induction step, assume that (2.7) holds for a given
v, 0 6 v 6 t− 1, and let us prove⌊

nku+t

gu+t+1

⌋
≡ µv+1

(⌊
nku+t−v−1

gu+t−v

⌋)
(mod gt−v). (8)
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By the previous claim, we have⌊
nku+t−v

gu+t−v+1

⌋
≡ µ

(⌊
nku+t−v−1

gu+t−v

⌋)
(mod gt).

Applying Claim 2.6 a total of v times, we obtain

µv

(⌊
nku+t−v

gu+t−v+1

⌋)
≡ µv+1

(⌊
nku+t−v−1

gu+t−v

⌋)
(mod gt−v).

Together with the assumption (2.7), we obtain (2.8). This completes the
inductive step. Putting v = t in (2.7) gives the statement of the claim. The
proof is completed.

Claim 2.10. For each u ∈ N, we have⌊
nku+t

gu+t+1

⌋
≡ bdu + µt+1

(⌊
nku−1

gu

⌋)
(mod g).

Proof. Starting from the congruence from the previous claim, we obtain⌊
nku+t

gu+t+1

⌋
≡ µt

(⌊
nku

gu+1

⌋)
= µt

(⌊
n(dug

u + ku−1)

gu+1

⌋)
(mod q)

= µt

(⌊
(gt+2x+ gt+1b+ 1)du + nku−1

gu

g

⌋)
= µt

(
gt+1xdu + gtbdu +

⌊
du + nku−1

gu

g

⌋)
(2.5)
= µt

(
gt+1xdu + gtbdu + µ

(⌊
nku−1

gu

⌋))
(2.4)
= µt−1

(
gtxdu + gt−1bdu + µ2

(⌊
nku−1

gu

⌋))
(2.4)
= · · ·(2.4)= µ

(
g2xdu + gbdu + µt

(⌊
nku−1

gu

⌋))
(2.4)
= gxdu + bdu + µt+1

(⌊
nku−1

gu

⌋)
≡ bdu + µt+1

(⌊
nku−1

gu

⌋)
(mod g).

This completes the proof of the claim.
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Claim 2.11. For each u ∈ N0, the following relations hold between the (u+
1)st digit from the right in the product nku and the digit du (that is, the
(u+ 1)st digit from the right in ku):

•
⌊

nku

gu

⌋
mod g − du = 0 if and only if

⌊
nku−1

gu

⌋
mod g = 0; furthermore,

in that case we have
⌊

nku+t

gu+t+1

⌋
mod g 6= 0;

•
⌊

nku

gu

⌋
mod g − du 6 −1 otherwise.

Proof. We first note⌊
nku

gu

⌋
− du =

⌊
n(gudu + ku−1)

gu

⌋
− du = ndu +

⌊
nku−1

gu

⌋
− du

≡ du +

⌊
nku−1

gu

⌋
− du =

⌊
nku−1

gu

⌋
(mod g).

(9)

(Between the first and the second row we used the fact n ≡ 1 (mod g).)
Since g − 2 6 du 6 g − 1, it follows that

−(g − 1) 6

⌊
nku

gu

⌋
mod g − du 6 (g − 1)− (g − 2) = 1. (10)

Together with (2.9), this immediately gives the first half of the first assertion
from the statement. Further, if

⌊
nku−1

gu

⌋
mod g 6= 0, then our construction

gives du = g − 1, and in that case the upper bound from (2.10) is actually
(g − 1)− (g − 1) = 0, which gives the second assertion.

That leaves to prove the second half of the first assertion. If
⌊

nku−1

gu

⌋
mod

g = 0, then du = h
(
b, µt+1

(⌊
nku−1

gu

⌋))
. By Claim 2.10, we have

⌊
nku+t

gu+t+1

⌋
≡ bdu + µt+1

(⌊
nku−1

gu

⌋)
= b · h

(
b, µt+1

(⌊
nku−1

gu

⌋))
+ µt+1

(⌊
nku−1

gu

⌋)
(mod g),

(11)
and directly by the definition of h we obtain that the above expression ends
with a digit different from 0. This completes the proof of the claim.

Claim 2.12. For each u ∈ N0, there exists a collection S of pairwise disjoint
subsets of the set {0, 1, . . . , u} such that:
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• |S| 6 2 for each S ∈ S ;

• for each S ∈ S , the sum
∑

v∈S dv is greater than the sum of digits at
the corresponding positions in the product nku;

• |
⋃

S | > u− t.

Proof. Let u ∈ N0 be given. Let nku = eqeq−1 . . . e2e1e0(g). In other words,

ev =
⌊

nku

gv

⌋
mod g for 0 6 v 6 u. Note that we also have

ev =

⌊
nku

gv

⌋
mod g =

⌊
n(gv+1 · du . . . dv+2dv+1(g) + kv)

gv

⌋
mod g

=

(
ng · du . . . dv+2dv+1(g) +

⌊
nkv

gv

⌋)
mod g =

⌊
nkv

gv

⌋
mod g.

The collection S will be formed by the following algorithm. Initially set the
collection S to be empty. For v = 0, 1, 2 . . . do the following:

1. If v already belongs to some member of S , proceed to the next value
of v; otherwise, proceed to the next step.

2. If dv > ev, add {v} to the collection and proceed to the next value of
v; otherwise, proceed to the next step.

3. If dv = ev, note that in that case Claim 2.11 (the first part) gives⌊
nkv+t

gv+t+1

⌋
mod g 6= 0; because of this observation, by Claim 2.11 again

(the second part), we obtain ev+t+1 − dv+t+1 6 −1, that is, dv+t+1 >
ev+t+1. We add {v, v+ t+ 1} to the collection and proceed to the next
value of v (note that, since dv + dv+t+1 > ev + ev+t+1, the set added to
the collection fulfills the requirements).

The last value of v for which we apply the algorithm is u − t − 1 (because
we need the inequality v + t + 1 6 u, in order for all the indices we were
mentioning to be defined). By the way the algorithm works, all the numbers
from {0, 1, . . . , u− t− 1} will be added to

⋃
S . This gives |

⋃
S | > u− t,

which completes the proof of the claim.

We are finally ready to complete the proof of Theorem 1.1. Fix u ∈ N0.
Let nku = eqeq−1 . . . e2e1e0(g). Since ku < gu+1 and n < gblogg nc+1, we have

nku < gblogg nc+u+2; therefore, q 6 blogg nc+ u+ 1.
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Let S be the collection from Claim 2.12. For each S ∈ S we have∑
v∈S ev <

∑
v∈S dv, that is,

∑
v∈S ev 6

∑
v∈S dv − 1. Since |

⋃
S | > u − t

and each member of S is of cardinality at most 2, we conclude that the
collection S contains at least u−t

2
members. We now have

∑
v∈
⋃

S

ev =
∑
S∈S

∑
v∈S

ev 6
∑
S∈S

(∑
v∈S

dv − 1

)
=
∑
S∈S

∑
v∈S

dv − |S |

6
∑
S∈S

∑
v∈S

dv −
u− t

2
=
∑

v∈
⋃

S

dv −
u− t

2
.

For each v, 0 6 v 6 q, such that v /∈
⋃

S we trivially have ev 6 g − 1,
and there are at most

(q + 1)− (u− t) = q − u+ t+ 1

6 (blogg nc+ u+ 1)− u+ t+ 1 = blogg nc+ t+ 2

such values of v. Finally, we calculate

sg(nku) =

q∑
v=0

ev =
∑

v∈
⋃

S

ev +
∑

v/∈
⋃

S

ev

6

 ∑
v∈
⋃

S

dv −
u− t

2

+ (g − 1)(blogg nc+ t+ 2)

6
u∑

v=0

dv −
u− t

2
+ (g − 1)(blogg nc+ t+ 2)

= sg(ku)− u

2
+

(
t

2
+ (g − 1)(blogg nc+ t+ 2)

)
.

The expression in the last brackets is constant with respect to u. Therefore,
for u large enough we have sg(nku) < sg(ku), that is, we may take k = ku for
u large enough. This completes the proof. �
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