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Abstract

We characterize all functions f : N → C such that f(m2 + n2) =
f(m)2 + f(n)2 for all m, n ∈ N. It turns out that all such functions
can be grouped into three families, namely f ≡ 0, f(n) = ±n (subject
to some restrictions on when the choice of the sign is possible) and
f(n) = ±1

2 (again subject to some restrictions on when the choice of
the sign is possible).
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1 Introduction

During the last two decades, there has been a lot of work on functions on pos-
itive integers satisfying some (more or less) Cauchy-like functional equation.
In 1992, Spiro-Silverman [14] showed that the only multiplicative function
f : N → C such that f(p + q) = f(p) + f(q) for all primes p, q and that
f(p0) 6= 0 for some prime p0 is the identity function f(n) = n. (By N we de-
note the set of positive integers. A function defined on N is called multiplica-
tive if f(mn) = f(m)f(n) for all coprime m, n ∈ N, and is called completely
multiplicative if f(mn) = f(m)f(n) for all m, n ∈ N.) Very recently Fang [5]
extended the same conclusion to the equation f(p+q+r) = f(p)+f(q)+f(r),
and Dubickas and Šarka [4] settled the general case f(p1 + p2 + · · · + pk) =
f(p1) + f(p2) + · · · + f(pk), where k > 2 is fixed. Phong [12] considered a
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similar equation f(p+q+pq) = f(p)+f(q)+f(pq) (p and q are primes), and
proved that the only completely multiplicative function f that satisfies this
equation such that f(p0) 6= 0 for some prime p0 is the identity function. De
Koninck, Kátai and Phong [9] proved that the only multiplicative function f
that satisfies f(1) = 1 and f(p + m2) = f(p) + f(m2) (p is prime, m ∈ N) is
the identity function. Chung [2] described all multiplicative and completely
multiplicative functions f such that f(m2 +n2) = f(m2) +f(n2) (m, n ∈ N).
Some other related problems are treated in [1, 3, 7, 13].

We hereby consider a functional equation similar to those mentioned
above, namely a modification of the functional equation treated by Chung.
We prove the following theorem.

Theorem 1.1. Let f : N→ C satisfy

f(m2 + n2) = f(m)2 + f(n)2 (1.1)

for all m, n ∈ N. Then one of the following holds:

1) f ≡ 0;

2) • f(n) = ±n for each n such that either there exists a prime factor
of n congruent to 3 modulo 4 that occurs in n to an odd exponent,
or n is a perfect square that is not divisible by any prime congruent
to 1 modulo 4;
• f(n) = n for all other n

(in the former case, the sign for each such n can be chosen indepen-
dently of the others);

3) • f(n) = ±1
2

for each n such that either there exists a prime factor
of n congruent to 3 modulo 4 that occurs in n to an odd exponent,
or n is a perfect square that is not divisible by any prime congruent
to 1 modulo 4;
• f(n) = 1

2
for all other n

(in the former case, the sign for each such n can be chosen indepen-
dently of the others).

Note that there is no assumption on multiplicative properties of f . The
proof, which is somewhat technical but elementary, is distributed through
the following sections.
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2 Evaluating f (1)

For the rest of the paper, let f denote an arithmetic function that satisfies
the functional equation (1.1).

Lemma 2.1. f(1) ∈ {0, 1,−1, 1
2
,−1

2
}.

Proof. Let f(1) = a. We get f(2) = f(12 + 12) = f(1)2 + f(1)2 = 2a2.
Therefore,

f(2)2 = 4a4. (2.1)

Using (2.1), we get f(8) = f(22 + 22) = f(2)2 + f(2)2 = 8a4. Therefore,

f(8)2 = 64a8. (2.2)

Using (2.1), we get f(5) = f(22 + 12) = f(2)2 + f(1)2 = 4a4 + a2. Therefore,

f(5)2 = 16a8 + 8a6 + a4. (2.3)

Since f(5)2 + f(5)2 = f(52 + 52) = f(50) = f(72 + 12) = f(7)2 + f(1)2, by
(2.3) we deduce

f(7)2 = 2(16a8 + 8a6 + a4)− a2 = 32a8 + 16a6 + 2a4 − a2. (2.4)

Since f(8)2 + f(1)2 = f(82 + 12) = f(65) = f(72 + 42) = f(7)2 + f(4)2, by
(2.2) and (2.4) we deduce

f(4)2 = 64a8 +a2− (32a8 +16a6 +2a4−a2) = 32a8−16a6−2a4 +2a2. (2.5)

Using (2.5), we get f(32) = f(42 + 42) = f(4)2 + f(4)2 = 64a8−32a6−4a4 +
4a2. Therefore,

f(32)2 = 4096a16 − 4096a14 + 512a12 + 768a10 − 240a8 − 32a6 + 16a4. (2.6)

Using (2.5), we get f(17) = f(42 + 12) = f(4)2 + f(1)2 = 32a8−16a6−2a4 +
3a2. Therefore,

f(17)2 = 1024a16 − 1024a14 + 128a12 + 256a10 − 92a8 − 12a6 + 9a4. (2.7)
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Since f(32)2+f(7)2 = f(322+72) = f(1073) = f(282+172) = f(28)2+f(17)2,
by (2.6), (2.4) and (2.7) we deduce

f(28)2 = 4096a16 − 4096a14 + 512a12 + 768a10 − 240a8 − 32a6 + 16a4

+ 32a8 + 16a6 + 2a4 − a2

− (1024a16 − 1024a14 + 128a12 + 256a10 − 92a8 − 12a6 + 9a4)

= 3072a16 − 3072a14 + 384a12 + 512a10 − 116a8 − 4a6 + 9a4 − a2.

(2.8)
Since f(17)2 + f(4)2 = f(172 + 42) = f(305) = f(162 + 72) = f(16)2 + f(7)2,
by (2.7), (2.5) and (2.4) we deduce

f(16)2 = 1024a16 − 1024a14 + 128a12 + 256a10 − 92a8 − 12a6 + 9a4

+ 32a8 − 16a6 − 2a4 + 2a2 − (32a8 + 16a6 + 2a4 − a2)

= 1024a16 − 1024a14 + 128a12 + 256a10 − 92a8 − 44a6 + 5a4 + 3a2.

(2.9)
Since f(17)2+f(17)2 = f(172+172) = f(578) = f(232+72) = f(23)2+f(7)2,
by (2.7) and (2.4) we deduce

f(23)2 = 2(1024a16 − 1024a14 + 128a12 + 256a10 − 92a8 − 12a6 + 9a4)

− (32a8 + 16a6 + 2a4 − a2)

= 2048a16 − 2048a14 + 256a12 + 512a10 − 216a8 − 40a6 + 16a4 + a2.

(2.10)
Since f(23)2+f(16)2 = f(232+162) = f(785) = f(282+12) = f(28)2+f(1)2,
by (2.10), (2.9) and (2.8) we deduce

f(1)2 = 2048a16 − 2048a14 + 256a12 + 512a10 − 216a8 − 40a6 + 16a4 + a2

+ 1024a16 − 1024a14 + 128a12 + 256a10 − 92a8 − 44a6 + 5a4 + 3a2

− (3072a16 − 3072a14 + 384a12 + 512a10 − 116a8 − 4a6 + 9a4 − a2)

= 256a10 − 192a8 − 80a6 + 12a4 + 5a2.

On the other hand, since f(1)2 = a2, the difference of the right-hand sides
of these two expressions must equal 0, that is,

256a10 − 192a8 − 80a6 + 12a4 + 4a2 = 0.
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The polynomial on the left-hand side can be factored as

4a2(a− 1)(a + 1)(2a− 1)(2a + 1)(4a2 + 1)2 = 0.

Therefore, we see that its zeros are a1 = a2 = 0, a3 = 1, a4 = −1, a5 = 1
2
,

a6 = −1
2
, a7 = a8 = i

2
, a9 = a10 = − i

2
. Thus, in order to finish the proof

we need to show that f(1) = ± i
2

is impossible, that is, that a2 = −1
4

is
impossible.

Using (2.3) and (2.5), we get f(41) = f(52 + 42) = f(5)2 + f(4)2 =
48a8 − 8a6 − a4 + 2a2. Therefore,

f(41)2 = 2304a16 − 768a14 − 32a12 + 208a10 − 31a8 − 4a6 + 4a4. (2.11)

On the other hand, using (2.3) and (2.1), we get f(29) = f(52 + 22) =
f(5)2 + f(2)2 = 16a8 + 8a6 + 5a4 and therefore

f(29)2 = 256a16 + 256a14 + 224a12 + 80a10 + 25a8, (2.12)

which, since f(29)2 + f(29)2 = f(292 + 292) = f(1682) = f(412 + 12) =
f(41)2 + f(1)2, leads to

f(41)2 = 2(256a16 + 256a14 + 224a12 + 80a10 + 25a8)− a2

= 512a16 + 512a14 + 448a12 + 160a10 + 50a8 − a2.
(2.13)

Therefore, the difference of the right-hand sides of (2.11) and (2.13) must
equal 0, that is,

1792a16 − 1280a14 − 480a12 + 48a10 − 81a8 − 4a6 + 4a4 + a2 = 0.

We calculate that for a2 = −1
4

the expression on the left equals − 5
16

. This
shows that f(1) = ± i

2
is indeed impossible, and the proof is thus completed.

�

3 Evaluating f (2), f (3), . . . , f (10) up to a sign

The equations obtained in the proof Lemma 2.1 will still be useful, and we
need some more.
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Using (2.5) and (2.1), we get f(20) = f(42 + 22) = f(4)2 + f(2)2 =
32a8 − 16a6 + 2a4 + 2a2. Therefore,

f(20)2 = 1024a16 − 1024a14 + 384a12 + 64a10 − 60a8 + 8a6 + 4a4. (3.1)

Since f(17)2+f(20)2 = f(172+202) = f(689) = f(252+82) = f(25)2+f(8)2,
by (2.7), (3.1) and (2.2) we deduce

f(25)2 = 1024a16 − 1024a14 + 128a12 + 256a10 − 92a8 − 12a6 + 9a4

+ 1024a16 − 1024a14 + 384a12 + 64a10 − 60a8 + 8a6 + 4a4

− 64a8

= 2048a16 − 2048a14 + 512a12 + 320a10 − 216a8 − 4a6 + 13a4.

Since f(25)2+f(2)2 = f(252+22) = f(629) = f(232+102) = f(23)2+f(10)2,
by the previous equation and (2.1) and (2.10) we deduce

f(10)2 = 2048a16 − 2048a14 + 512a12 + 320a10 − 216a8 − 4a6 + 13a4

+ 4a4

− (2048a16 − 2048a14 + 256a12 + 512a10 − 216a8

−40a6 + 16a4 + a2)

= 256a12 − 192a10 + 36a6 + a4 − a2.

(3.2)
This makes enough prerequisites for this section.

Lemma 3.1. Let f(1) = 0. Then f(n) = 0 for all n such that 1 6 n 6 10.

Proof. Putting a = 0 in the equations (2.1), (2.5), (2.3), (2.4), (2.2) and (3.2)
gives f(n) = 0 for all n such that 1 6 n 6 10 apart from n = 3, 6, 9.

We further have f(26) = f(52 + 12) = f(5)2 + f(1)2 = 0. Putting a = 0
in the equation (2.12) gives f(29) = 0. Since f(29)2 + f(2)2 = f(292 + 22) =
f(845) = f(262+132) = f(26)2+f(13)2, we deduce f(13)2 = f(29)2+f(2)2−
f(26)2 = 0, that is, f(13) = 0. Since f(13) = f(32 + 22) = f(3)2 + f(2)2, we
deduce f(3)2 = f(13)− f(2)2 = 0, that is, f(3) = 0.

Since f(10)2 + f(10)2 = f(102 + 102) = f(200) = f(142 + 22) = f(14)2 +
f(2)2, we deduce f(14)2 = 2f(10)2 − f(2)2 = 0. Since f(14)2 + f(3)2 =
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f(142 + 32) = f(205) = f(132 + 62) = f(13)2 + f(6)2, we deduce f(6)2 =
f(14)2 +f(3)2−f(13)2 = 0 (recall that f(13) = 0 is obtained in the previous
paragraph), that is, f(6) = 0.

Finally, since f(6)2 + f(7)2 = f(62 + 72) = f(85) = f(92 + 22) = f(9)2 +
f(2)2, we deduce f(9)2 = f(6)2 + f(7)2− f(2)2 = 0, that is, f(9) = 0, which
completes the proof. �

Lemma 3.2. Let f(1) = ±1. Then f(n) = ±n for all n such that 1 6 n 6
10.

Proof. Putting a2 = 1 in the equations (2.1), (2.5), (2.3), (2.4), (2.2) and
(3.2) gives f(n)2 = n2, that is, f(n) = ±n, for all n such that 1 6 n 6 10
apart from n = 3, 6, 9.

Let f(3) = b. We have f(13) = f(32 + 22) = f(3)2 + f(2)2 = b2 + 4 and
f(25) = f(42 +32) = f(4)2 +f(3)2 = b2 +16; therefore, f(13)2 = b4 +8b2 +16
and f(25)2 = b4 + 32b2 + 256. Putting a2 = 1 in the equation (2.13) gives
f(41)2 = 1681. Since f(41)2 + f(13)2 = f(412 + 132) = f(1850) = f(352 +
252) = f(35)2 + f(25)2, we deduce

f(35)2 = 1681 + b4 + 8b2 + 16− (b4 + 32b2 + 256) = 1441− 24b2.

On the other hand, putting a2 = 1 in the equations (2.12) and (3.1) gives
f(29)2 = 841 and f(20)2 = 400, and since f(29)2 + f(20)2 = f(292 + 202) =
f(1241) = f(352 + 42) = f(35)2 + f(4)2, we deduce

f(35)2 = 841 + 400− 16 = 1225.

Therefore, the difference of the right-hand sides of the last two equations
must equal 0, that is,

216− 24b2 = 0.

We thus find b2 = 9, that is, f(3) = ±3.
Since f(10)2 + f(10)2 = f(102 + 102) = f(200) = f(142 + 22) = f(14)2 +

f(2)2, we deduce f(14)2 = 2 ·100−4 = 196. Putting b2 = 9 in the expression
for f(13)2 obtained in the previous paragraph gives f(13)2 = 169. Since
f(14)2 + f(3)2 = f(142 + 32) = f(205) = f(132 + 62) = f(13)2 + f(6)2, we
deduce f(6)2 = 196 + 9− 169 = 36, that is, f(6) = ±6.

Finally, since f(6)2 + f(7)2 = f(62 + 72) = f(85) = f(92 + 22) = f(9)2 +
f(2)2, we deduce f(9)2 = 36 + 49 − 4 = 81, that is, f(9) = ±9, which
completes the proof. �
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Lemma 3.3. Let f(1) = ±1
2
. Then f(n) = ±1

2
for all n such that 1 6 n 6

10.

Proof. Putting a2 = 1
4

in the equations (2.1), (2.5), (2.3), (2.4), (2.2) and
(3.2) gives f(n)2 = 1

4
, that is, f(n) = ±1

2
, for all n such that 1 6 n 6 10

apart from n = 3, 6, 9.
Let f(3) = b. We have f(18) = f(32 + 32) = f(3)2 + f(3)2 = 2b2 and

f(34) = f(52 + 32) = f(5)2 + f(3)2 = b2 + 1
4
; therefore, f(18)2 = 4b4 and

f(34)2 = b4 + b2

2
+ 1

16
. Putting a2 = 1

4
in the equation (2.12) gives f(29)2 = 1

4
.

Since f(29)2+f(18)2 = f(292+182) = f(1165) = f(342+32) = f(34)2+f(3)2,
we deduce

f(3)2 =
1

4
+ 4b4 −

(
b4 +

b2

2
+

1

16

)
= 3b4 − b2

2
+

3

16
.

On the other hand, since f(3)2 = b2, the difference of the right-hand sides of
these two expressions must equal 0, that is,

3b4 − 3b2

2
+

3

16
= 0.

The polynomial on the left-hand side can be factored as

3

16
(2b− 1)2(2b + 1)2 = 0.

Therefore, we see that its zeros are b1 = b2 = 1
2
, b3 = b4 = −1

2
. Thus,

f(3) = ±1
2
.

We have f(13) = f(32 + 22) = f(3)2 + f(2)2 = b2 + 1
4
; therefore, f(13)2 =

b4 + b2

2
+ 1

16
. Since f(10)2 + f(10)2 = f(102 + 102) = f(200) = f(142 + 22) =

f(14)2 + f(2)2, we deduce f(14)2 = 2 · 1
4
− 1

4
= 1

4
. Since f(14)2 + f(3)2 =

f(142 + 32) = f(205) = f(132 + 62) = f(13)2 + f(6)2, we deduce f(6)2 =
1
4

+ 1
4
− 1

4
= 1

4
, that is, f(6) = ±1

2
.

Finally, since f(6)2 + f(7)2 = f(62 + 72) = f(85) = f(92 + 22) = f(9)2 +
f(2)2, we deduce f(9)2 = 1

4
+ 1

4
− 1

4
= 1

4
, that is, f(9) = ±1

2
, which completes

the proof. �

4 Completing the proof

We are now ready for the final steps.
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Proof of Theorem 1.1. Recall the identity

(ab + cd)2 + (ad− bc)2 = (ab− cd)2 + (ad + bc)2.

Applying f to the both sides of this equation and using (1.1) leads to

f(ab + cd)2 + f(ad− bc)2 = f(ab− cd)2 + f(ad + bc)2 (4.1)

whenever all four arguments are positive.
We shall now prove, by induction on n, that if f satisfies one of the

statement from Lemmas 3.1, 3.2 or 3.3 up to n = 10, it then satisfies that
statement on the whole domain. Let n > 10 be an odd number, say n =
2k + 1. Putting a = k, b = 2, c = 1 and d = 1 in (4.1) gives

f(n)2 = f(2k − 1)2 + f(k + 2)2 − f(k − 2)2.

Since all the arguments on the right-hand side are positive and smaller than n,
by the inductive assumption we have f(2k−1)2 = f(k +2)2 = f(k−2)2 = 0,
respectively f(2k−1)2 = (2k−1)2, f(k+2)2 = (k+2)2 and f(k−2)2 = (k−2)2,
respectively f(2k − 1)2 = f(k + 2)2 = f(k − 2)2 = 1

4
. In the first and the

third case we immediately get f(n)2 = 0, respectively f(n)2 = 1
4
, and in the

second case we calculate

f(n)2 = 4k2 − 4k + 1 + k2 + 4k + 4− (k2 − 4k + 4) = 4k2 + 4k + 1 = n2,

as needed. Let now n > 10 be an even number, say n = 2k (k > 6). Putting
a = k − 1, b = 2, c = 2 and d = 1 in (4.1) gives

f(n)2 = f(2k − 4)2 + f(k + 3)2 − f(k − 5)2.

Since all the arguments on the right-hand side are positive (because k > 6)
and smaller than n, we similarly as in the previous case get f(n)2 = 0,
respectively f(n)2 = 1

4
, respectively

f(n)2 = 4k2 − 16k + 16 + k2 + 6k + 9− (k2 − 10k + 25) = 4k2 = n2,

as needed.
Therefore, we have that for all n either f(n) = 0, f(n) = ±n or f(n) =

±1
2
. In order to finish the proof we need to check for which n the sign is

actually fixed (for the latter two families of functions). We shall show that
the sign is fixed (in particular, positive) if and only if n is a sum of two
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positive squares. Since it is known that n cannot be represented as a sum
of two positive squares if and only if either there exists a prime factor of n
congruent to 3 modulo 4 that occurs in n to an odd exponent, or n is a perfect
square that is not divisible by any prime congruent to 1 modulo 4 (see, e.g.,
[11, Problem 5 in Section 3.6 and Theorem 3.22] or [8, Theorem 2.11]), this
is enough to complete the proof. (Note that some different claims can be
found in the literature, such as in [6] that n is a sum of two positive squares
if and only if n is of the form 4an1n

2
2 where a > 0, n1 is a product of primes

congruent to 1 modulo 4 and n1 > 1, n2 is a product of primes congruent
to 3 modulo 4, and a similar claim in [10] but with 2e, e > 0, instead of 4a.
However, both these claims miss the case, e.g., n = 18, which is a sum of two
positive squares, 9 + 9, but does not have the described form.)

Let n be a sum of two positive squares, say n = s2 + t2 (s, t 6= 0). Then
f(n) = f(s2 + t2) = f(s)2 +f(t)2, and since the right-hand side is positive (it
equals either s2 + t2 or 1

4
), it follows that the positive sign has to be chosen

for f(n) whenever n is a sum of two positive squares. For the other direction,
let f(n) = ±n with a freely chosen sign for each n that is not a sum of two
positive squares, and f(n) = n for all other n. (The case with±1

2
as the image

is analogous.) Then for each m, n ∈ N we have f(m2 + n2) = m2 + n2 and
f(m)2 + f(n)2 = (±m)2 + (±n)2 = m2 + n2, which completes the proof. �
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