Characterization of arithmetic functions that preserve the sum-of-squares operation

Bojan Bašić
Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia
bojan.basic@dmi.uns.ac.rs

Abstract

We characterize all functions $f: \mathbb{N} \rightarrow \mathbb{C}$ such that $f\left(m^{2}+n^{2}\right)=$ $f(m)^{2}+f(n)^{2}$ for all $m, n \in \mathbb{N}$. It turns out that all such functions can be grouped into three families, namely $f \equiv 0, f(n)= \pm n$ (subject to some restrictions on when the choice of the sign is possible) and $f(n)= \pm \frac{1}{2}$ (again subject to some restrictions on when the choice of the sign is possible).

Mathematics Subject Classification (2010): 11A25 Keywords: arithmetic function, functional equation, sum of squares

1 Introduction

During the last two decades, there has been a lot of work on functions on positive integers satisfying some (more or less) Cauchy-like functional equation. In 1992, Spiro-Silverman [14] showed that the only multiplicative function $f: \mathbb{N} \rightarrow \mathbb{C}$ such that $f(p+q)=f(p)+f(q)$ for all primes p, q and that $f\left(p_{0}\right) \neq 0$ for some prime p_{0} is the identity function $f(n)=n$. (By \mathbb{N} we denote the set of positive integers. A function defined on \mathbb{N} is called multiplicative if $f(m n)=f(m) f(n)$ for all coprime $m, n \in \mathbb{N}$, and is called completely multiplicative if $f(m n)=f(m) f(n)$ for all $m, n \in \mathbb{N}$.) Very recently Fang [5] extended the same conclusion to the equation $f(p+q+r)=f(p)+f(q)+f(r)$, and Dubickas and Šarka [4] settled the general case $f\left(p_{1}+p_{2}+\cdots+p_{k}\right)=$ $f\left(p_{1}\right)+f\left(p_{2}\right)+\cdots+f\left(p_{k}\right)$, where $k \geqslant 2$ is fixed. Phong [12] considered a
similar equation $f(p+q+p q)=f(p)+f(q)+f(p q)$ (p and q are primes), and proved that the only completely multiplicative function f that satisfies this equation such that $f\left(p_{0}\right) \neq 0$ for some prime p_{0} is the identity function. De Koninck, Kátai and Phong [9] proved that the only multiplicative function f that satisfies $f(1)=1$ and $f\left(p+m^{2}\right)=f(p)+f\left(m^{2}\right)(p$ is prime, $m \in \mathbb{N})$ is the identity function. Chung [2] described all multiplicative and completely multiplicative functions f such that $f\left(m^{2}+n^{2}\right)=f\left(m^{2}\right)+f\left(n^{2}\right)(m, n \in \mathbb{N})$. Some other related problems are treated in [1, 3, 7, 13].

We hereby consider a functional equation similar to those mentioned above, namely a modification of the functional equation treated by Chung. We prove the following theorem.

Theorem 1.1. Let $f: \mathbb{N} \rightarrow \mathbb{C}$ satisfy

$$
\begin{equation*}
f\left(m^{2}+n^{2}\right)=f(m)^{2}+f(n)^{2} \tag{1.1}
\end{equation*}
$$

for all $m, n \in \mathbb{N}$. Then one of the following holds:

1) $f \equiv 0$;
2) - $f(n)= \pm n$ for each n such that either there exists a prime factor of n congruent to 3 modulo 4 that occurs in n to an odd exponent, or n is a perfect square that is not divisible by any prime congruent to 1 modulo 4;

- $f(n)=n$ for all other n
(in the former case, the sign for each such n can be chosen independently of the others);

3) - $f(n)= \pm \frac{1}{2}$ for each n such that either there exists a prime factor of n congruent to 3 modulo 4 that occurs in n to an odd exponent, or n is a perfect square that is not divisible by any prime congruent to 1 modulo 4;

- $f(n)=\frac{1}{2}$ for all other n
(in the former case, the sign for each such n can be chosen independently of the others).

Note that there is no assumption on multiplicative properties of f. The proof, which is somewhat technical but elementary, is distributed through the following sections.

2 Evaluating $f(1)$

For the rest of the paper, let f denote an arithmetic function that satisfies the functional equation (1.1).

Lemma 2.1. $f(1) \in\left\{0,1,-1, \frac{1}{2},-\frac{1}{2}\right\}$.
Proof. Let $f(1)=a$. We get $f(2)=f\left(1^{2}+1^{2}\right)=f(1)^{2}+f(1)^{2}=2 a^{2}$. Therefore,

$$
\begin{equation*}
f(2)^{2}=4 a^{4} \tag{2.1}
\end{equation*}
$$

Using (2.1), we get $f(8)=f\left(2^{2}+2^{2}\right)=f(2)^{2}+f(2)^{2}=8 a^{4}$. Therefore,

$$
\begin{equation*}
f(8)^{2}=64 a^{8} \tag{2.2}
\end{equation*}
$$

Using (2.1), we get $f(5)=f\left(2^{2}+1^{2}\right)=f(2)^{2}+f(1)^{2}=4 a^{4}+a^{2}$. Therefore,

$$
\begin{equation*}
f(5)^{2}=16 a^{8}+8 a^{6}+a^{4} \tag{2.3}
\end{equation*}
$$

Since $f(5)^{2}+f(5)^{2}=f\left(5^{2}+5^{2}\right)=f(50)=f\left(7^{2}+1^{2}\right)=f(7)^{2}+f(1)^{2}$, by (2.3) we deduce

$$
\begin{equation*}
f(7)^{2}=2\left(16 a^{8}+8 a^{6}+a^{4}\right)-a^{2}=32 a^{8}+16 a^{6}+2 a^{4}-a^{2} . \tag{2.4}
\end{equation*}
$$

Since $f(8)^{2}+f(1)^{2}=f\left(8^{2}+1^{2}\right)=f(65)=f\left(7^{2}+4^{2}\right)=f(7)^{2}+f(4)^{2}$, by (2.2) and (2.4) we deduce

$$
\begin{equation*}
f(4)^{2}=64 a^{8}+a^{2}-\left(32 a^{8}+16 a^{6}+2 a^{4}-a^{2}\right)=32 a^{8}-16 a^{6}-2 a^{4}+2 a^{2} \tag{2.5}
\end{equation*}
$$

Using (2.5), we get $f(32)=f\left(4^{2}+4^{2}\right)=f(4)^{2}+f(4)^{2}=64 a^{8}-32 a^{6}-4 a^{4}+$ $4 a^{2}$. Therefore,

$$
\begin{equation*}
f(32)^{2}=4096 a^{16}-4096 a^{14}+512 a^{12}+768 a^{10}-240 a^{8}-32 a^{6}+16 a^{4} \tag{2.6}
\end{equation*}
$$

Using (2.5), we get $f(17)=f\left(4^{2}+1^{2}\right)=f(4)^{2}+f(1)^{2}=32 a^{8}-16 a^{6}-2 a^{4}+$ $3 a^{2}$. Therefore,

$$
\begin{equation*}
f(17)^{2}=1024 a^{16}-1024 a^{14}+128 a^{12}+256 a^{10}-92 a^{8}-12 a^{6}+9 a^{4} . \tag{2.7}
\end{equation*}
$$

Since $f(32)^{2}+f(7)^{2}=f\left(32^{2}+7^{2}\right)=f(1073)=f\left(28^{2}+17^{2}\right)=f(28)^{2}+f(17)^{2}$, by (2.6), (2.4) and (2.7) we deduce

$$
\begin{align*}
f(28)^{2}= & 4096 a^{16}-4096 a^{14}+512 a^{12}+768 a^{10}-240 a^{8}-32 a^{6}+16 a^{4} \\
& +32 a^{8}+16 a^{6}+2 a^{4}-a^{2} \\
& -\left(1024 a^{16}-1024 a^{14}+128 a^{12}+256 a^{10}-92 a^{8}-12 a^{6}+9 a^{4}\right) \\
= & 3072 a^{16}-3072 a^{14}+384 a^{12}+512 a^{10}-116 a^{8}-4 a^{6}+9 a^{4}-a^{2} . \tag{2.8}
\end{align*}
$$

Since $f(17)^{2}+f(4)^{2}=f\left(17^{2}+4^{2}\right)=f(305)=f\left(16^{2}+7^{2}\right)=f(16)^{2}+f(7)^{2}$, by (2.7), (2.5) and (2.4) we deduce

$$
\begin{align*}
f(16)^{2}= & 1024 a^{16}-1024 a^{14}+128 a^{12}+256 a^{10}-92 a^{8}-12 a^{6}+9 a^{4} \\
& +32 a^{8}-16 a^{6}-2 a^{4}+2 a^{2}-\left(32 a^{8}+16 a^{6}+2 a^{4}-a^{2}\right) \\
= & 1024 a^{16}-1024 a^{14}+128 a^{12}+256 a^{10}-92 a^{8}-44 a^{6}+5 a^{4}+3 a^{2} . \tag{2.9}
\end{align*}
$$

Since $f(17)^{2}+f(17)^{2}=f\left(17^{2}+17^{2}\right)=f(578)=f\left(23^{2}+7^{2}\right)=f(23)^{2}+f(7)^{2}$, by (2.7) and (2.4) we deduce

$$
\begin{align*}
f(23)^{2}= & 2\left(1024 a^{16}-1024 a^{14}+128 a^{12}+256 a^{10}-92 a^{8}-12 a^{6}+9 a^{4}\right) \\
& -\left(32 a^{8}+16 a^{6}+2 a^{4}-a^{2}\right) \\
= & 2048 a^{16}-2048 a^{14}+256 a^{12}+512 a^{10}-216 a^{8}-40 a^{6}+16 a^{4}+a^{2} . \tag{2.10}
\end{align*}
$$

Since $f(23)^{2}+f(16)^{2}=f\left(23^{2}+16^{2}\right)=f(785)=f\left(28^{2}+1^{2}\right)=f(28)^{2}+f(1)^{2}$, by (2.10), (2.9) and (2.8) we deduce

$$
\begin{aligned}
f(1)^{2}= & 2048 a^{16}-2048 a^{14}+256 a^{12}+512 a^{10}-216 a^{8}-40 a^{6}+16 a^{4}+a^{2} \\
& +1024 a^{16}-1024 a^{14}+128 a^{12}+256 a^{10}-92 a^{8}-44 a^{6}+5 a^{4}+3 a^{2} \\
& -\left(3072 a^{16}-3072 a^{14}+384 a^{12}+512 a^{10}-116 a^{8}-4 a^{6}+9 a^{4}-a^{2}\right) \\
= & 256 a^{10}-192 a^{8}-80 a^{6}+12 a^{4}+5 a^{2} .
\end{aligned}
$$

On the other hand, since $f(1)^{2}=a^{2}$, the difference of the right-hand sides of these two expressions must equal 0 , that is,

$$
256 a^{10}-192 a^{8}-80 a^{6}+12 a^{4}+4 a^{2}=0 .
$$

The polynomial on the left-hand side can be factored as

$$
4 a^{2}(a-1)(a+1)(2 a-1)(2 a+1)\left(4 a^{2}+1\right)^{2}=0
$$

Therefore, we see that its zeros are $a_{1}=a_{2}=0, a_{3}=1, a_{4}=-1, a_{5}=\frac{1}{2}$, $a_{6}=-\frac{1}{2}, a_{7}=a_{8}=\frac{i}{2}, a_{9}=a_{10}=-\frac{i}{2}$. Thus, in order to finish the proof we need to show that $f(1)= \pm \frac{i}{2}$ is impossible, that is, that $a^{2}=-\frac{1}{4}$ is impossible.

Using (2.3) and (2.5), we get $f(41)=f\left(5^{2}+4^{2}\right)=f(5)^{2}+f(4)^{2}=$ $48 a^{8}-8 a^{6}-a^{4}+2 a^{2}$. Therefore,

$$
\begin{equation*}
f(41)^{2}=2304 a^{16}-768 a^{14}-32 a^{12}+208 a^{10}-31 a^{8}-4 a^{6}+4 a^{4} . \tag{2.11}
\end{equation*}
$$

On the other hand, using (2.3) and (2.1), we get $f(29)=f\left(5^{2}+2^{2}\right)=$ $f(5)^{2}+f(2)^{2}=16 a^{8}+8 a^{6}+5 a^{4}$ and therefore

$$
\begin{equation*}
f(29)^{2}=256 a^{16}+256 a^{14}+224 a^{12}+80 a^{10}+25 a^{8} \tag{2.12}
\end{equation*}
$$

which, since $f(29)^{2}+f(29)^{2}=f\left(29^{2}+29^{2}\right)=f(1682)=f\left(41^{2}+1^{2}\right)=$ $f(41)^{2}+f(1)^{2}$, leads to

$$
\begin{align*}
f(41)^{2} & =2\left(256 a^{16}+256 a^{14}+224 a^{12}+80 a^{10}+25 a^{8}\right)-a^{2} \tag{2.13}\\
& =512 a^{16}+512 a^{14}+448 a^{12}+160 a^{10}+50 a^{8}-a^{2} .
\end{align*}
$$

Therefore, the difference of the right-hand sides of (2.11) and (2.13) must equal 0 , that is,

$$
1792 a^{16}-1280 a^{14}-480 a^{12}+48 a^{10}-81 a^{8}-4 a^{6}+4 a^{4}+a^{2}=0 .
$$

We calculate that for $a^{2}=-\frac{1}{4}$ the expression on the left equals $-\frac{5}{16}$. This shows that $f(1)= \pm \frac{i}{2}$ is indeed impossible, and the proof is thus completed.

3 Evaluating $f(2), f(3), \ldots, f(10)$ up to a sign

The equations obtained in the proof Lemma 2.1 will still be useful, and we need some more.

Using (2.5) and (2.1), we get $f(20)=f\left(4^{2}+2^{2}\right)=f(4)^{2}+f(2)^{2}=$ $32 a^{8}-16 a^{6}+2 a^{4}+2 a^{2}$. Therefore,

$$
\begin{equation*}
f(20)^{2}=1024 a^{16}-1024 a^{14}+384 a^{12}+64 a^{10}-60 a^{8}+8 a^{6}+4 a^{4} . \tag{3.1}
\end{equation*}
$$

Since $f(17)^{2}+f(20)^{2}=f\left(17^{2}+20^{2}\right)=f(689)=f\left(25^{2}+8^{2}\right)=f(25)^{2}+f(8)^{2}$, by (2.7), (3.1) and (2.2) we deduce

$$
\begin{aligned}
f(25)^{2}= & 1024 a^{16}-1024 a^{14}+128 a^{12}+256 a^{10}-92 a^{8}-12 a^{6}+9 a^{4} \\
& +1024 a^{16}-1024 a^{14}+384 a^{12}+64 a^{10}-60 a^{8}+8 a^{6}+4 a^{4} \\
& -64 a^{8} \\
= & 2048 a^{16}-2048 a^{14}+512 a^{12}+320 a^{10}-216 a^{8}-4 a^{6}+13 a^{4} .
\end{aligned}
$$

Since $f(25)^{2}+f(2)^{2}=f\left(25^{2}+2^{2}\right)=f(629)=f\left(23^{2}+10^{2}\right)=f(23)^{2}+f(10)^{2}$, by the previous equation and (2.1) and (2.10) we deduce

$$
\begin{aligned}
f(10)^{2}= & 2048 a^{16}-2048 a^{14}+512 a^{12}+320 a^{10}-216 a^{8}-4 a^{6}+13 a^{4} \\
& +4 a^{4} \\
& -\left(2048 a^{16}-2048 a^{14}+256 a^{12}+512 a^{10}-216 a^{8}\right. \\
& \left.-40 a^{6}+16 a^{4}+a^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
=256 a^{12}-192 a^{10}+36 a^{6}+a^{4}-a^{2} . \tag{3.2}
\end{equation*}
$$

This makes enough prerequisites for this section.
Lemma 3.1. Let $f(1)=0$. Then $f(n)=0$ for all n such that $1 \leqslant n \leqslant 10$.
Proof. Putting $a=0$ in the equations (2.1), (2.5), (2.3), (2.4), (2.2) and (3.2) gives $f(n)=0$ for all n such that $1 \leqslant n \leqslant 10$ apart from $n=3,6,9$.

We further have $f(26)=f\left(5^{2}+1^{2}\right)=f(5)^{2}+f(1)^{2}=0$. Putting $a=0$ in the equation (2.12) gives $f(29)=0$. Since $f(29)^{2}+f(2)^{2}=f\left(29^{2}+2^{2}\right)=$ $f(845)=f\left(26^{2}+13^{2}\right)=f(26)^{2}+f(13)^{2}$, we deduce $f(13)^{2}=f(29)^{2}+f(2)^{2}-$ $f(26)^{2}=0$, that is, $f(13)=0$. Since $f(13)=f\left(3^{2}+2^{2}\right)=f(3)^{2}+f(2)^{2}$, we deduce $f(3)^{2}=f(13)-f(2)^{2}=0$, that is, $f(3)=0$.

Since $f(10)^{2}+f(10)^{2}=f\left(10^{2}+10^{2}\right)=f(200)=f\left(14^{2}+2^{2}\right)=f(14)^{2}+$ $f(2)^{2}$, we deduce $f(14)^{2}=2 f(10)^{2}-f(2)^{2}=0$. Since $f(14)^{2}+f(3)^{2}=$
$f\left(14^{2}+3^{2}\right)=f(205)=f\left(13^{2}+6^{2}\right)=f(13)^{2}+f(6)^{2}$, we deduce $f(6)^{2}=$ $f(14)^{2}+f(3)^{2}-f(13)^{2}=0$ (recall that $f(13)=0$ is obtained in the previous paragraph , that is, $f(6)=0$.

Finally, since $f(6)^{2}+f(7)^{2}=f\left(6^{2}+7^{2}\right)=f(85)=f\left(9^{2}+2^{2}\right)=f(9)^{2}+$ $f(2)^{2}$, we deduce $f(9)^{2}=f(6)^{2}+f(7)^{2}-f(2)^{2}=0$, that is, $f(9)=0$, which completes the proof.

Lemma 3.2. Let $f(1)= \pm 1$. Then $f(n)= \pm n$ for all n such that $1 \leqslant n \leqslant$ 10.

Proof. Putting $a^{2}=1$ in the equations (2.1), (2.5), (2.3), (2.4), (2.2) and (3.2) gives $f(n)^{2}=n^{2}$, that is, $f(n)= \pm n$, for all n such that $1 \leqslant n \leqslant 10$ apart from $n=3,6,9$.

Let $f(3)=b$. We have $f(13)=f\left(3^{2}+2^{2}\right)=f(3)^{2}+f(2)^{2}=b^{2}+4$ and $f(25)=f\left(4^{2}+3^{2}\right)=f(4)^{2}+f(3)^{2}=b^{2}+16$; therefore, $f(13)^{2}=b^{4}+8 b^{2}+16$ and $f(25)^{2}=b^{4}+32 b^{2}+256$. Putting $a^{2}=1$ in the equation (2.13) gives $f(41)^{2}=1681$. Since $f(41)^{2}+f(13)^{2}=f\left(41^{2}+13^{2}\right)=f(1850)=f\left(35^{2}+\right.$ $\left.25^{2}\right)=f(35)^{2}+f(25)^{2}$, we deduce

$$
f(35)^{2}=1681+b^{4}+8 b^{2}+16-\left(b^{4}+32 b^{2}+256\right)=1441-24 b^{2}
$$

On the other hand, putting $a^{2}=1$ in the equations (2.12) and (3.1) gives $f(29)^{2}=841$ and $f(20)^{2}=400$, and since $f(29)^{2}+f(20)^{2}=f\left(29^{2}+20^{2}\right)=$ $f(1241)=f\left(35^{2}+4^{2}\right)=f(35)^{2}+f(4)^{2}$, we deduce

$$
f(35)^{2}=841+400-16=1225
$$

Therefore, the difference of the right-hand sides of the last two equations must equal 0 , that is,

$$
216-24 b^{2}=0
$$

We thus find $b^{2}=9$, that is, $f(3)= \pm 3$.
Since $f(10)^{2}+f(10)^{2}=f\left(10^{2}+10^{2}\right)=f(200)=f\left(14^{2}+2^{2}\right)=f(14)^{2}+$ $f(2)^{2}$, we deduce $f(14)^{2}=2 \cdot 100-4=196$. Putting $b^{2}=9$ in the expression for $f(13)^{2}$ obtained in the previous paragraph gives $f(13)^{2}=169$. Since $f(14)^{2}+f(3)^{2}=f\left(14^{2}+3^{2}\right)=f(205)=f\left(13^{2}+6^{2}\right)=f(13)^{2}+f(6)^{2}$, we deduce $f(6)^{2}=196+9-169=36$, that is, $f(6)= \pm 6$.

Finally, since $f(6)^{2}+f(7)^{2}=f\left(6^{2}+7^{2}\right)=f(85)=f\left(9^{2}+2^{2}\right)=f(9)^{2}+$ $f(2)^{2}$, we deduce $f(9)^{2}=36+49-4=81$, that is, $f(9)= \pm 9$, which completes the proof.

Lemma 3.3. Let $f(1)= \pm \frac{1}{2}$. Then $f(n)= \pm \frac{1}{2}$ for all n such that $1 \leqslant n \leqslant$ 10.

Proof. Putting $a^{2}=\frac{1}{4}$ in the equations (2.1), (2.5), (2.3), (2.4), (2.2) and (3.2) gives $f(n)^{2}=\frac{1}{4}$, that is, $f(n)= \pm \frac{1}{2}$, for all n such that $1 \leqslant n \leqslant 10$ apart from $n=3,6,9$.

Let $f(3)=b$. We have $f(18)=f\left(3^{2}+3^{2}\right)=f(3)^{2}+f(3)^{2}=2 b^{2}$ and $f(34)=f\left(5^{2}+3^{2}\right)=f(5)^{2}+f(3)^{2}=b^{2}+\frac{1}{4}$; therefore, $f(18)^{2}=4 b^{4}$ and $f(34)^{2}=b^{4}+\frac{b^{2}}{2}+\frac{1}{16}$. Putting $a^{2}=\frac{1}{4}$ in the equation (2.12) gives $f(29)^{2}=\frac{1}{4}$. Since $f(29)^{2}+f(18)^{2}=f\left(29^{2}+18^{2}\right)=f(1165)=f\left(34^{2}+3^{2}\right)=f(34)^{2}+f(3)^{2}$, we deduce

$$
f(3)^{2}=\frac{1}{4}+4 b^{4}-\left(b^{4}+\frac{b^{2}}{2}+\frac{1}{16}\right)=3 b^{4}-\frac{b^{2}}{2}+\frac{3}{16} .
$$

On the other hand, since $f(3)^{2}=b^{2}$, the difference of the right-hand sides of these two expressions must equal 0 , that is,

$$
3 b^{4}-\frac{3 b^{2}}{2}+\frac{3}{16}=0
$$

The polynomial on the left-hand side can be factored as

$$
\frac{3}{16}(2 b-1)^{2}(2 b+1)^{2}=0 .
$$

Therefore, we see that its zeros are $b_{1}=b_{2}=\frac{1}{2}, b_{3}=b_{4}=-\frac{1}{2}$. Thus, $f(3)= \pm \frac{1}{2}$.

We have $f(13)=f\left(3^{2}+2^{2}\right)=f(3)^{2}+f(2)^{2}=b^{2}+\frac{1}{4}$; therefore, $f(13)^{2}=$ $b^{4}+\frac{b^{2}}{2}+\frac{1}{16}$. Since $f(10)^{2}+f(10)^{2}=f\left(10^{2}+10^{2}\right)=f(200)=f\left(14^{2}+2^{2}\right)=$ $f(14)^{2}+f(2)^{2}$, we deduce $f(14)^{2}=2 \cdot \frac{1}{4}-\frac{1}{4}=\frac{1}{4}$. Since $f(14)^{2}+f(3)^{2}=$ $f\left(14^{2}+3^{2}\right)=f(205)=f\left(13^{2}+6^{2}\right)=f(13)^{2}+f(6)^{2}$, we deduce $f(6)^{2}=$ $\frac{1}{4}+\frac{1}{4}-\frac{1}{4}=\frac{1}{4}$, that is, $f(6)= \pm \frac{1}{2}$.

Finally, since $f(6)^{2}+f(7)^{2}=f\left(6^{2}+7^{2}\right)=f(85)=f\left(9^{2}+2^{2}\right)=f(9)^{2}+$ $f(2)^{2}$, we deduce $f(9)^{2}=\frac{1}{4}+\frac{1}{4}-\frac{1}{4}=\frac{1}{4}$, that is, $f(9)= \pm \frac{1}{2}$, which completes the proof.

4 Completing the proof

We are now ready for the final steps.

Proof of Theorem 1.1. Recall the identity

$$
(a b+c d)^{2}+(a d-b c)^{2}=(a b-c d)^{2}+(a d+b c)^{2} .
$$

Applying f to the both sides of this equation and using (1.1) leads to

$$
\begin{equation*}
f(a b+c d)^{2}+f(a d-b c)^{2}=f(a b-c d)^{2}+f(a d+b c)^{2} \tag{4.1}
\end{equation*}
$$

whenever all four arguments are positive.
We shall now prove, by induction on n, that if f satisfies one of the statement from Lemmas 3.1, 3.2 or 3.3 up to $n=10$, it then satisfies that statement on the whole domain. Let $n>10$ be an odd number, say $n=$ $2 k+1$. Putting $a=k, b=2, c=1$ and $d=1$ in (4.1) gives

$$
f(n)^{2}=f(2 k-1)^{2}+f(k+2)^{2}-f(k-2)^{2} .
$$

Since all the arguments on the right-hand side are positive and smaller than n, by the inductive assumption we have $f(2 k-1)^{2}=f(k+2)^{2}=f(k-2)^{2}=0$, respectively $f(2 k-1)^{2}=(2 k-1)^{2}, f(k+2)^{2}=(k+2)^{2}$ and $f(k-2)^{2}=(k-2)^{2}$, respectively $f(2 k-1)^{2}=f(k+2)^{2}=f(k-2)^{2}=\frac{1}{4}$. In the first and the third case we immediately get $f(n)^{2}=0$, respectively $f(n)^{2}=\frac{1}{4}$, and in the second case we calculate

$$
f(n)^{2}=4 k^{2}-4 k+1+k^{2}+4 k+4-\left(k^{2}-4 k+4\right)=4 k^{2}+4 k+1=n^{2}
$$

as needed. Let now $n>10$ be an even number, say $n=2 k(k \geqslant 6)$. Putting $a=k-1, b=2, c=2$ and $d=1$ in (4.1) gives

$$
f(n)^{2}=f(2 k-4)^{2}+f(k+3)^{2}-f(k-5)^{2} .
$$

Since all the arguments on the right-hand side are positive (because $k \geqslant 6$) and smaller than n, we similarly as in the previous case get $f(n)^{2}=0$, respectively $f(n)^{2}=\frac{1}{4}$, respectively

$$
f(n)^{2}=4 k^{2}-16 k+16+k^{2}+6 k+9-\left(k^{2}-10 k+25\right)=4 k^{2}=n^{2}
$$

as needed.
Therefore, we have that for all n either $f(n)=0, f(n)= \pm n$ or $f(n)=$ $\pm \frac{1}{2}$. In order to finish the proof we need to check for which n the sign is actually fixed (for the latter two families of functions). We shall show that the sign is fixed (in particular, positive) if and only if n is a sum of two
positive squares. Since it is known that n cannot be represented as a sum of two positive squares if and only if either there exists a prime factor of n congruent to 3 modulo 4 that occurs in n to an odd exponent, or n is a perfect square that is not divisible by any prime congruent to 1 modulo 4 (see, e.g., [11, Problem 5 in Section 3.6 and Theorem 3.22] or [8, Theorem 2.11]), this is enough to complete the proof. (Note that some different claims can be found in the literature, such as in [6] that n is a sum of two positive squares if and only if n is of the form $4^{a} n_{1} n_{2}^{2}$ where $a \geqslant 0, n_{1}$ is a product of primes congruent to 1 modulo 4 and $n_{1}>1, n_{2}$ is a product of primes congruent to 3 modulo 4 , and a similar claim in [10] but with $2^{e}, e \geqslant 0$, instead of 4^{a}. However, both these claims miss the case, e.g., $n=18$, which is a sum of two positive squares, $9+9$, but does not have the described form.)

Let n be a sum of two positive squares, say $n=s^{2}+t^{2}(s, t \neq 0)$. Then $f(n)=f\left(s^{2}+t^{2}\right)=f(s)^{2}+f(t)^{2}$, and since the right-hand side is positive (it equals either $s^{2}+t^{2}$ or $\frac{1}{4}$), it follows that the positive sign has to be chosen for $f(n)$ whenever n is a sum of two positive squares. For the other direction, let $f(n)= \pm n$ with a freely chosen sign for each n that is not a sum of two positive squares, and $f(n)=n$ for all other n. (The case with $\pm \frac{1}{2}$ as the image is analogous.) Then for each $m, n \in \mathbb{N}$ we have $f\left(m^{2}+n^{2}\right)=m^{2}+n^{2}$ and $f(m)^{2}+f(n)^{2}=(\pm m)^{2}+(\pm n)^{2}=m^{2}+n^{2}$, which completes the proof.

Acknowledgments

The research was supported by the Ministry of Science and Technological Development of Serbia (project 174006).

References

[1] K.-K. Chen \& Y.-G. Chen, On $f(p)+f(q)=f(p+q)$ for all odd primes p and q, Publ. Math. Debrecen 76 (2010), 425-430.
[2] P. V. Chung, Multiplicative functions satisfying the equation $f\left(m^{2}+\right.$ $\left.n^{2}\right)=f\left(m^{2}\right)+f\left(n^{2}\right)$, Math. Slovaca 46 (1996), 165-171.
[3] P. V. Chung \& B. M. Phong, Additive uniqueness sets for multiplicative functions, Publ. Math. Debrecen 55 (1999), 237-243.
[4] A. Dubickas \& P. Šarka, On multiplicative functions which are additive on sums of primes, Aequat. Math., doi: 10.1007/s00010-012-0156-8.
[5] J.-H. Fang, A characterization of the identity function with equation $f(p+q+r)=f(p)+f(q)+f(r)$, Combinatorica 31 (2011), 697-701.
[6] E. Grosswald \& A. Calloway \& J. Calloway, The representation of integers by three positive squares, Proc. Amer. Math. Soc. 10 (1959), 451-455.
[7] K.-H. Indlekofer \& B. M. Phong, Additive uniqueness sets for multiplicative functions, Ann. Univ. Sci. Budapest. Sect. Comput. 26 (2006), 65-77.
[8] R. Ismail, Representation of Integers as Sum of Squares, MSc thesis, Emporia State University, 1989.
[9] J.-M. de Koninck \& I. Kátai \& B. M. Phong, A new characteristic of the identity function, J. Number Theory 63 (1997), 325-338.
[10] C. J. Moreno \& S. S. Wagstaff, Jr., Sums of Squares of Integers, Chapman \& Hall/CRC, 2005.
[11] I. Niven \& H. S. Zuckerman \& H. L. Montgomery, An Introduction to the Theory of Numbers (5th ed.), John Wiley \& Sons, Inc., 1991.
[12] B. M. Phong, A characterization of the identity function with an equation of Hosszú type, Publ. Math. Debrecen 69 (2006), 219-226.
[13] B. M. Phong, On sets characterizing the identity function, Ann. Univ. Sci. Budapest. Sect. Comput. 24 (2004), 295-306.
[14] C. A. Spiro, Additive uniqueness sets for arithmetic functions, J. Number Theory 42 (1992), 232-246.

