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Abstract

In this paper we show that, for all integers k > 3 and n > 1, there
exists a protoset consisting of k prototiles, whose Heesch number is n.
This disproves a conjecture by Grünbaum and Shephard.
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1 Introduction

A tiling of the Euclidean plane E2 is a set T such that each T ∈ T is a
closed topological disc, every two different T ′, T ′′ ∈ T have disjoint interiors,
and

⋃
T = E2. The elements of T are called tiles.

Given a tiling T , its tiles can be partitioned into equivalence classes
where two tiles are in the same class if and only if they are congruent (by
any isometry). The set P obtained by choosing one representative from each
such class is called the protoset of the tiling T , while the elements of P are
called prototiles. If P is the protoset of some tiling T , we say that P admits
the tiling T . More generally, we shall call any set of pairwise noncongruent
closed topological discs a protoset (even if it is not the protoset of some
tiling), call its elements prototiles, and then it can be asked whether a given
protoset admits any tiling.

For a long time, tilings were mainly studied within the scope of recre-
ational mathematics, but by the 1980s it became clear not only that there
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are many unexpected connections between tilings and different branches of
mathematics [14, 12, 2], but that the theory of tilings also has many real-
world applications [11, 1, 7]. The book by Grünbaum and Shephard [5] is a
very comprehensive treatment of the theoretical foundations of tilings, and
it is a very valuable source of information even still today.

In this paper we investigate the so-called Heesch number. The Heesch
number of a protoset measures, loosely speaking, how “close” to a tiling we
can get with the given protoset (the larger Heesch number is, we can get
“closer” to a tiling). The Heesch number of a protoset is either infinite (if
the protoset admits some tiling) or a nonnegative integer. Grünbaum and
Shephard conjectured that, among all protosets that contain a fixed number
of prototiles and whose Heesch number is finite, there is an upper bound for
the Heesch number (in other words, it takes only finitely many values). Most
of the progress on this conjecture deals with protosets that consist of a single
prototile, in which case some interesting prototiles were found, having larger
and larger Heesch number (the current record-holder is a prototile whose
Heesch number is 5).

In this paper we disprove the conjecture of Grünbaum and Shephard. In
particular, we show that, for any given integer k > 3, the Heesch number of
a protoset consisting of k prototiles can be arbitrarily large.

2 Heesch number

In this section we formally define the Heesch number and briefly review its
history.

Definition 2.1. Let P be a protoset. We say that a tile T in the plane,
congruent to a prototile from P, can be surrounded n times if and only if
there exist finite collections of tiles C1, C2, . . . ,Cn in the plane such that:

• for each i, 1 6 i 6 n, each tile from Ci is congruent to some prototile
from P;

• every two different tiles from {T} ∪
⋃n

i=1 Ci have disjoint interiors;

• for each i, 1 6 i 6 n, each tile from Ci has a common boundary point
with some tile from Ci−1 (where, by convention, we let C0 = {T});
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• for each i, 1 6 i 6 n,
⋃(⋃i

j=0 Cj

)
is a closed topological disc such

that
⋃(⋃i−1

j=0 Cj

)
is completely contained in its interior.

The collection Ci is called the ith corona.

(a) A tile (its border is
composed of seven congru-
ent circle arcs).

(b) The tile surrounded by
the first corona.

???

(c) The second corona can-
not be formed.

Figure 1: Surrounding a tile.

See Figure 1 for an example. Part (b) shows a tile that is surrounded once
(the gray tile is the tile T from the preceding definition, and the other tiles
form the first corona). Part (c) shows that, at least after such a first corona,
the second one cannot be formed: indeed, if we start forming the second
corona, the tile with a checkerboard pattern must be placed as shown, and
then it is obvious that we cannot continue because the space marked by “???”
cannot be filled.

Definition 2.2. The Heesch number of a given protoset P is the maximal
nonnegative integer n such that each prototile from P can be surrounded n
times. If such a maximum does not exist, then we define the Heesch number
as being infinite.

For a prototile T , by the Heesch number of T we mean the Heesch number
of a protoset consisting of only one tile congruent to T .

The Extension Theorem [5, Theorem 3.8.1] states that, if for some proto-
set P the maximum from the preceding definition does not exist, then the
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plane can be tiled by tiles congruent to prototiles from P. (This is, however,
not really trivial as it might seem at the first glance.)

Heesch [6] asked for which positive integers n there exists a prototile
T such that T can be surrounded n times by congruent copies of itself, but
cannot be surrounded n+1 times (in other words: which positive integers can
be the Heesch number of some prototile). The first prototile whose Heesch
number is finite and positive had been discovered by Lietzmann [8], forty
years before Heesch asked his question. This is the prototile shown at Figure
1; its Heesch number is 1 (that is, it can be proved that the second corona
cannot be formed not only after the first corona from Figure 1, but after any
first corona). Heesch himself provided another example of a prototile whose
Heesch number is 1, which has the shape of a convex pentagon. The first
example of a prototile whose Heesch number is finite and greater than 1 was
discovered only in 1991 [3] (in particular, a family of tiles was constructed,
each having the Heesch number 2). The largest currently known finite Heesch
number is 5 [9], achieved for the prototile shown at Figure 2, where n is any
positive integer greater than 3.}

n (modified) hexagons

Figure 2: The so-called n-hexapillar.

Not much is known for protosets consisting of more than one prototile.
In [5, Section 3.8], Grünbaum and Shephard conjectured that, in our ter-
minology, for any positive integer k the set of all finite Heesch numbers of
protosets consisting of k prototiles is bounded from above. Mann [10] re-
called this conjecture and expressed his belief that it might actually be false,
but apart from a few results in the case k = 1, not much progress has been
made. In this paper we disprove the conjecture by showing that, for each
k > 3, the Heesch number is unbounded.

Most of the recent works on Heesch number utilize the approach by
“bumps” and “nicks” (that is, marking the edges of some “nice” polygons by
matching bumps and nicks, thus forbidding some possible configurations of
tiles; see again Figure 2 for an example). Although this approach proved to
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be very fruitful, it seems that its potential has come close to its limits and
that some modifications are necessary in order to obtain some new results on
this topic. By marking edges of a certain polygon by bumps (and matching
nicks) of different shapes (where each bump can be matched only with a
nick of the corresponding shape), Tarasov [13] has recently managed to ele-
gantly prove that, in the hyperbolic plane, the Heesch number for protosets
consisting of one prototile is unbounded.

Here we make use of prototiles that are merely rectangles with some
bumps and nicks of asymmetric shape on their sides. This enables us to
disprove the conjecture of Grünbaum and Shephard in a surprisingly simple
way.

Note. Following the definition from the Introduction, it is possible that a
given protoset does not admit any tiling, although some of its subsets does.
In other words, in order for a protoset P to admit some tiling, there has
to exist a tiling T such that not only each tile from T is congruent to a
prototile from P, but also for each prototile from P a congruent copy of
it appears at least once among the tiles from T . This definition follows [5]
and in fact perfectly agrees with the conjecture of Grünbaum and Shephard,
since their idea is that, given a protoset, we can get “close” to a tiling if each
prototile can be surrounded many times (and hence, if a protoset P contains
one “bad” prototile B, which cannot be surrounded, then because solely of
the prototile B we shall think of P as being far from admit a tiling, even
if, say, P \ {B} admits a tiling). Some may argue that it would be more
natural to define that a protoset P admits some tiling if there exists a tiling
in which each tile is congruent to a prototile from P, without further ado.
The analogue of the conjecture of Grünbaum and Shephard that would agree
with this definition would then be based around the maximal integer n such
that at least one prototile from P can be surrounded n times but not n + 1
times, but this is completely another question (which, in fact, has also been
asked in the literature [4, Question 4.1(a)]—where the Heesch number of a
protoset is defined differently, more appropriately for that purpose), and it
seems that not much from the present paper can be applied in that case.

3 Proof of the unboundedness

We first treat the case k = 3.
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}
2 +2 unit squaresn

Figure 3: The prototiles S, D and L.

Theorem 3.1. For any integer n > 1, there exists a protoset consisting of 3
prototiles whose Heesch number is n.

Proof. Let n > 1 be given. Let P = {S,D,L}, where S, D and L are
the prototiles shown in Figure 3, from left to right (S, D and L stand for
“square”, “domino” and “long”, respectively). Let us describe these pro-
totiles. Prototile S is a unit square. Prototile D is comprised of two unit
squares, with asymmetric, matching bump and nick added as in Figure 3.
Prototile L is a (2n+2)×1 rectangle with two nicks, which are mirror images
of each other, added at the first and the last square as in Figure 3 (there are
no bumps on this prototile). Of course, the nicks on prototile L match the
bump on prototile D.

We claim that the Heesch number of P equals n. Let us first notice that
prototiles S and D tile the plane easily, and thus they can be surrounded
infinitely many times. Further, Figure 4 shows how prototile L can be sur-
rounded n times (Figure 4 shows the case n = 3, but the generalization for
any given n is obvious).

Figure 4: The prototile L surrounded n times.

Therefore, we are left to prove that at least one of the prototiles S, D or
L cannot be surrounded more than n times. We shall show this for prototile
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L (of course, since the other two prototiles can be surrounded infinitely many
times, as we have already noted).

Consider the two nicks on prototile L. Note that there is a total of 2n unit
squares between those two unit squares that have nicks on them (this will be
needed later). Since the only prototile from P that has a matching bump is
prototile D, the two nicks on L have to be “filled” by two bumps from two
copies of D. Because of the asymmetry of nicks, the position of these two
copies of D is uniquely determined. Also note that, since these two copies of
D have common boundary points with the “zeroth corona” (the original tile
L), they must belong to the first corona. Finally, note that these two copies
of D now contribute a “new” nick each, and that between the unit squares
that have these two nicks on them there is a distance of 2n− 2 unit squares
(that is, 2 unit squares less than it was at the original tile L). Everything
being said here is shown in Figure 5.

Figure 5: Placements of all these tiles are uniquely determined.

In the same way, we conclude that the two “new” nicks force the unique
placement of another two copies of D. Since they have common boundary
points with the first corona, they must belong to the second corona at most.
Also note that they contribute another two nicks to the configuration ob-
tained so far, and the distance between the unit squares that have these
nicks on them is 2n− 4 unit squares. Repeating the process, we get that at
the ith step we add two copies of D that belong to the ith corona at most,
and the distance between their nicked squares equals 2n − 2i unit squares.
This implies that, after n steps, after adding two copies of D belonging to
the nth corona at most, we have two neighboring unit squares with nicks (see
Figure 5 again). However, there is no way to “fill” these nicks simultaneously,
which implies that no more than n coronas can be formed. This completes
the proof. �

It is now easy to modify the above proof for any k > 3.
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Corollary 3.2. For any integers k > 3 and n > 1, there exists a protoset
consisting of k prototiles whose Heesch number is n.

Proof. Let k > 3 and n > 1 be given. Let Pk = {S,D,L1, L2, . . . , Lk−2},
where S and D are prototiles from the previous proof, and L1, L2, . . . , Lk−2

are k − 2 prototiles obtained by dividing the prototile L from the previous
proof (corresponding to the given n) into k−2 parts in an “irregular enough”
way (by “irregular enough” we mean that the placement of any prototile
among L1, L2, . . . , Lk−2 in the plane uniquely forces placements of the other
k − 3 prototiles in such a way that they altogether form the prototile L; see
Figure 6). In the same way as in the previous proof, we show that the Heesch
number of Pk equals n. �

Figure 6: Dividing the prototile L in an “irregular enough” way.
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Zametki 88 (2010), 97–104 (Russian); English translation in Math.
Notes 88 (2010), 97–102.

[14] W. P. Thurston, Groups, tilings and finite state automata, Summer 1989
AMS Colloquium Lectures, Res. Rep., Geometry Computing Group,
Minneapolis, MN, 1989.

9


