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Abstract

A word over an n-ary alphabet is called minimal-palindromic if it
does not contain palindromic subwords whose length is greater than⌈ |w|

n

⌉
(note that each n-ary word must contain a palindromic sub-

word of at least that length: for example, a subword consisting of a
prevalent letter, which explains the term “minimal-palindromic”). The

MP-ratio of a given word w is defined as the quotient |rws|
|w| , where r

and s are (possibly empty) words such that the word rws is minimal-
palindromic and that the length |r|+ |s| is minimal possible. We show
that the MP-ratio is well-defined in the ternary case (that is, that such
words r and s always exist), as well as that it is bounded from above
by the constant 6 and that 6 is the best possible upper bound.
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1 Introduction

In recent times, various questions that deal with structural properties of
finite and infinite words and that are based on the notion of palindromes are
a very active research field. We mention a few examples. Frid, Puzynina and
Zamboni [14] defined the notion of a palindromic length of a finite word as
the least number of palindromes whose concatenation is the given word; see
[21, 8, 13] for some results on this topic, and see also [2, 1, 4, 9], where some
variants of this concept have been introduced and studied. Another research
direction is based on the result of Droubay, Justin and Pirillo [12], who
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proved that a word of length n can have at most n+ 1 different palindromic
factors. The difference between this upper bound and the number of different
palindromic factors of a given word w is called the palindromic defect of w;
this proved to be a very fruitful research topic [15, 19, 6, 17, 22, 20, 23], where
special attention has been paid to words whose palindromic defect is zero,
called rich (the intuition being that such words are “rich” in palindromes).

Holub and Saari [18] introduced yet another way to measure how “rich”
in palindromes a given word is, the so-called MP-ratio. MP-ratio is a rational
number greater than or equal to 1 (a precise definition will be given in our Sec-
tion 3) such that, the greater MP-ratio is, the given word is “richer” in palin-
dromes (the authors of [18] say that such words are “highly palindromic”);
those words whose MP-ratio equals 1 are called minimal-palindromic. It turns
out that some properties of MP-ratio are not so easy to grasp, since, as shown
in [5], it can behave in a quite unpredictable way. The concept of MP-ratio
is based on palindromic subwords (and not factors) of a given word, which
have been noticeably less considered in the literature. They, however, have
some interesting properties. As shown in [18], a binary word can be recon-
structed, up to reversal, from the set of its palindromic subwords. Also in
[18], a property of a word being abelian bordered is defined, and it is shown
that each binary minimal-palindromic word is abelian unbordered (which is
a strong form of unborderedness); abelian (un)borderedness of words has at-
tracted a growing attention in recent times [11, 16, 10, 3, 7]. However, the
main drawback of the notion of MP-ratio is the fact that it is defined only
for binary alphabet. Though there is a natural analogous way to extend the
definition of MP-ratio to a larger alphabet, it is not clear whether in that
case the notion is well-defined at all. For that reason, the authors of [18] left
the question of well-definedness of MP-ratio for larger alphabets as an open
problem.

In this article we solve that question for ternary alphabet. We show that
the MP-ratio is well-defined in the ternary case, that it is bounded from
above by the constant 6, and that this bound is the best possible (in the
binary case, the best possible upper bound is 4).

2 Preliminaries

In this section we recall basic definitions and properties that will be needed
through the article.
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A word is a finite sequence of symbols taken from a nonempty finite set
Σ, which is called the alphabet, and its elements are called letters. In the case
|Σ| = 2 we speak about binary words, in the case |Σ| = 3 we speak about
ternary words and, generally, in the case |Σ| = n we speak about n-ary words.
If w = a1a2...an with a1, a2, . . . , an ∈ Σ, we say that the length of w is n, and
write |w| = n. The unique word of length 0, called the empty word, is denoted
by ε. The concatenation (or product) of words u and v, u = a1a2 . . . an and
v = b1b2 . . . bm, is the word a1a2 . . . anb1b2 . . . bm, denoted by uv. For a word
w and a positive integer k we write wk for the word ww . . . w︸ ︷︷ ︸

k

. If A ⊆ Σ, we

write A∗ for the set {a1a2 . . . ak : k > 0 and ai ∈ A for each i}, and we write
A+ = A∗\{ε}. If the set A has only one element, say A = {a}, we write a∗

and a+ instead of {a}∗ and {a}+. If A and B are two sets of words, we write
AB = {uv : u ∈ A, v ∈ B}. Since concatenation of words is an associative
operation, the product of more than two sets of words is also well-defined.

A word u ∈ Σ∗ is called a factor (respectively prefix, suffix ) of a word
w ∈ Σ∗ if there exist words x, y ∈ Σ∗ such that w = xuy (respectively
w = uy, w = xu). A word u ∈ Σ∗ is a subword of w ∈ Σ∗ if there exist words
x1, x2, . . . , xn, xn+1 ∈ Σ∗ and y1, y2, . . . , yn ∈ Σ∗ such that u = y1y2 . . . yn and
w = x1y1x2y2 . . . xnynxn+1 (or, equivalently, u is a subword of w if u is its
subsequence). The set of all factors (respectively prefixes, suffixes, subwords)
of a word w is denoted by Fact(w) (respectively Pref(w), Suff(w), Subw(w)).

We write w[i] for the ith letter of the word w, and for any pair (i, j) of
integers such that 1 6 i 6 j 6 |w| we write w[i, j] for the factor of w that
begins at the ith position in w and ends at the jth position in w (obviously,
w[i, i] = w[i]). In the case i > j, as well as i > |w| or j < 1, we define
w[i, j] = ε.

For words u and v, we write |u|v for the number of distinct occurrences
of v in u, that is:

|u|v = |{i : 1 6 i 6 |u| − |v|+ 1, u[i, i+ |v| − 1] = v}|.

We say that a letter c is prevalent in a word w if |w|c = max{|w|a : a ∈ Σ}.
(Note that a prevalent letter is not necessarily unique.)

We define the map ˜ : Σ∗ → Σ∗, called reversal, as follows: if w =
a1a2 . . . an, where a1, a2, . . . , an ∈ Σ, then w̃ = anan−1 . . . a1. A word w is a
palindrome (or palindromic) if w = w̃. (The empty word is also a palindrome.)
A palindromic subword of a given word will be called a subpalindrome.
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3 MP-ratio

Clearly, each binary word w contains a subpalindrome of length at least⌈ |w|
2

⌉
(e.g., a subpalindrome consisting only of a prevalent letter of w). We

say that a binary word w is minimal-palindromic if it does not contain a
subpalindrome longer than

⌈ |w|
2

⌉
. For w ∈ {0, 1}∗, a pair (r, s), where r, s ∈

{0, 1}∗, such that rws is minimal-palindromic, is called an MP-extension of
w, and if the length |r|+ |s| is the least possible, then the pair (r, s) is called

a shortest MP-extension, or SMP-extension of w. The rational number |rws|
|w| ,

where (r, s) is an SMP-extension of w, is called the MP-ratio of w. As shown
in [18], each binary word possesses an MP-extension (and thus also an SMP-
extension, that is, the MP-ratio is well-defined); further, the MP-ratio of any
binary word is bounded from above by 4, and this is the best possible upper
bound.

Consider now the n-ary alphabet Σ = {0, 1, . . . , n − 1}. Clearly, each

w ∈ Σ∗ contains a subpalindrome of length at least
⌈ |w|

n

⌉
. Therefore, it is

natural to say that a word w ∈ Σ∗ is minimal-palindromic if it does not
contain a subpalindrome longer than

⌈ |w|
n

⌉
. For a word w ∈ Σ∗, a pair (r, s),

where r, s ∈ Σ∗, such that rws is minimal-palindromic, is called an MP-
extension of w, and we define an SMP-extension and the MP-ratio in the
same way as in the binary case. However, as mentioned in the Introduction,
in case of an arity greater than 2, it is not clear whether an MP-extension
always exists, and thus whether the MP-ratio is well-defined. In this article
we prove that this is true for ternary alphabet.

We first show an easy proposition that will be useful later.

Proposition 3.1. Let w ∈ {0, 1, 2}∗, and let (r, s) be an SMP-extension of w
and |rs| > 2. Then |rws| = 3k−2 for some positive integer k, and the values
|w|0, |w|1, |w|2 are (in some permutation) either k− 1, k− 1, k or k− 2, k, k.

Proof. Suppose the contrary: (r, s) is an SMP-extension of w, |rs| > 2 and
|rws| = 3k − 1 (respectively |rws| = 3k). Let r′s′ denote the word obtained
by erasing any letter (respectively any two letters) from rs (where r′ is a
subword of r and s′ of s). Clearly, the length of a longest subpalindrome of
r′ws′ is not greater than the length of a longest subpalindrome of rws, which
is at most

⌈ |rws|
3

⌉
. Since

⌈ |r′ws′|
3

⌉
=
⌈
3k−2
3

⌉
= k =

⌈ |rws|
3

⌉
, we conclude that

(r′, s′) is an MP-extension, and |r′|+ |s′| < |r|+ |s|, a contradiction.
Therefore, we now know that |rws| = 3k−2. Let us show the second part

of the statement. Let c be a prevalent letter in rws. Since
⌈ |rws|

3

⌉
=
⌈
3k−2
3

⌉
= k
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and rws is minimal-palindromic, we have |rws|c 6 k. If |rws|c < k, then
|rws| 6 3(k − 1) < 3k − 2 would follow, which is a contradiction. Therefore,
the only possibility is |rws|c = k. If a prevalent letter is unique, then we see
that each of the other two letters has to occur exactly k − 1 times, while if
there are two prevalent letters (both occurring k times), then the third letter
has to occur k − 2 times. �

The rest of the article is organized as follows. In Section 4 we show that
there always exists an MP-extension (r, s) of any ternary word w; in fact,
since for our construction holds |rws| = 6|w|, we get that the MP-ratio is
bounded from above by 6. During the course of the proof, two technical
results are needed, and they are given as appendices in Sections 6 and 7
(where Section 6 is self-contained, and Section 7 relies only on Section 6;
thus we believe that this will not cause confusion to the reader); further,
those two results are essentially results on binary words (and there might be
a slim chance that they could be also useful somewhere else), which again
makes it natural to give them separated from the proof from Section 4. In
Section 5 we show that the MP-ratio can be arbitrarily close to the constant
6, which gives that 6 is the best possible upper bound on the MP-ratio in
the ternary case.

4 An upper bound on the MP-ratio in the

ternary case

Our aim is in this section to show that the MP-ratio of any ternary word w
is at most 6. We fix the alphabet Σ = {0, 1, 2}.

The following functions will be needed. For w ∈ Σ∗ and a, b ∈ Σ, let

γ(w, a, b) = min
{

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

: i = 1, 2, . . . , |w|+ 1
}
,

and let

g(w, a, b) = max
{

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

: i = 1, 2, . . . , |w|+ 1
}
.

Further, let j(a, w) denote the position of the last occurrence of a in w (that
is, w[j(a, w)] = a and w[k] 6= a for each k, k > j(a, w)), and j(a, w) = 0 if a
does not occur in w. We define

g′(w, a, b) = max
({

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

: i = 1, 2, . . . , j(a, w)
}
∪ {0}

)
.
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We first show two easy properties of these functions.

Lemma 4.1. Let w be a finite word and let a and b be two distinct letters.
Then:

a) g′(w, a, b) 6 g(w, a, b);

b) γ(w, a, b) + g(w̃, a, b) = g(w, a, b) + γ(w̃, a, b) = 2|w|a − |w|b.

Proof. a) Follows from the definitions of g and g′.
b) We first show that for each i, 1 6 i 6 |w|+ 1, we have the equality(

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

)
+
(
2
∣∣w̃[|w| − i+ 2, |w|]

∣∣
a
−
∣∣w̃[|w| − i+ 2, |w|]

∣∣
b

)
= 2|w|a − |w|b.

The equality follows by observing that each occurrence of the letter a is
counted in exactly one of the parenthesis, and the same holds for each occur-
rence of the letter b. Note that, because of this equality, the first parenthesis
reaches its minimum exactly when the second parenthesis reaches its maxi-
mum, and vice versa. When the first parenthesis reaches its minimum (and
the second one its maximum), the expression on the left-hand side becomes
γ(w, a, b)+g(w̃, a, b) (by the definition of γ and g); when the first parenthesis
reaches its maximum (and the second one its minimum), the expression on
the left-hand side becomes g(w, a, b) +γ(w̃, a, b). This proves the lemma. �

The following property of the function g is less obvious, but will also be
very useful.

Lemma 4.2. Let w ∈ Σ∗, let b be a prevalent letter in w, and let a be a
letter distinct from b. We have:

g(w, a, b) + g(w̃, a, b) 6 3|w|a.

Proof. First, we have the following sequence of equivalences (where Lemma
4.1b) is used in the first step):

g(w, a, b) + g(w̃, a, b) 6 3|w|a if and only if

g(w, a, b)− γ(w, a, b) + 2|w|a − |w|b 6 3|w|a if and only if

g(w, a, b)− γ(w, a, b) 6 |w|a + |w|b.

Therefore, it is enough to show that g(w, a, b)− γ(w, a, b) 6 |w|a + |w|b.
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Now, let K, respectively k, where 1 6 K, k 6 |w| + 1, denote the value
of i for which the expression

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

reaches its maximal, respectively minimal, value. In other words,

g(w, a, b) = 2
∣∣w[K, |w|]

∣∣
a
−
∣∣w[K, |w|]

∣∣
b

and
γ(w, a, b) = 2

∣∣w[k, |w|]
∣∣
a
−
∣∣w[k, |w|]

∣∣
b
.

We distinguish two cases depending on which one of k and K is greater, and
show that in both cases the expected inequality holds.

Let first K 6 k. Now, let i transition gradually from K to k, and we
monitor changes in the value 2

∣∣w[i, |w|]
∣∣
a
−
∣∣w[i, |w|]

∣∣
b
. If w[i] = a, then the

value of the expression 2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

in the next step will decrease
by 2 (in comparison to the current value); if w[i] = b then the considered
value will increase by 1; if w[i] /∈ {a, b}, then the considered value will not
change. Since g(w, a, b) > γ(w, a, b), we conclude that the difference between
them is at most twice the number of letters a in the factor w[K, k− 1] (that
is, the maximum is reached when the considered value constantly decreases
during the described process). Now we have:

g(w, a, b)− γ(w, a, b) 6 2|w[K, k − 1]|a 6 2|w|a 6 |w|a + |w|b

(where the last inequality holds because of the assumption that b is a preva-
lent letter in w).

Let now k 6 K. In a similar manner as in the previous paragraph, we get
that in this case the difference between g(w, a, b) and γ(w, a, b) is at most
the number of letters b in the factor w[k,K − 1]. Therefore, in this case we
have:

g(w, a, b)− γ(w, a, b) 6 |w[k,K − 1]|b 6 |w|b 6 |w|a + |w|b.

This completes the proof. �

Now we are ready to construct an MP-extension of a given word w. For the
rest of this section, without loss of generality, we assume |w|0 6 |w|1 6 |w|2.
We shall describe two extensions of the word w, denoted by f(w) and f ′(w),
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and show that at least one of them is an MP-extension. Those two extensions
are:

f(w) = 02|w|−|w|022|w|−|w|2−g′(w,0,2) w 2g′(w,0,2)12|w|−|w|1 ;

f ′(w) = 12|w|−|w|12g′(w̃,0,2) w 22|w|−|w|2−g′(w̃,0,2)02|w|−|w|0 .

Note that f ′(w) = f̃(w̃). By r and s, respectively r′ and s′, we shall refer to
the prefix and the suffix attached to w in f(w), respectively f ′(w).

In other words, the letters 1 and 0 are piled up at the ends, and the letter
2 is arranged around w in an asymmetric way. We shall later need a more
precise “quantification” of this asymmetry, so let us show that

(2|w| − |w|2 − g′(w, 0, 2))− g′(w, 0, 2) > |w|2 (1)

(and the same holds with w̃ in place of w), which reduces to

g′(w, 0, 2) + |w|2 6 |w|.

And indeed:

g′(w, 0, 2) + |w|2 6 2|w|0 + |w|2 6 |w|0 + |w|1 + |w|2 = |w|,

which was to be proved.

Note. The presented construction is not the only one possible. Another
possibility is to use the function g in place of g′ (or any intermediate value),
and the proof in that case is completely the same. We decided to present the
version with g′ because that version is exactly a “borderline” case in the sense
that the letters 2 are arranged in the “mostly asymmetric” way possible; in
other words, by transferring only one letter 2 from the “smaller pile” to the
“larger pile” we would not have an MP-extension anymore.

As already announced, we claim that at least one of the pairs (r, s) and
(r′, s′) represents an MP-extension of w; that is, at least one of the words f(w)
and f ′(w) does not have subpalindromes whose length exceeds 2|w| (having
in mind that |f(w)| = |f ′(w)| = 6|w|). The proof consists of a number of
intermediate assertions.

Lemma 4.3. The length of an arbitrary subpalindrome of the form 0p0 in
each of the words f(w) and f ′(w) is less than or equal to 2|w|.
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Proof. Without loss of generality, we prove the assertion for the word f(w).
(This indeed does not affect the generality: if we prove the claim for f(w) for
each w, then it also holds for each f(w̃), and now we only need to recall the

equality f ′(w) = f̃(w̃) and the fact that the claimed property remains true

for f̃(w̃) if it is true for f(w̃).) Each subword of f(w) of the form 0p0 must
be a subword of

rw = 02|w|−|w|022|w|−|w|2−g′(w,0,2)w,

because s obviously does not contain the letter 0.
If at least |0p0|

2
letters from w participate in the palindrome 0p0 (which

means: 0p0 is a subword of rw obtained by selecting at least |0p0|
2

letters from
w, while the rest of the letters are selected from r), then, clearly, |0p0| 6 2|w|,
which was to be proved. Assume now that more than |0p0|

2
letters from r

participate in the palindrome 0p0 (it must be so if the assumption from the
previous sentence is not true). Then, clearly, 0p0 ∈ 0∗2∗0∗.

If 0p0 ∈ 0∗, then we immediately have

|0p0| 6 |rw|0 = (2|w| − |w|0) + |w|0 = 2|w|,

which was to be proved. Therefore, it remains to check the case 0p0 ∈ 0∗2+0∗.
Note that then there exists a position i in the word w such that among
the letters at the positions 1, 2, . . . , i − 1, respectively i, i + 1, . . . , |w|, only
the letters 2, respectively the letters 0, can participate in the palindrome
0p0. Hence, there can be at most

∣∣w[i, |w|]
∣∣
0

zeros at the end of 0p0, and

therefore also at the beginning. Altogether, we conclude |0p0| 6 |r|2+
(
|w|2−∣∣w[i, |w|]

∣∣
2

)
+ 2
∣∣w[i, |w|]

∣∣
0
. Since 0p0 ends with 0, we have that i is at most

the position of the rightmost letter 0 in w; this gives that the expression from
the previous sentence is bounded from above by |r|2 + |w|2 + g′(w, 0, 2) (by
the definition of g′). In other words, we again have

|0p0| 6 |r|2 + |w|2 + g′(w, 0, 2)

= (2|w| − |w|2 − g′(w, 0, 2)) + |w|2 + g′(w, 0, 2) = 2|w|,

which completes the proof. �

Lemma 4.4. The length of an arbitrary subpalindrome of the form 1p1 in
each of the words f(w) and f ′(w) is less than or equal to 2|w|.

Proof. We again prove the assertion only for the word f(w). We may assume
1p1 ∈ 1∗2+1∗ (everything else can be dealt with in a completely analogous
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way like in Lemma 4.3). Then we can write the palindrome 1p1 in the form
1pwp2p11, where 1pw ∈ Subw(w), p2 ∈ 2∗ and p11 ∈ 1∗. Since there are at
most |w|1 letters 1 to the left of p2, we conclude |p11| 6 |w|1. Now we have

|1p1| = |1pwp2p11| = |1pw|+ |p2|+ |p11| 6 |w|+ g′(w, 0, 2) + |w|1
6 |w|+ 2|w|0 + |w|1 6 |w|+ |w|0 + |w|2 + |w|1
= 2|w|,

which completes the proof. �

Lemma 4.5. Let p and q be two nonempty subpalindromes of w. Let wp,
v, wq and t be such that w = wpv = twq, p is a subword of wp, and q is a
subword of wq. Then

|p|+ 2|v|2 + |q|+ 2|t|2 6 4|w|2 + |w|1 + |w|0. (2)

Proof. Define the word w′, |w′| = |w|, in the following way:

w′[i] =

{
1, if w[i] = 0 or w[i] = 1;
2, if w[i] = 2.

We obviously have |w′|2 = |w|2 and |w′|1 = |w|1 + |w|0. By the assumption
|w|2 > |w|1 > |w|0 we get 2|w′|2 > |w′|1. Similarly, let p′, v′, q′, t′, be the
words obtained from p, v, q, t, respectively, by replacing all 0s by 1s. Then
p′ and q′ are subpalindromes of the word w′, and by applying Theorem 7.1
(formulated and proved later in Section 7) we get

|p′|+ 2|v′|2 + |q′|+ 2|t′|2 6 4|w′|2 + |w′|1.

Note that the left-hand side is the left-hand side of (2), and the right-hand
side is the right-hand side of (2), which proves the lemma. �

Lemma 4.6. At least one among the words f(w) and f ′(w) does not contain
a subpalindrome of the form 2p2 longer than 2|w|.

Proof. Suppose the contrary: in both the words f(w) and f ′(w) the length
of a longest subpalindrome of the form 2p2 is greater than 2|w|. Consid-
er the word f(w). Since |f(w)|2 = 2|w|, such a longest subpalindrome of
f(w) contains a letter different from 2, and thus, by (1), we can write it
as 2l+|s|2pw2l+|s|2 where pw = p̃w and pw2l ∈ Subw(w). This palindrome has

10



length |pw| + 2l + 2|s|2, which equals |pw| + 2l + 2g′(w, 0, 2). Therefore, the
assumption from the beginning reduces to:

|pw|+ 2l + 2g′(w, 0, 2) > 2|w|.

In a similar manner, considering f ′(w), we get:

|qw|+ 2l′ + 2g′(w̃, 0, 2) > 2|w|

(where qw and l′ are defined analogously).
Summing the last two inequalities yields:

|pw|+ 2l + |qw|+ 2l′ + 2g′(w, 0, 2) + 2g′(w̃, 0, 2) > 4|w|,

which is equivalent to:

|pw|+ 2l + |qw|+ 2l′ > 4|w| − 2g′(w, 0, 2)− 2g′(w̃, 0, 2). (3)

Note that the left-hand side of (3) equals the left-hand side of (2), which
is, by Lemma 4.5, less than or equal to 4|w|2+ |w|1+ |w|0. On the other hand,
for the right-hand side of (3) we have:

4|w| − 2g′(w, 0, 2)− 2g′(w̃, 0, 2)

> 4|w| − 2g(w, 0, 2)− 2g(w̃, 0, 2) > 4|w| − 6|w|0
= 4|w|2 + 4|w|1 − 2|w|0 > 4|w|2 + |w|1 + 3|w|0 − 2|w|0
= 4|w|2 + |w|1 + |w|0,

where we used Lemma 4.1a) and Lemma 4.2. This gives a contradiction, and
the lemma is thus proved. �

We are now ready for the main theorem of this section.

Theorem 4.7. The MP-ratio of any ternary word is at most 6.

Proof. The assertion follows directly from Lemmas 4.3, 4.4 and 4.6. �

Note. We make no claim that the considered extension is an SMP-extension.
In fact, having in mind Proposition 3.1, we see that this is certainly not the
case; by erasing any two letters from r and s, we would get a shorter MP-
extension, which at the same time shows that the MP-ratio of any ternary
word is strictly less than 6. However, because of the following section, this
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does not make any crucial difference. We chose to write the proof in the
presented way since we felt that it was a little bit easier (from a technical
point of view) if each letter in rws had the same number of occurrences. In
any case, an MP-extension obtained by erasing two letters from our extension
still does not have to be an SMP-extension. The question of constructing an
SMP-extension of a given word is much harder, and seems to be far out of
reach even in the binary case [5].

5 Optimality of the upper bound

We shall now show that the constant 6 from the previous section is optimal.
The authors in [18] introduced the properties of a binary word being

economic and k-economic. We slightly modify their definition to make an
appropriate adaptation for the ternary case. We say that a word w ∈ {0, 1, 2}∗
is k-economic (with respect to the letter 1) if w is a palindrome and the
word w1k contains a subpalindrome of length at least |w|1 +k+ 3. Each such
subpalindrome can be written in the form 1mq1m where 0 6 m 6 k and
1mq ∈ Subw(w); the pair (q,m) is then called a k-witness of w.

We say that w is economic if it is k-economic for every k, k = 0, 1, . . . , |w|1.
The following three lemmas are (more or less) direct adaptations of Lem-

ma 6, Lemma 7 and Lemma 8 from [18].

Lemma 5.1. Let w ∈ {0, 1, 2}∗, and let (r, s) be an MP-extension of w. If
w is economic, then |rs|1 > |w|1.

Proof. Suppose the contrary: |rs|1 6 |w|1. Let |r|1 = i and |s|1 = j, and as-
sume, without loss of generality, i 6 j. Since w is economic and j− i 6 |s|1 6
|rs|1 6 |w|1, it follows that w is (j − i)-economic. Therefore, w1j−i contains
a subpalindrome of length at least |w|1 + j − i+ 3, and that subpalindrome
can be written in the form 1mq1m for m 6 j − i and 1mq ∈ Subw(w). But
we now have that 1m+iq1m+i is a subpalindrome of rws, and we calculate:

|1m+iq1m+i| = 2i+ |1mq1m| > 2i+ |w|1 + j − i+ 3 = |w|1 + i+ j + 3

= |rws|1 + 3 > |rws|1 + 2 >

⌈
|rws|

3

⌉
(the last inequality follows from Proposition 3.1). Contradiction, since the
word rws is minimal-palindromic. This proves the lemma. �
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Lemma 5.2. Let w ∈ {0, 1, 2}∗, and let (r, s) be an MP-extension of w. If
w is economic, then |rws| > 6|w|1.

Proof. The proof is a straightforward computation that relies on Proposition
3.1 and the previous lemma:

|rws| = |rws|0 + |rws|1 + |rws|2 > 3|rws|1 − 2 = 3|w|1 + 3|rs|1 − 2

> 3|w|1 + 3(|w|1 + 1)− 2 > 6|w|1.

�

Lemma 5.3. Let w0 be an economic word and let the sequence (wi)i>0 be
defined recursively by wi+1 = wi1

tiwi, where (ti)i>0 is a given sequence of
positive integers. If for each nonnegative integer i we have ti < |wi|0, then
all the words wi are economic.

Proof. We proceed by induction on i. The base is clear (there is nothing to
prove for i = 0). We now assume that wi is economic and prove that then
wi+1 is also economic. We should prove that wi+1 is k-economic for each k,
k = 0, 1, . . . , |wi+1|1.

Assume first 0 6 k 6 |wi|1. By the inductive assumption, wi is k-
economic. Let (q,m) be a k-witness of wi. Recall that m 6 k and 2m+ |q| >
|wi|1 + k + 3. Let

p = 1mq1ti+mq1m.

Since 1mq ∈ Subw(wi) and 1m ∈ Subw(1k), we have p ∈ Subw(wi1
tiwi1

k) =
Subw(wi+11

k). Furthermore,

|p| = 3m+ 2|q|+ ti = 2(2m+ |q|)−m+ ti > 2(|wi|1 + k + 3)− k + ti

= |wi+1|1 + k + 6 > |wi+1|1 + k + 3.

This gives that wi+1 is k-economic.
Assume now k = |wi|1+1. Then the word wi is (k−1)-economic. Let (q,m)

be a (k − 1)-witness of wi (now m 6 k − 1). Let (again) p = 1mq1ti+mq1m.
Then p ∈ Subw(wi+11

k) and

|p| = 3m+ 2|q|+ ti = 2(2m+ |q|)−m+ ti

> 2(|wi|1 + k − 1 + 3)− (k − 1) + ti = |wi+1|1 + k + 5 > |wi+1|1 + k + 3;

therefore, wi+1 is k-economic.
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Let now |wi|1 + 1 < k 6 |wi|1 + ti. Then we write

p = 1kwi1
k.

Clearly, p ∈ Subw(wi+11
k), and since ti + 1 6 |wi|0 and |wi|1 + 2 6 k, we

have

|p| = 2k + |wi|1 + |wi|0 > k + 2|wi|1 + 2 + ti + 1 = |wi+1|1 + k + 3,

which means that wi+1 is k-economic.
Finally, assume |wi|1 + ti < k 6 |wi+1|1. Let j = |wi|1 + ti and l = k − j.

Since k − j 6 |wi|1, we conclude that wi is l-economic. Let (q,m) be an
l-witness of wi. Write

p = 1j+mq1j+m.

Since 1j ∈ Subw(wi1
ti), 1mq ∈ Subw(wi) and j + m 6 k, we have p ∈

Subw(wi+11
k). Furthermore,

|p| = 2j + |1mq1m| > 2j + |wi|1 + l + 3 = |wi+1|1 + k + 3.

Therefore, wi+1 is economic also in this case, which completes the proof. �

We now recall a construction by Holub and Saari that will be useful in our
case, too. For a sequence (ti)i>0, let w(t0, t1, . . . , tj−1) denote the word wj from
the statement of Lemma 5.3, with the initial term w0 = 0000 (we observe that
w0 is economic as a ternary word; indeed, since |w0|1 = 0, we only have to
check whether w0 is 0-economic, and it clearly is since w0 itself is a palindrome
of length 4). Note that, if the sequence (ti)i>0 satisfies 2i 6 ti < 2i+2 for
each i, then we easily see tj < 2j+2 = |w(t0, t1, . . . , tj−1)|0, and thus, by
Lemma 5.3, the word w(t0, t1, . . . , tj−1) is economic (for each j and for each
sequence (ti)i>0 satisfying the required property). Holub and Saari proved [18,
Lemma 9] that for every large enough integer k (in particular, they proved
for k > 448, but the exact bound is of no relevance) there exists a word, say
vk, that can be obtained by the described construction, such that |vk| = k;
further, we have

lim
k→∞

|vk|1
|vk|

= 1. (4)

We now have enough prerequisites to prove the main theorem of this section.
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Theorem 5.4. Let R(n) denote the maximal MP-ratio over all the words
w ∈ {0, 1, 2}∗, |w| = n. We have

lim
n→∞

R(n) = 6.

Proof. Given a positive real number η, choose an integer k0 such that, for
each k > k0, we have

|vk|1
|vk|

> 1− η

6

(such k0 exists because of (4)). Let a pair (r, s) be an MP-extension of vk,
k > k0. By Lemma 5.2, due to the fact that the word vk is economic, we have

|rvks|
|vk|

>
6|vk|1
|vk|

> 6− η;

therefore, the MP-ratio of vk is greater than 6− η. This completes the proof.
�

6 A postponed technical theorem

Theorem 6.1. Let u ∈ {1, 2}∗, let t, v ∈ 2∗, and let p and q be subpalin-
dromes of tu and uv, respectively. If

|p|+ |q| > 2|u|,

then

|u|1 6
|tv| − 1

|tv|
|tuv|2. (5)

Before we begin the proof, we shall show that it is enough to prove the
theorem in the special case when the subpalindrome p, respectively q, starts
(and ends) with t, respectively v. Assume that this case of the theorem is
proved. Let now t, u, v, p and q be as in the statement of the theorem, but
not satisfying the conditions of the described special case. Let t0, respectively
v0, be the longest prefix (and suffix) of p, respectively q, that is a subword
of t, respectively v; note that |t0v0| < |tv|. Then p and q are subpalindromes
of t0u and uv0, respectively, |p|+ |q| > 2|u|, and t0, u, v0, p and q satisfy the
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condition of the described special case. Since the theorem is assumed to hold
in this case, we have

|u|1 6
|t0v0| − 1

|t0v0|
|t0uv0|2 <

|tv| − 1

|tv|
|tuv|2

(where the second inequality follows from |t0v0|−1
|t0v0| = 1− 1

|t0v0| < 1− 1
|tv| = |tv|−1

|tv|
and |t0uv0|2 < |tuv|2); therefore, the theorem holds for t, u, v, p and q.

From now onward we assume that p, respectively q, contains all the letters
from t, respectively v. We are now ready for the proof.

Proof of Theorem 6.1. We prove the theorem by induction on |u|. If |u| = 0,
then (5) trivially holds, since the left-hand side is 0 while the right-hand side
is always nonnegative. Now we assume that the assertion holds for each word
shorter than u, and prove that it holds for u. Let v′ denote the shortest prefix
of uv such that |v′|2 = |v|, and let t′ denote the shortest suffix of tu such that
|t′|2 = |t|.

Assume first that |v′| + |t′| < |u|. Let u = v′u′t′, and let p′ and q′ be
longest subpalindromes of u′t and vu′, respectively (note that we now put
t to the right and v to the left of u′, not vice versa, as it was before!). We
claim that

|q′| > |p| − 2|t| − 2(|v′| − |v|).

We can write p = 2|t|p1p22
|t|, where p1 ∈ Subw(v′) and p2 ∈ Subw(u′). We

have that p1p2 is a palindrome of length |p|−2|t|; erasing all the letters 1 from
p1 (and there are at most |v′|1, which is |v′| − |v|, of them), and additionally
erasing (if necessary) all the “mirror images” (with respect to the midpoint
of p) of all these 1s, we obtain a subpalindrome of vu′ of length at least
|p| − 2|t| − 2(|v′| − |v|), which proves the claim. Analogously, we also obtain

|p′| > |q| − 2|v| − 2(|t′| − |t|).

We aim to use the inductive assumption on the words v, u′ and t. Clearly,
|u′| = |u|−|v′|−|t′| 6 |u|−|v|−|t| < |u|. Let us now show that the condition
of the theorem is satisfied:

|q′|+ |p′| > |p| − 2|t| − 2(|v′| − |v|) + |q| − 2|v| − 2(|t′| − |t|)
= |p|+ |q| − 2|v′| − 2|t′| > 2|u| − 2|v′| − 2|t′| = 2|u′|.
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Therefore, by the inductive assumption, we get

|u′|1 6
|vt| − 1

|vt|
|vu′t|2. (6)

Note that, since 1s inside the word v′ do not participate in the palindrome
q (since the first |v| letters of q are 2), we have |v′|1 6 |uv|− |q|. Analogously,
|t′|1 6 |tu| − |p|. Therefore,

|v′|1 + |t′|1 6 |uv| − |q|+ |tu| − |p| < |t|+ |v|. (7)

Now, (6) and (7) yield:

|u|1 = |v′|1 + |u′|1 + |t′|1 6 |tv| − 1 + |u|1 6
|tv| − 1

|tv|
(|tv|+ |vu′t|2)

=
|tv| − 1

|tv|
(|t′|2 + |v′|2 + |vu′t|2) =

|tv| − 1

|tv|
|tuv|2,

which was to be proved.
Finally, we need to take care of the case |v′|+ |t′| > |u|. Then we have:

|u|1 6 |v′|1 + |t′|1 6 |t|+ |v| − 1 =
|tv| − 1

|tv|
|tv| 6 |tv| − 1

|tv|
|tuv|2,

(where the second inequality was already seen at (7)), which was to be proved.
�

Note. We also have a different proof of Theorem 6.1. The other proof was
deemed too long and technical for the present article (in comparison to the
proof given here); however, we nevertheless believe that both proofs have
their pros and cons, and for that reason we made an extended version of the
article (containing both proofs), which can be found at the second-named
author’s personal website1.

We would like to add that it turns out that the case when the equality in
(5) is reached has an interesting characterization.

Proposition 6.2. Under the conditions of Theorem 6.1, the equality in (5)
is reached if and only if, for a positive integer k and a nonnegative integer l,
we have u = (1k−12k)l1k−1, t = ε and v = 2k (or vice versa).

We do not give a proof of this proposition here, but it follows rather
straightforwardly from the mentioned alternate proof of Theorem 6.1; there-
fore, we refer the reader to the extended version of the article.

1http://people.dmi.uns.ac.rs/˜bojan.basic/
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7 Another postponed technical theorem

Theorem 7.1. Let w ∈ {1, 2}∗ be such that 2|w|2 > |w|1. Let p and q
be two nonempty subpalindromes of w. Let wp, v, wq and t be such that
w = wpv = twq, p is a subword of wp, and q is a subword of wq. Then

|p|+ 2|v|2 + |q|+ 2|t|2 6 4|w|2 + |w|1.

Proof. We distinguish two cases:

• Case 1◦: |wp| 6 |t|;

• Case 2◦: |t| < |wp|.

Case 1◦. In this case we have |p|1 + |q|1 6 |w|1. Furthermore, we have:

|p|2 + 2|v|2 6 |w|2 + |v|2 6 2|w|2.

In an analogous way we obtain |q|2 + 2|t|2 6 2|w|2. Now, we get the required
inequality directly:

|p|+ 2|v|2 + |q|+ 2|t|2 6 |p|1 + |q|1 + |p|2 + 2|v|2 + |q|2 + 2|t|2
6 |w|1 + 4|w|2.

Case 2◦. In this case we may write w = tuv, where u is a nonempty
word. Now suppose that the required inequality does not hold, that is,

|p|+ 2|v|2 + |q|+ 2|t|2 > |w|1 + 4|w|2.

This reduces to

|p|+ |q| > |w|1 + 2|w|2 + 2|u|2 > 2|w|1 + 2|u|2. (8)

Let t̂ and v̂ be the words obtained from the words t and v, respectively,
by erasing all the letters 1 (or, equivalently, t̂ = 2|t|2 and v̂ = 2|v|2), and let
p̂ and q̂ be the longest subpalindromes of t̂u and uv̂, respectively. We then
have:

|p̂| > |p| − 2|t|1;
|q̂| > |q| − 2|v|1.
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Therefore,

|p̂|+ |q̂| > |p| − 2|t|1 + |q| − 2|v|1 > (2|w|1 + 2|u|2)− 2|t|1 − 2|v|1 = 2|u|,

which means that the conditions of Theorem 6.1 are satisfied (for u, t̂, v̂, p̂
and q̂); by that theorem we obtain

|u|1 6
|t̂v̂| − 1

|t̂v̂|
|t̂uv̂|2 < |t̂uv̂|2 6 |tuv|2 = |w|2.

On the other hand, since |p| + |q| 6 |w| + |u|, by the first inequality in (8)
we have |w| + |u| > |w|1 + 2|w|2 + 2|u|2, that is, |u|1 > |w|2 + |u|2 > |w|2, a
contradiction. The proof is completed. �
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[5] B. Bašić, Counter-intuitive answers to some questions concerning
minimal-palindromic extensions of binary words, Discrete Appl. Math.
160 (2012), 181–186.
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