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Abstract

A word over an n-ary alphabet is called minimal-palindromic if it
does not contain palindromic subwords whose length is greater than⌈ |w|
n

⌉
(note that each n-ary word must contain a palindromic sub-

word of at least that length: for example, a subword consisting of a
prevalent letter, which explains the term “minimal-palindromic”). The

MP-ratio of a given word w is defined as the quotient |rws||w| , where r

and s are (possibly empty) words such that the word rws is minimal-
palindromic and that the length |r|+ |s| is minimal possible. We show
that the MP-ratio is well-defined in the ternary case (that is, that such
words r and s always exist), as well as that it is bounded from above
by the constant 6 and that 6 is the best possible upper bound.
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1 Introduction

In recent times, various questions that deal with structural properties of
finite and infinite words and that are based on the notion of palindromes are
a very active research field. We mention a few examples. Frid, Puzynina and
Zamboni [14] defined the notion of a palindromic length of a finite word as
the least number of palindromes whose concatenation is the given word; see
[21, 8, 13] for some results on this topic, and see also [2, 1, 4, 9], where some
variants of this concept have been introduced and studied. Another research
direction is based on the result of Droubay, Justin and Pirillo [12], who
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proved that a word of length n can have at most n+ 1 different palindromic
factors. The difference between this upper bound and the number of different
palindromic factors of a given word w is called the palindromic defect of w;
this proved to be a very fruitful research topic [15, 19, 6, 17, 22, 20, 23], where
special attention has been paid to words whose palindromic defect is zero,
called rich (the intuition being that such words are “rich” in palindromes).

Holub and Saari [18] introduced yet another way to measure how “rich”
in palindromes a given word is, the so-called MP-ratio. MP-ratio is a rational
number greater than or equal to 1 (a precise definition will be given in our Sec-
tion 3) such that, the greater MP-ratio is, the given word is “richer” in palin-
dromes (the authors of [18] say that such words are “highly palindromic”);
those words whose MP-ratio equals 1 are called minimal-palindromic. It turns
out that some properties of MP-ratio are not so easy to grasp, since, as shown
in [5], it can behave in a quite unpredictable way. The concept of MP-ratio
is based on palindromic subwords (and not factors) of a given word, which
have been noticeably less considered in the literature. They, however, have
some interesting properties. As shown in [18], a binary word can be recon-
structed, up to reversal, from the set of its palindromic subwords. Also in
[18], a property of a word being abelian bordered is defined, and it is shown
that each binary minimal-palindromic word is abelian unbordered (which is
a strong form of unborderedness); abelian (un)borderedness of words has at-
tracted a growing attention in recent times [11, 16, 10, 3, 7]. However, the
main drawback of the notion of MP-ratio is the fact that it is defined only
for binary alphabet. Though there is a natural analogous way to extend the
definition of MP-ratio to a larger alphabet, it is not clear whether in that
case the notion is well-defined at all. For that reason, the authors of [18] left
the question of well-definedness of MP-ratio for larger alphabets as an open
problem.

In this article we solve that question for ternary alphabet. We show that
the MP-ratio is well-defined in the ternary case, that it is bounded from
above by the constant 6, and that this bound is the best possible (in the
binary case, the best possible upper bound is 4).

2 Preliminaries

In this section we recall basic definitions and properties that will be needed
through the article.
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A word is a finite sequence of symbols taken from a nonempty finite set
Σ, which is called the alphabet, and its elements are called letters. In the case
|Σ| = 2 we speak about binary words, in the case |Σ| = 3 we speak about
ternary words and, generally, in the case |Σ| = n we speak about n-ary words.
If w = a1a2...an with a1, a2, . . . , an ∈ Σ, we say that the length of w is n, and
write |w| = n. The unique word of length 0, called the empty word, is denoted
by ε. The concatenation (or product) of words u and v, u = a1a2 . . . an and
v = b1b2 . . . bm, is the word a1a2 . . . anb1b2 . . . bm, denoted by uv. For a word
w and a positive integer k we write wk for the word ww . . . w︸ ︷︷ ︸

k

. If A ⊆ Σ, we

write A∗ for the set {a1a2 . . . ak : k > 0 and ai ∈ A for each i}, and we write
A+ = A∗\{ε}. If the set A has only one element, say A = {a}, we write a∗

and a+ instead of {a}∗ and {a}+. If A and B are two sets of words, we write
AB = {uv : u ∈ A, v ∈ B}. Since concatenation of words is an associative
operation, the product of more than two sets of words is also well-defined.

A word u ∈ Σ∗ is called a factor (respectively prefix, suffix ) of a word
w ∈ Σ∗ if there exist words x, y ∈ Σ∗ such that w = xuy (respectively
w = uy, w = xu). A word u ∈ Σ∗ is a subword of w ∈ Σ∗ if there exist words
x1, x2, . . . , xn, xn+1 ∈ Σ∗ and y1, y2, . . . , yn ∈ Σ∗ such that u = y1y2 . . . yn and
w = x1y1x2y2 . . . xnynxn+1 (or, equivalently, u is a subword of w if u is its
subsequence). The set of all factors (respectively prefixes, suffixes, subwords)
of a word w is denoted by Fact(w) (respectively Pref(w), Suff(w), Subw(w)).

We write w[i] for the ith letter of the word w, and for any pair (i, j) of
integers such that 1 6 i 6 j 6 |w| we write w[i, j] for the factor of w that
begins at the ith position in w and ends at the jth position in w (obviously,
w[i, i] = w[i]). In the case i > j, as well as i > |w| or j < 1, we define
w[i, j] = ε. By convention, this operation has precedence over concatenation;
in other words, uv[i] (and similarly uv[i, j]) will always denote u(v[i]), not
(uv)[i].

If i and j are positive integers and i 6 j, [i, j]N denotes the set {i, i +
1, i+ 2, . . . , j}.

For words u and v, we write |u|v for the number of distinct occurrences
of v in u, that is:

|u|v = |{i : 1 6 i 6 |u| − |v|+ 1, u[i, i+ |v| − 1] = v}|.

We say that a letter c is prevalent in a word w if |w|c = max{|w|a : a ∈ Σ}.
(Note that a prevalent letter is not necessarily unique.)
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We define the map ˜ : Σ∗ → Σ∗, called reversal, as follows: if w =
a1a2 . . . an, where a1, a2, . . . , an ∈ Σ, then w̃ = anan−1 . . . a1. A word w is a
palindrome (or palindromic) if w = w̃. (The empty word is also a palindrome.)
A palindromic subword of a given word will be called a subpalindrome.

3 MP-ratio

Clearly, each binary word w contains a subpalindrome of length at least⌈ |w|
2

⌉
(e.g., a subpalindrome consisting only of a prevalent letter of w). We

say that a binary word w is minimal-palindromic if it does not contain a
subpalindrome longer than

⌈ |w|
2

⌉
. For w ∈ {0, 1}∗, a pair (r, s), where r, s ∈

{0, 1}∗, such that rws is minimal-palindromic, is called an MP-extension of
w, and if the length |r|+ |s| is the least possible, then the pair (r, s) is called

a shortest MP-extension, or SMP-extension of w. The rational number |rws||w| ,

where (r, s) is an SMP-extension of w, is called the MP-ratio of w. As shown
in [18], each binary word possesses an MP-extension (and thus also an SMP-
extension, that is, the MP-ratio is well-defined); further, the MP-ratio of any
binary word is bounded from above by 4, and this is the best possible upper
bound.

Consider now the n-ary alphabet Σ = {0, 1, . . . , n − 1}. Clearly, each

w ∈ Σ∗ contains a subpalindrome of length at least
⌈ |w|
n

⌉
. Therefore, it is

natural to say that a word w ∈ Σ∗ is minimal-palindromic if it does not
contain a subpalindrome longer than

⌈ |w|
n

⌉
. For a word w ∈ Σ∗, a pair (r, s),

where r, s ∈ Σ∗, such that rws is minimal-palindromic, is called an MP-
extension of w, and we define an SMP-extension and the MP-ratio in the
same way as in the binary case. However, as mentioned in the Introduction,
in case of an arity greater than 2, it is not clear whether an MP-extension
always exists, and thus whether the MP-ratio is well-defined. In this article
we prove that this is true for ternary alphabet.

We first show an easy proposition that will be useful later.

Proposition 3.1. Let w ∈ {0, 1, 2}∗, and let (r, s) be an SMP-extension of w
and |rs| > 2. Then |rws| = 3k−2 for some positive integer k, and the values
|w|0, |w|1, |w|2 are (in some permutation) either k− 1, k− 1, k or k− 2, k, k.

Proof. Suppose the contrary: (r, s) is an SMP-extension of w, |rs| > 2 and
|rws| = 3k − 1 (respectively |rws| = 3k). Let r′s′ denote the word obtained
by erasing any letter (respectively any two letters) from rs (where r′ is a
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subword of r and s′ of s). Clearly, the length of a longest subpalindrome of
r′ws′ is not greater than the length of a longest subpalindrome of rws, which
is at most

⌈ |rws|
3

⌉
. Since

⌈ |r′ws′|
3

⌉
=
⌈
3k−2
3

⌉
= k =

⌈ |rws|
3

⌉
, we conclude that

(r′, s′) is an MP-extension, and |r′|+ |s′| < |r|+ |s|, a contradiction.
Therefore, we now know that |rws| = 3k−2. Let us show the second part

of the statement. Let c be a prevalent letter in rws. Since
⌈ |rws|

3

⌉
=
⌈
3k−2
3

⌉
= k

and rws is minimal-palindromic, we have |rws|c 6 k. If |rws|c < k, then
|rws| 6 3(k − 1) < 3k − 2 would follow, which is a contradiction. Therefore,
the only possibility is |rws|c = k. If a prevalent letter is unique, then we see
that each of the other two letters has to occur exactly k − 1 times, while if
there are two prevalent letters (both occurring k times), then the third letter
has to occur k − 2 times. �

The rest of the article is organized as follows. In Section 4 we show that
there always exists an MP-extension (r, s) of any ternary word w; in fact,
since for our construction holds |rws| = 6|w|, we get that the MP-ratio is
bounded from above by 6. During the course of the proof, two technical
results are needed, and they are given as appendices in Sections 6 and 7
(where Section 6 is self-contained, and Section 7 relies only on Section 6;
thus we believe that this will not cause confusion to the reader); further,
those two results are essentially results on binary words (and there might be
a slim chance that they could be also useful somewhere else), which again
makes it natural to give them separated from the proof from Section 4. In
Section 5 we show that the MP-ratio can be arbitrarily close to the constant
6, which gives that 6 is the best possible upper bound on the MP-ratio in
the ternary case.

4 An upper bound on the MP-ratio in the

ternary case

Our aim is in this section to show that the MP-ratio of any ternary word w
is at most 6. We fix the alphabet Σ = {0, 1, 2}.

The following functions will be needed. For w ∈ Σ∗ and a, b ∈ Σ, let

γ(w, a, b) = min
{

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

: i = 1, 2, . . . , |w|+ 1
}
,

and let

g(w, a, b) = max
{

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

: i = 1, 2, . . . , |w|+ 1
}
.
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Further, let j(a, w) denote the position of the last occurrence of a in w (that
is, w[j(a, w)] = a and w[k] 6= a for each k, k > j(a, w)), and j(a, w) = 0 if a
does not occur in w. We define

g′(w, a, b) = max
({

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

: i = 1, 2, . . . , j(a, w)
}
∪ {0}

)
.

We first show two easy properties of these functions.

Lemma 4.1. Let w be a finite word and let a and b be two distinct letters.
Then:

a) g′(w, a, b) 6 g(w, a, b);

b) γ(w, a, b) + g(w̃, a, b) = g(w, a, b) + γ(w̃, a, b) = 2|w|a − |w|b.

Proof. a) Follows from the definitions of g and g′.
b) We first show that for each i, 1 6 i 6 |w|+ 1, we have the equality(

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

)
+
(
2
∣∣w̃[|w| − i+ 2, |w|]

∣∣
a
−
∣∣w̃[|w| − i+ 2, |w|]

∣∣
b

)
= 2|w|a − |w|b.

The equality follows by observing that each occurrence of the letter a is
counted in exactly one of the parenthesis, and the same holds for each occur-
rence of the letter b. Note that, because of this equality, the first parenthesis
reaches its minimum exactly when the second parenthesis reaches its maxi-
mum, and vice versa. When the first parenthesis reaches its minimum (and
the second one its maximum), the expression on the left-hand side becomes
γ(w, a, b)+g(w̃, a, b) (by the definition of γ and g); when the first parenthesis
reaches its maximum (and the second one its minimum), the expression on
the left-hand side becomes g(w, a, b) +γ(w̃, a, b). This proves the lemma. �

The following property of the function g is less obvious, but will also be
very useful.

Lemma 4.2. Let w ∈ Σ∗, let b be a prevalent letter in w, and let a be a
letter distinct from b. We have:

g(w, a, b) + g(w̃, a, b) 6 3|w|a.
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Proof. First, we have the following sequence of equivalences (where Lemma
4.1b) is used in the first step):

g(w, a, b) + g(w̃, a, b) 6 3|w|a if and only if

g(w, a, b)− γ(w, a, b) + 2|w|a − |w|b 6 3|w|a if and only if

g(w, a, b)− γ(w, a, b) 6 |w|a + |w|b.

Therefore, it is enough to show that g(w, a, b)− γ(w, a, b) 6 |w|a + |w|b.
Now, let K, respectively k, where 1 6 K, k 6 |w| + 1, denote the value

of i for which the expression

2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

reaches its maximal, respectively minimal, value. In other words,

g(w, a, b) = 2
∣∣w[K, |w|]

∣∣
a
−
∣∣w[K, |w|]

∣∣
b

and
γ(w, a, b) = 2

∣∣w[k, |w|]
∣∣
a
−
∣∣w[k, |w|]

∣∣
b
.

We distinguish two cases depending on which one of k and K is greater, and
show that in both cases the expected inequality holds.

Let first K 6 k. Now, let i transition gradually from K to k, and we
monitor changes in the value 2

∣∣w[i, |w|]
∣∣
a
−
∣∣w[i, |w|]

∣∣
b
. If w[i] = a, then the

value of the expression 2
∣∣w[i, |w|]

∣∣
a
−
∣∣w[i, |w|]

∣∣
b

in the next step will decrease
by 2 (in comparison to the current value); if w[i] = b then the considered
value will increase by 1; if w[i] /∈ {a, b}, then the considered value will not
change. Since g(w, a, b) > γ(w, a, b), we conclude that the difference between
them is at most twice the number of letters a in the factor w[K, k− 1] (that
is, the maximum is reached when the considered value constantly decreases
during the described process). Now we have:

g(w, a, b)− γ(w, a, b) 6 2|w[K, k − 1]|a 6 2|w|a 6 |w|a + |w|b
(where the last inequality holds because of the assumption that b is a preva-
lent letter in w).

Let now k 6 K. In a similar manner as in the previous paragraph, we get
that in this case the difference between g(w, a, b) and γ(w, a, b) is at most
the number of letters b in the factor w[k,K − 1]. Therefore, in this case we
have:

g(w, a, b)− γ(w, a, b) 6 |w[k,K − 1]|b 6 |w|b 6 |w|a + |w|b.

This completes the proof. �
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Now we are ready to construct an MP-extension of a given word w. For the
rest of this section, without loss of generality, we assume |w|0 6 |w|1 6 |w|2.
We shall describe two extensions of the word w, denoted by f(w) and f ′(w),
and show that at least one of them is an MP-extension. Those two extensions
are:

f(w) = 02|w|−|w|022|w|−|w|2−g′(w,0,2) w 2g
′(w,0,2)12|w|−|w|1 ;

f ′(w) = 12|w|−|w|12g
′(w̃,0,2) w 22|w|−|w|2−g′(w̃,0,2)02|w|−|w|0 .

Note that f ′(w) = f̃(w̃). By r and s, respectively r′ and s′, we shall refer to
the prefix and the suffix attached to w in f(w), respectively f ′(w).

In other words, the letters 1 and 0 are piled up at the ends, and the letter
2 is arranged around w in an asymmetric way. We shall later need a more
precise “quantification” of this asymmetry, so let us show that

(2|w| − |w|2 − g′(w, 0, 2))− g′(w, 0, 2) > |w|2 (1)

(and the same holds with w̃ in place of w), which reduces to

g′(w, 0, 2) + |w|2 6 |w|.

And indeed:

g′(w, 0, 2) + |w|2 6 2|w|0 + |w|2 6 |w|0 + |w|1 + |w|2 = |w|,

which was to be proved.

Note. The presented construction is not the only one possible. Another
possibility is to use the function g in place of g′ (or any intermediate value),
and the proof in that case is completely the same. We decided to present the
version with g′ because that version is exactly a “borderline” case in the sense
that the letters 2 are arranged in the “mostly asymmetric” way possible; in
other words, by transferring only one letter 2 from the “smaller pile” to the
“larger pile” we would not have an MP-extension anymore.

As already announced, we claim that at least one of the pairs (r, s) and
(r′, s′) represents an MP-extension of w; that is, at least one of the words f(w)
and f ′(w) does not have subpalindromes whose length exceeds 2|w| (having
in mind that |f(w)| = |f ′(w)| = 6|w|). The proof consists of a number of
intermediate assertions.

8



Lemma 4.3. The length of an arbitrary subpalindrome of the form 0p0 in
each of the words f(w) and f ′(w) is less than or equal to 2|w|.

Proof. Without loss of generality, we prove the assertion for the word f(w).
(This indeed does not affect the generality: if we prove the claim for f(w) for
each w, then it also holds for each f(w̃), and now we only need to recall the

equality f ′(w) = f̃(w̃) and the fact that the claimed property remains true

for f̃(w̃) if it is true for f(w̃).) Each subword of f(w) of the form 0p0 must
be a subword of

rw = 02|w|−|w|022|w|−|w|2−g′(w,0,2)w,

because s obviously does not contain the letter 0.
If at least |0p0|

2
letters from w participate in the palindrome 0p0 (which

means: 0p0 is a subword of rw obtained by selecting at least |0p0|
2

letters from
w, while the rest of the letters are selected from r), then, clearly, |0p0| 6 2|w|,
which was to be proved. Assume now that more than |0p0|

2
letters from r

participate in the palindrome 0p0 (it must be so if the assumption from the
previous sentence is not true). Then, clearly, 0p0 ∈ 0∗2∗0∗.

If 0p0 ∈ 0∗, then we immediately have

|0p0| 6 |rw|0 = (2|w| − |w|0) + |w|0 = 2|w|,

which was to be proved. Therefore, it remains to check the case 0p0 ∈ 0∗2+0∗.
Note that then there exists a position i in the word w such that among
the letters at the positions 1, 2, . . . , i − 1, respectively i, i + 1, . . . , |w|, only
the letters 2, respectively the letters 0, can participate in the palindrome
0p0. Hence, there can be at most

∣∣w[i, |w|]
∣∣
0

zeros at the end of 0p0, and

therefore also at the beginning. Altogether, we conclude |0p0| 6 |r|2+
(
|w|2−∣∣w[i, |w|]

∣∣
2

)
+ 2
∣∣w[i, |w|]

∣∣
0
. Since 0p0 ends with 0, we have that i is at most

the position of the rightmost letter 0 in w; this gives that the expression from
the previous sentence is bounded from above by |r|2 + |w|2 + g′(w, 0, 2) (by
the definition of g′). In other words, we again have

|0p0| 6 |r|2 + |w|2 + g′(w, 0, 2)

= (2|w| − |w|2 − g′(w, 0, 2)) + |w|2 + g′(w, 0, 2) = 2|w|,

which completes the proof. �

Lemma 4.4. The length of an arbitrary subpalindrome of the form 1p1 in
each of the words f(w) and f ′(w) is less than or equal to 2|w|.
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Proof. We again prove the assertion only for the word f(w). We may assume
1p1 ∈ 1∗2+1∗ (everything else can be dealt with in a completely analogous
way like in Lemma 4.3). Then we can write the palindrome 1p1 in the form
1pwp2p11, where 1pw ∈ Subw(w), p2 ∈ 2∗ and p11 ∈ 1∗. Since there are at
most |w|1 letters 1 to the left of p2, we conclude |p11| 6 |w|1. Now we have

|1p1| = |1pwp2p11| = |1pw|+ |p2|+ |p11| 6 |w|+ g′(w, 0, 2) + |w|1
6 |w|+ 2|w|0 + |w|1 6 |w|+ |w|0 + |w|2 + |w|1
= 2|w|,

which completes the proof. �

Lemma 4.5. Let p and q be two nonempty subpalindromes of w. Let wp,
v, wq and t be such that w = wpv = twq, p is a subword of wp, and q is a
subword of wq. Then

|p|+ 2|v|2 + |q|+ 2|t|2 6 4|w|2 + |w|1 + |w|0. (2)

Proof. Define the word w′, |w′| = |w|, in the following way:

w′[i] =

{
1, if w[i] = 0 or w[i] = 1;
2, if w[i] = 2.

We obviously have |w′|2 = |w|2 and |w′|1 = |w|1 + |w|0. By the assumption
|w|2 > |w|1 > |w|0 we get 2|w′|2 > |w′|1. Similarly, let p′, v′, q′, t′, be the
words obtained from p, v, q, t, respectively, by replacing all 0s by 1s. Then
p′ and q′ are subpalindromes of the word w′, and by applying Theorem 7.1
(formulated and proved later in Section 7) we get

|p′|+ 2|v′|2 + |q′|+ 2|t′|2 6 4|w′|2 + |w′|1.

Note that the left-hand side is the left-hand side of (2), and the right-hand
side is the right-hand side of (2), which proves the lemma. �

Lemma 4.6. At least one among the words f(w) and f ′(w) does not contain
a subpalindrome of the form 2p2 longer than 2|w|.

Proof. Suppose the contrary: in both the words f(w) and f ′(w) the length
of a longest subpalindrome of the form 2p2 is greater than 2|w|. Consid-
er the word f(w). Since |f(w)|2 = 2|w|, such a longest subpalindrome of
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f(w) contains a letter different from 2, and thus, by (1), we can write it
as 2l+|s|2pw2l+|s|2 where pw = p̃w and pw2l ∈ Subw(w). This palindrome has
length |pw| + 2l + 2|s|2, which equals |pw| + 2l + 2g′(w, 0, 2). Therefore, the
assumption from the beginning reduces to:

|pw|+ 2l + 2g′(w, 0, 2) > 2|w|.

In a similar manner, considering f ′(w), we get:

|qw|+ 2l′ + 2g′(w̃, 0, 2) > 2|w|

(where qw and l′ are defined analogously).
Summing the last two inequalities yields:

|pw|+ 2l + |qw|+ 2l′ + 2g′(w, 0, 2) + 2g′(w̃, 0, 2) > 4|w|,

which is equivalent to:

|pw|+ 2l + |qw|+ 2l′ > 4|w| − 2g′(w, 0, 2)− 2g′(w̃, 0, 2). (3)

Note that the left-hand side of (3) equals the left-hand side of (2), which
is, by Lemma 4.5, less than or equal to 4|w|2+ |w|1+ |w|0. On the other hand,
for the right-hand side of (3) we have:

4|w| − 2g′(w, 0, 2)− 2g′(w̃, 0, 2)

> 4|w| − 2g(w, 0, 2)− 2g(w̃, 0, 2) > 4|w| − 6|w|0
= 4|w|2 + 4|w|1 − 2|w|0 > 4|w|2 + |w|1 + 3|w|0 − 2|w|0
= 4|w|2 + |w|1 + |w|0,

where we used Lemma 4.1a) and Lemma 4.2. This gives a contradiction, and
the lemma is thus proved. �

We are now ready for the main theorem of this section.

Theorem 4.7. The MP-ratio of any ternary word is at most 6.

Proof. The assertion follows directly from Lemmas 4.3, 4.4 and 4.6. �

Note. We make no claim that the considered extension is an SMP-extension.
In fact, having in mind Proposition 3.1, we see that this is certainly not the
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case; by erasing any two letters from r and s, we would get a shorter MP-
extension, which at the same time shows that the MP-ratio of any ternary
word is strictly less than 6. However, because of the following section, this
does not make any crucial difference. We chose to write the proof in the
presented way since we felt that it was a little bit easier (from a technical
point of view) if each letter in rws had the same number of occurrences. In
any case, an MP-extension obtained by erasing two letters from our extension
still does not have to be an SMP-extension. The question of constructing an
SMP-extension of a given word is much harder, and seems to be far out of
reach even in the binary case [5].

5 Optimality of the upper bound

We shall now show that the constant 6 from the previous section is optimal.
The authors in [18] introduced the properties of a binary word being

economic and k-economic. We slightly modify their definition to make an
appropriate adaptation for the ternary case. We say that a word w ∈ {0, 1, 2}∗
is k-economic (with respect to the letter 1) if w is a palindrome and the
word w1k contains a subpalindrome of length at least |w|1 +k+ 3. Each such
subpalindrome can be written in the form 1mq1m where 0 6 m 6 k and
1mq ∈ Subw(w); the pair (q,m) is then called a k-witness of w.

We say that w is economic if it is k-economic for every k, k = 0, 1, . . . , |w|1.
The following three lemmas are (more or less) direct adaptations of Lem-

ma 6, Lemma 7 and Lemma 8 from [18].

Lemma 5.1. Let w ∈ {0, 1, 2}∗, and let (r, s) be an MP-extension of w. If
w is economic, then |rs|1 > |w|1.

Proof. Suppose the contrary: |rs|1 6 |w|1. Let |r|1 = i and |s|1 = j, and as-
sume, without loss of generality, i 6 j. Since w is economic and j− i 6 |s|1 6
|rs|1 6 |w|1, it follows that w is (j − i)-economic. Therefore, w1j−i contains
a subpalindrome of length at least |w|1 + j − i+ 3, and that subpalindrome
can be written in the form 1mq1m for m 6 j − i and 1mq ∈ Subw(w). But
we now have that 1m+iq1m+i is a subpalindrome of rws, and we calculate:

|1m+iq1m+i| = 2i+ |1mq1m| > 2i+ |w|1 + j − i+ 3 = |w|1 + i+ j + 3

= |rws|1 + 3 > |rws|1 + 2 >

⌈
|rws|

3

⌉
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(the last inequality follows from Proposition 3.1). Contradiction, since the
word rws is minimal-palindromic. This proves the lemma. �

Lemma 5.2. Let w ∈ {0, 1, 2}∗, and let (r, s) be an MP-extension of w. If
w is economic, then |rws| > 6|w|1.

Proof. The proof is a straightforward computation that relies on Proposition
3.1 and the previous lemma:

|rws| = |rws|0 + |rws|1 + |rws|2 > 3|rws|1 − 2 = 3|w|1 + 3|rs|1 − 2

> 3|w|1 + 3(|w|1 + 1)− 2 > 6|w|1.

�

Lemma 5.3. Let w0 be an economic word and let the sequence (wi)i>0 be
defined recursively by wi+1 = wi1

tiwi, where (ti)i>0 is a given sequence of
positive integers. If for each nonnegative integer i we have ti < |wi|0, then
all the words wi are economic.

Proof. We proceed by induction on i. The base is clear (there is nothing to
prove for i = 0). We now assume that wi is economic and prove that then
wi+1 is also economic. We should prove that wi+1 is k-economic for each k,
k = 0, 1, . . . , |wi+1|1.

Assume first 0 6 k 6 |wi|1. By the inductive assumption, wi is k-
economic. Let (q,m) be a k-witness of wi. Recall that m 6 k and 2m+ |q| >
|wi|1 + k + 3. Let

p = 1mq1ti+mq1m.

Since 1mq ∈ Subw(wi) and 1m ∈ Subw(1k), we have p ∈ Subw(wi1
tiwi1

k) =
Subw(wi+11

k). Furthermore,

|p| = 3m+ 2|q|+ ti = 2(2m+ |q|)−m+ ti > 2(|wi|1 + k + 3)− k + ti

= |wi+1|1 + k + 6 > |wi+1|1 + k + 3.

This gives that wi+1 is k-economic.
Assume now k = |wi|1+1. Then the word wi is (k−1)-economic. Let (q,m)

be a (k − 1)-witness of wi (now m 6 k − 1). Let (again) p = 1mq1ti+mq1m.
Then p ∈ Subw(wi+11

k) and

|p| = 3m+ 2|q|+ ti = 2(2m+ |q|)−m+ ti

> 2(|wi|1 + k − 1 + 3)− (k − 1) + ti = |wi+1|1 + k + 5 > |wi+1|1 + k + 3;
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therefore, wi+1 is k-economic.
Let now |wi|1 + 1 < k 6 |wi|1 + ti. Then we write

p = 1kwi1
k.

Clearly, p ∈ Subw(wi+11
k), and since ti + 1 6 |wi|0 and |wi|1 + 2 6 k, we

have

|p| = 2k + |wi|1 + |wi|0 > k + 2|wi|1 + 2 + ti + 1 = |wi+1|1 + k + 3,

which means that wi+1 is k-economic.
Finally, assume |wi|1 + ti < k 6 |wi+1|1. Let j = |wi|1 + ti and l = k − j.

Since k − j 6 |wi|1, we conclude that wi is l-economic. Let (q,m) be an
l-witness of wi. Write

p = 1j+mq1j+m.

Since 1j ∈ Subw(wi1
ti), 1mq ∈ Subw(wi) and j + m 6 k, we have p ∈

Subw(wi+11
k). Furthermore,

|p| = 2j + |1mq1m| > 2j + |wi|1 + l + 3 = |wi+1|1 + k + 3.

Therefore, wi+1 is economic also in this case, which completes the proof. �

We now recall a construction by Holub and Saari that will be useful in our
case, too. For a sequence (ti)i>0, let w(t0, t1, . . . , tj−1) denote the word wj from
the statement of Lemma 5.3, with the initial term w0 = 0000 (we observe that
w0 is economic as a ternary word; indeed, since |w0|1 = 0, we only have to
check whether w0 is 0-economic, and it clearly is since w0 itself is a palindrome
of length 4). Note that, if the sequence (ti)i>0 satisfies 2i 6 ti < 2i+2 for
each i, then we easily see tj < 2j+2 = |w(t0, t1, . . . , tj−1)|0, and thus, by
Lemma 5.3, the word w(t0, t1, . . . , tj−1) is economic (for each j and for each
sequence (ti)i>0 satisfying the required property). Holub and Saari proved [18,
Lemma 9] that for every large enough integer k (in particular, they proved
for k > 448, but the exact bound is of no relevance) there exists a word, say
vk, that can be obtained by the described construction, such that |vk| = k;
further, we have

lim
k→∞

|vk|1
|vk|

= 1. (4)

We now have enough prerequisites to prove the main theorem of this section.
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Theorem 5.4. Let R(n) denote the maximal MP-ratio over all the words
w ∈ {0, 1, 2}∗, |w| = n. We have

lim
n→∞

R(n) = 6.

Proof. Given a positive real number η, choose an integer k0 such that, for
each k > k0, we have

|vk|1
|vk|

> 1− η

6

(such k0 exists because of (4)). Let a pair (r, s) be an MP-extension of vk,
k > k0. By Lemma 5.2, due to the fact that the word vk is economic, we have

|rvks|
|vk|

>
6|vk|1
|vk|

> 6− η;

therefore, the MP-ratio of vk is greater than 6− η. This completes the proof.
�

6 A postponed technical theorem

Theorem 6.1. Let u ∈ {1, 2}∗, let t, v ∈ 2∗, and let p and q be subpalin-
dromes of tu and uv, respectively. If

|p|+ |q| > 2|u|,

then

|u|1 6
|tv| − 1

|tv|
|tuv|2. (5)

Before we begin the proof, we shall show that it is enough to prove the
theorem in the special case when the subpalindrome p, respectively q, starts
(and ends) with t, respectively v. Assume that this case of the theorem is
proved. Let now t, u, v, p and q be as in the statement of the theorem, but
not satisfying the conditions of the described special case. Let t0, respectively
v0, be the longest prefix (and suffix) of p, respectively q, that is a subword
of t, respectively v; note that |t0v0| < |tv|. Then p and q are subpalindromes
of t0u and uv0, respectively, |p|+ |q| > 2|u|, and t0, u, v0, p and q satisfy the
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condition of the described special case. Since the theorem is assumed to hold
in this case, we have

|u|1 6
|t0v0| − 1

|t0v0|
|t0uv0|2 <

|tv| − 1

|tv|
|tuv|2 (6)

(where the second inequality follows from |t0v0|−1
|t0v0| = 1− 1

|t0v0| < 1− 1
|tv| = |tv|−1

|tv|
and |t0uv0|2 < |tuv|2); therefore, the theorem holds for t, u, v, p and q.

From now onward we assume that p, respectively q, contains all the letters
from t, respectively v.

In the following two subsections we shall give two (very) different proofs
of Theorem 6.1. The second proof is (much) shorter than the first one, and
many would probably agree that it is also more elegant. However, we feel that
the second proof is a neat little “trick” that works almost by a coincidence,
while the first proof presents a deep structural analysis and gives some insight
into why the theorem is true (we actually feel that the first proof is more
intuitive than the second one, despite some quite heavy expressions at some
places). In case that a result similar to Theorem 6.1 turns out to be needed
to deal with (for example) the MP-ratio for alphabets of larger arities, we
think that it would not be surprising if the (suitably modified) first proof
would then still work, but the second one would not. Therefore, it is our
belief that, despite the evident disparity in their lengths, both proofs have
their own merits, and thus we decided to present them both.

6.1 First proof

We first define sequences P1, P2, . . . , P|p| and Q1, Q2, . . . , Q|q| such that 1 6
P1 < P2 < · · · < P|p| 6 |tu| and |t|+ 1 6 Q1 < Q2 < · · · < Q|q| 6 |tuv|,

p = (tuv)[P1](tuv)[P2] . . . (tuv)[P|p|]

and
q = (tuv)[Q1](tuv)[Q2] . . . (tuv)[Q|q|].

We write P = {P1, P2, . . . , P|p|} and Q = {Q1, Q2, . . . , Q|q|}.
We define σP : P → P by σP : Ps 7→ P|P |−s+1 and σQ : Q → Q by

σQ : Qs 7→ Q|Q|−s+1. Note that σP and σQ are bijections, their squares are
identical mappings.
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For 1 6 n 6 |t|, let σ0(n) = n and

σi+1(n) =


σP (σi(n)), for 2 | i and σi(n) ∈ P ;
σQ(σi(n)), for 2 - i and σi(n) ∈ Q;
undefined, otherwise.

In a similar manner, for |tu|+ 1 6 n 6 |tuv|, let σ0(n) = n and

σi+1(n) =


σQ(σi(n)), for 2 | i and σi(n) ∈ Q;
σP (σi(n)), for 2 - i and σi(n) ∈ P ;
undefined, otherwise.

We now show a few properties of the defined notions.

Proposition 6.2. a) For every n,m ∈ Q (respectively, n,m ∈ P ), if
n < m, then σQ(n) > σQ(m) (respectively, σP (n) > σP (m)).

b) We have σ0(n) > σ2(n) > σ4(n) > · · · and σ1(n) < σ3(n) < σ5(n) <
· · · for n > |tu| + 1, and σ0(n) < σ2(n) < σ4(n) < · · · and σ1(n) >
σ3(n) > σ5(n) > · · · for n 6 |t|. (The inequalities are extended as long
as the terms are defined.)

c) If one of the following holds:

1) n and m simultaneously belong to the interval [1, |t|]N or the in-
terval [|tu|+ 1, |tuv|]N, and i and j are of the same parity; or

2) n and m are in different intervals and i and j are of opposite
parities,

then σi(n) = σj(m) implies n = m and i = j. (In particular, σi(n) =
σj(m) is impossible in the case 2).)

d) For each n such that n 6 |t| or n > |tu|+1, there exists z ∈ N such that
σz(n) is the last defined term in the sequence σ0(n), σ1(n), σ2(n) . . .

Proof. a) Let n,m ∈ Q and n < m. Write n = Qs and m = Qr. Since s < r,
we have |Q| − s+ 1 > |Q| − r + 1, and thus

σQ(n) = σQ(Qs) = Q|Q|−s+1 > Q|Q|−r+1 = σQ(Qr) = σQ(m),

which was to be proved. The proof of the claim for n,m ∈ P and σP is
analogous.
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b) We consider only the case n > |tu| + 1 (the other one is analogous).
Since σ2(n) = σP (σQ(n)) ∈ P (assuming, of course, that σ2(n) is defined),
we have

σ2(n) 6 |tu| < |tu|+ 1 6 n = σ0(n).

Iteratively applying a), we get

σ3(n) = σQ(σ2(n)) > σQ(σ0(n)) = σ1(n),

then
σ4(n) = σP (σ3(n)) < σP (σ1(n)) = σ2(n)

etc., which was to be proved.
c) Let σi(n) = σj(m). Assume first that 1) holds. Without loss of gener-

ality, let m,n > |tu| + 1 (the case m,n 6 |t| is analogous), and let i > j. If
i > j = 0, then 2 | i, and we have σP (σi−1(n)) = σi(n) = σj(m) = m, which
is impossible since the left-hand side is in P , and thus no greater than |tu|,
while m > |tu|+ 1. Therefore, if j = 0, then i = 0, and we then immediately
have n = m, which was to be proved. Assume now i > j > 0. If i and j
are even, then σP (σi−1(n)) = σi(n) = σj(m) = σP (σj−1(m)), which implies
σi−1(n) = σj−1(m); if i and j are odd, we get the same conclusion in a similar
manner. Iterating this, we obtain σi−j(n) = σ0(m). By the previous case, we
get n = m and i− j = 0, that is, i = j, which was to be proved.

Assume now that 2) holds and let i > j. In the same way as in the previous
paragraph we conclude that σi(n) = σj(m) implies σi−j(n) = σ0(m) = m.
However, if |n| > |tu| + 1 (and then m 6 |t|), then, since 2 - i − j, we have
σi−j(n) = σQ(σi−j−1(n)) > |t|+ 1, a contradiction; if n 6 |t|, we again get a
contradiction in a similar manner.

Therefore, we have proved that, under any of the assumptions 1) or 2),
σi(n) = σj(m) implies n = m and i = j.

d) This is a direct consequence of b). �

The following lemma will be useful.

Lemma 6.3. a) For each n ∈ Q such that σP (σQ(n)) is defined (that is,
σQ(n) ∈ P ), we have

n− σP (σQ(n)) 6 2(|t|+ |v|)− 1

− |[n, |tuv|]N \Q| − |[σQ(n), |tuv|]N \Q|
− |[1, σQ(n)]N \ P | − |[1, σP (σQ(n))]N \ P |.
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Also, for each n ∈ P such that σQ(σP (n)) is defined (that is, σP (n) ∈
Q), we have

σQ(σP (n))− n 6 2(|t|+ |v|)− 1

− |[1, n]N \ P | − |[1, σP (n)]N \ P |
− |[σP (n), |tuv|]N \Q| − |[σQ(σP (n)), |tuv|]N \Q|.

b) For each n ∈ Q such that σP (σQ(n)) is undefined (that is, σQ(n) /∈ P ),
we have

n 6 2(|t|+ |v|) + |P | − σQ(n)− |[n, |tuv|]N \Q| − |[σQ(n), |tuv|]N \Q|.

Also, for each n ∈ P such that σQ(σP (n)) is undefined (that is, σP (n) /∈
Q), we have

|tuv|+ 1− n 6 2(|t|+ |v|) + |Q| − (|tuv|+ 1− σP (n))

− |[1, n]N \ P | − |[1, σP (n)]N \ P |.

Proof. a) We shall prove only the first statement (the second one is analo-
gous).

The following equalities will be used repeatedly: for any x ∈ [1, |P |]N we
have

Px = x+ |[1, Px]N \ P |,

and for any x ∈ [1, |Q|]N we have

Qx = |t|+ x+ |[|t|+ 1, Qx]N \Q|
= |t|+ x+ (|[|t|+ 1, |tuv|]N \Q| − |[Qx, |tuv|]N \Q|)
= |t|+ x+ ((|uv| − |Q|)− |[Qx, |tuv|]N \Q|)
= |tuv|+ x− |Q| − |[Qx, |tuv|]N \Q|.

Let us now proceed to the proof. Since n ∈ Q and σQ(n) ∈ P , we may
write n = Qs and σQ(n) = Q|Q|−s+1 = Pr (and also σP (σQ(n)) = P|P |−r+1).
We then have:

n− σP (σQ(n)) = Qs − P|P |−r+1

= |tuv|+ s− |Q| − |[n, |tuv|]N \Q|
− (|P | − r + 1 + |[1, σP (σQ(n))]N \ P |)
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= |tuv|+ s− |Q| − |[n, |tuv|]N \Q| − |P | − 1

− |[1, σP (σQ(n))]N \ P |+ (Pr − |[1, Pr]N \ P |)
= |tuv|+ s− |Q| − |[n, |tuv|]N \Q| − |P | − 1

− |[1, σP (σQ(n))]N \ P |+Q|Q|−s+1 − |[1, σQ(n)]N \ P |
= |tuv|+ s− |Q| − |[n, |tuv|]N \Q| − |P | − 1

− |[1, σP (σQ(n))]N \ P | − |[1, σQ(n)]N \ P |
+ (|tuv|+ |Q| − s+ 1− |Q| − |[σQ(n), |tuv|]N \Q|)

= 2(|t|+ |v|) + 2|u| − |P | − |Q| − |[n, |tuv|]N \Q|
− |[1, σP (σQ(n))]N \ P | − |[1, σQ(n)]N \ P |
− |[σQ(n), |tuv|]N \Q|
6 2(|t|+ |v|)− 1− |[n, |tuv|]N \Q| − |[1, σP (σQ(n))]N \ P |
− |[σQ(n), |tuv|]N \Q| − |[1, σQ(n)]N \ P |,

(7)

which was to be proved.
b) We shall prove only the first statement (the second one is analogous).

In addition to the two equalities from the part a), we shall also use the
following one: for any x ∈ [1, |Q|]N we have

σQ(Qx) = Q|Q|−x+1 = |tuv|+ (|Q| − x+ 1)− |Q| − |[σQ(Qx), |tuv|]N \Q|

= |tuv| − x+ 1− |[σQ(Qx), |tuv|]N \Q|.

Let us now proceed to the proof. Since n ∈ Q, we may write n = Qs. We
then have:

n = Qs = |tuv|+ s− |Q| − |[n, |tuv|]N \Q|
= |tuv|+ (|tuv| − σQ(n) + 1− |[σQ(n), |tuv|]N \Q|)
− |Q| − |[n, |tuv|]N \Q|

= 2(|t|+ |v|) + 2|u|+ 1

− |Q| − σQ(n)− |[n, |tuv|]N \Q| − |[σQ(n), |tuv|]N \Q|
6 2(|t|+ |v|) + |P | − σQ(n)− |[n, |tuv|]N \Q| − |[σQ(n), |tuv|]N \Q|,

which was to be proved. �

Given a number n, n 6 |t| or n > |tu|+ 1, let end(n) denote the number
z whose existence was shown in Proposition 6.2d). We say that n dies if
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|t|+ 1 6 σend(n)(n) 6 |tu|. Let n be such that n dies and that σend(n)(n) /∈ P .
Note that it is impossible for any m, m 6= n, to have σend(m)(m) = σend(n)(n)
(and thus σend(m)(m) /∈ P ). Indeed, in that case n and m would satisfy one
of the conditions 1) or 2) from Proposition 6.2c), which would imply m = n,
a contradiction. Therefore,

|{n : n dies and σend(n)(n) /∈ P}| 6 |[|t|+ 1, |tu|]N \ P |
= |[1, |tu|]N \ P | = |tu| − |p|.

Analogously, we prove

|{n : n dies and σend(n)(n) /∈ Q}| 6 |[|t|+ 1, |tu|]N \Q|
= |[|t|+ 1, |tuv|]N \Q| = |uv| − |q|.

Therefore, there are at most |tu| − |p| + |uv| − |q| < |t| + |v| numbers n
that die. This implies that there exists n, n 6 |t| or n > |tu| + 1, that does
not die. Let n0 be any such number. Without loss of generality, we may
assume n0 > |tu| + 1. By the choice of n0, we have either σend(n0)(n0) 6 |t|
or σend(n0)(n0) > |tu|+ 1.

Lemma 6.4. Let i, i > 0, be such that σ2i+2(n0) is defined.

a) For each m, m > |tu|+ 1, we have one of the following:

• there exists j such that σ2i+2(n0) < σj(m) 6 σ2i(n0);

• 2 | end(m) and σend(m)(m) > max{σ2i(n0), σ2i+1(n0)};
• 2 - end(m) and σend(m)(m) < min{σ2i+1(n0), σ2i+2(n0)}.

Also, for each m, m 6 |t|, we have one of the following:

• there exists j such that σ2i+2(n0) < σj(m) 6 σ2i(n0);

• 2 - end(m) and σend(m)(m) > max{σ2i(n0), σ2i+1(n0)};
• 2 | end(m) and σend(m)(m) < min{σ2i+1(n0), σ2i+2(n0)}.

b) To each m, m 6 |t| or m > |tu|+ 1, for which there exists j described
in a) we can assign one such j in such a way that all the corresponding
values σj(m) are different.
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Proof. a) We shall prove only the first assertion (the second one is analogous).
Choose the least even j such that σj(m) 6 σ2i(n0), or the least odd j such
that σj(m) > σ2i+2(n0), assuming that there exists j that satisfies either of
these two conditions. We claim that in that case we have

σ2i+2(n0) < σj(m) 6 σ2i(n0).

Assume first that j is even. If j = 0, then

σ2i+2(n0) = σP (σ2i+1(n0)) 6 |tu| < m = σj(m),

which was to be proved. If j > 0, then σ2i(n0) < σj−2(m) (by the minimality
of j), and Proposition 6.2a) (applied twice) now gives

σ2i+2(n0) < σj(m),

which was to be proved. Assume now that j is odd. If j = 1, then, having in
mind that σ2i+2(n0) is defined, that is, σ2i+1(n0) ∈ P , we obtain m > |tu| >
σ2i+1(n0), and now Proposition 6.2a) gives

σ1(m) = σQ(m) < σQ(σ2i+1(n0)) = σQ(σQ(σ2i(n0))) = σ2i(n0),

which was to be proved. If j > 1, then σj−2(m) 6 σ2i+2(n0) (by the minimal-
ity of j), and Proposition 6.2a) (applied twice) now gives

σj(m) = σQ(σP (σj−2(m))) 6 σQ(σP (σ2i+2(n0)))

= σQ(σP (σP (σQ(σ2i(n0))))) = σ2i(n0),

which was to be proved.
Assume now that j from the previous paragraph does not exist. Let 2 |

end(m). Then clearly
σend(m)(m) > σ2i(n0),

since otherwise there would exist the even j from the previous paragraph.
We now prove

σend(m)(m) > σ2i+1(n0).

Suppose σ2i+1(n0) > σend(m)(m). In fact, the inequality must be strict, since
the right-hand side does not belong to Q (by the definition of end(m)), while
the left-hand side does. Then, by Proposition 6.2a), we have

σ2i+2(n0) = σP (σ2i+1(n0)) < σP (σend(m)(m))

= σP (σP (σend(m)−1(m))) = σend(m)−1(m),
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and thus there would exist the odd j from the previous paragraph, a contra-
diction. The case 2 - end(m) is similar. Indeed, the inequality

σend(m)(m) > σ2i+2(n0)

is impossible, since it would have to be strict (the right-hand side is in P ,
the left-hand side is not), and thus the odd j from the previous paragraph
would exist; the inequality

σend(m)(m) > σ2i+1(n0)

is also impossible, since applying σQ to the both sides gives, by Proposi-
tion 6.2a), σend(m)−1(m) 6 σ2i(n0), and thus the even j from the previous
paragraph would exist. This completes the proof.

b) Define the following relation on the set [1, |t|]N ∪ [|tu|+ 1, |tuv|]N:

m ∼ m′ if and only if there exists l such that m′ = σl(m).

Let us show that “∼” is an equivalence relation. Indeed, it is clearly reflexive
and symmetric (if m′ = σl(m), then it is easily checked that m = σl(m

′)),
and if m′ = σl(m) and m′′ = σl′(m

′), then m′′ = σl′(σl(m)), while it is not
hard to see that either σl′(σl(m)) = σl′+l(m) or σl′(σl(m)) = σ|l′−l|(m); this
proves the assertion.

We claim that each equivalence class is of size either 1 or 2. This is
implied by the following observation: if m′ 6= m, m′ = σl(m) and m′ and m
simultaneously belong to the interval [1, |t|]N or the interval [|tu|+ 1, |tuv|]N,
then l is odd, while if m′ and m are in different intervals, then l is even.

We are now ready to prove b). In the rest of the proof, m (and also m′)
will always denote a value from [1, |t|]N ∪ [|tu| + 1, |tuv|]N such that there
exists j for which σ2i+2(n0) < σj(m) 6 σ2i(n0).

Note that, if σj(m) = σj′(m
′), then m ∼ m′ (since either m′ = σj+j′(m)

or m′ = σ|j−j′|(m)). Therefore, if m is alone in its class, then its assigned
j (whichever we choose if there is a choice) will not collide with the other
assignments. Let now m ∼ m′, m 6= m′. We prove that there exist j and j′

such that
σ2i+2(n0) < σj(m), σj′(m

′) 6 σ2i(n0)

and
σj(m) 6= σj′(m

′).
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Note that from m ∼ m′ we get that neither m nor m′ dies. It is enough
to prove that for any m that does not die there exist both an even j and
an odd j that satisfy the requirement. Let us first show why this is enough.
Since neither m nor m′ dies, if, say, both m,m′ > |tu|+1 (the other cases are
similar), then we can choose j and j′ to be of the same parity, and Proposition
6.2c) implies σj(m) 6= σj′(m

′), which was to be proved.
Therefore, assume that m does not die, and let, without loss of gener-

ality, m > |tu| + 1. If 2 | end(m), then, because of σend(m)(m) ∈ P , we
have σend(m)(m) 6 |t|. Since σ2i(n0) ∈ Q (because σ2i+1(n0) is defined) and
σ2i+1(n0) ∈ Q (because it equals σQ(σ2i(n0))), we have that σend(m)(m) is
less than both of these values. But this implies, as seen during the proof of
the part a), that there exist both an even j and an odd j that satisfy the
requirement, which was to be proved. The case 2 - end(m) is analogous. This
completes the proof. �

Finally, we shall need the following lemma.

Lemma 6.5. Let n be such that n > |tu|+ 1 and σend(n)(n) > |tu|+ 1. Then:

2|tuv|+ 1− n− σend(n)(n)

> |{m : m > |tu|+ 1, end(m) > end(n) and σend(m)(m) > |tu|+ 1}|
+ |{m : m > σend(n)(n) and m dies}|

Proof. Let us first prove the following: if |tu| + 1 6 m < m′ and both
σend(m)(m), σend(m′)(m

′) > |tu| + 1, then end(m) 6 end(m′). Suppose the
contrary: end(m) > end(m′). We get 2 - end(m′) (because of σend(m′)(m

′) /∈
P ); therefore, by Proposition 6.2a), from m < m′ we obtain σend(m′)(m) >
σend(m′)(m

′) (the left-hand side is defined since end(m) > end(m′)). However,
this implies σend(m′)(m) > |tu|+1 and thus σend(m′)(m) /∈ P , which contradicts
end(m) > end(m′). This proves the assertion.

Now, let n be as in the lemma’s statement. In the calculations below we
shall need only one more observation: the function m 7→ σend(m)(m) bijec-
tively maps the set

{m : m > n, end(m) = end(n) and σend(m)(m) > |tu|+ 1}

to the set

{m : m < σend(n)(n), end(m) = end(n) and σend(m)(m) > |tu|+ 1}
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(indeed, this follows by Proposition 6.2a), having in mind that 2 - end(n), and
we see that the considered function is its own inverse). For the sake of brevity,
we say that m, m > |tu|+1, is pleasant if end(m) > end(n) and σend(m)(m) >
|tu|+ 1, and is delightful if end(m) = end(n) and σend(m)(m) > |tu|+ 1. Note
that, by the assertion from the first paragraph, there are no pleasant numbers
less than n, nor less than σend(n)(n) (since end(σend(n)(n)) = end(n)). We
finally have:

2|tuv|+ 1− n− σend(n)(n)

= |[n+ 1, |tuv|]N|+ |[σend(n)(n), |tuv|]N|
> |{m : m > n, m is pleasant or delightful}|

+ |{m : m > σend(n)(n), m is pleasant or delightful, or m dies}|
= |{m : m > n, m is delightful}|+ 2|{m : m is pleasant}|

+ |{m : m > σend(n)(n), m is delightful or m dies}|
= |{m : m < σend(n)(n), m is delightful}|+ 2|{m : m is pleasant}|

+ |{m : m > σend(n)(n), m is delightful or m dies}|
= |{m : m is delightful}|+ 2|{m : m is pleasant}|

+ |{m : m > σend(n)(n) and m dies}|
> |{m : m is pleasant or delightful}|

+ |{m : m > σend(n)(n) and m dies}|,

(8)

which was to be proved. �

Finally, we are ready to prove Theorem 6.1.

First proof of Theorem 6.1. First of all, we make a (trivial) observation that,
whenever m ∈ [1, |t|]N ∪ [|tu| + 1, |tuv|]N and σi(m) is defined, then holds
(tuv)[σi(m)] = 2.

Assume first 2 | end(n0) (where n0 is chosen as described earlier). Then
σend(n0)(n0) ∈ P , and therefore σend(n0)(n0) 6 |t|. By Proposition 6.2b), we
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may write

|tuv|2 =
∣∣(tuv)[n0 + 1, |tuv|]

∣∣
2

+

end(n0)
2
−1∑

i=0

∣∣(tuv)[σ2i+2(n0) + 1, σ2i(n0)]
∣∣
2

+
∣∣(tuv)[1, σend(n0)(n0)]

∣∣
2

= (|tuv| − n0) +

end(n0)
2
−1∑

i=0

∣∣(tuv)[σ2i+2(n0) + 1, σ2i(n0)]
∣∣
2

+ σend(n0)(n0).

(9)

Write k = |tv|. Let us first prove that, for each i such that σ2i+2(n0) is
defined, we have

|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|2 >
k

k − 1
|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|1. (10)

It is enough to prove

|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|2 >
σ2i(n0)− σ2i+2(n0) + 1

2
;

indeed, we note that then we would have |(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|1 6
σ2i(n0)−σ2i+2(n0)−1

2
, and thus

|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|2
|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|1

>
σ2i(n0)− σ2i+2(n0) + 1

σ2i(n0)− σ2i+2(n0)− 1

= 1 +
2

σ2i(n0)− σ2i+2(n0)− 1

> 1 +
2

(2k − 1)− 1
= 1 +

1

k − 1
=

k

k − 1
(11)

(the last inequality follows by Lemma 6.3a) for n = σ2i(n0)), which is what
we want to prove. Therefore, let us prove the claimed inequality.

We shall use Lemma 6.4 here. If σend(m)(m) > max{σ2i(n0), σ2i+1(n0)} for
either m > |tu|+ 1 and 2 | end(m), or m 6 |t| and 2 - end(m), then we have
σend(m)(m) /∈ Q; therefore, there are at most

min{|[σ2i(n0), |tuv|]N \Q|, |[σ2i+1(n0), |tuv|]N \Q|}
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such values m (we recall that, for any two such different values m and m′, we
have σend(m)(m) 6= σend(m′)(m

′), which was necessary for the last conclusion).
In a similar manner, we see that there are at most

min{|[1, σ2i+1(n0)]N \ P |, |[1, σ2i+2(n0)]N \ P |}

values m such that σend(m)(m) < min{σ2i+1(n0), σ2i+2(n0)} and either m >
|tu| + 1 and 2 - end(m), or m 6 |t| and 2 | end(m). Altogether, in the set
[1, |t|]N ∪ [|tu|+ 1, |tuv|]N there are at least

k −min{|[σ2i(n0), |tuv|]N \Q|, |[σ2i+1(n0), |tuv|]N \Q|}
−min{|[1, σ2i+1(n0)]N \ P |, |[1, σ2i+2(n0)]N \ P |}

values m for which there exists a corresponding j from Lemma 6.4. But then
Lemma 6.4b) immediately implies that this bound is also a lower bound for
|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|2. And now, by Lemma 6.3a) for n = σ2i(n0), we
obtain

σ2i(n0)− σ2i+2(n0) + 1

2

6 k − |[σ2i(n0), |tuv|]N \Q|+ |[σ2i+1(n0), |tuv|]N \Q|
2

− |[1, σ2i+1(n0)]N \ P |+ |[1, σ2i+2(n0)]N \ P |
2

6 k −min{|[σ2i(n0), |tuv|]N \Q|, |[σ2i+1(n0), |tuv|]N \Q|}

−min{|[1, σ2i+1(n0)]N \ P |, |[1, σ2i+2(n0)]N \ P |}

6 |(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|2,

which proves the claim.
Using (10), from (9) we get

|tuv|2 >
k

k − 1

end(n0)
2
−1∑

i=0

|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|1

=
k

k − 1
|(tuv)[σend(n0)(n0), n0]|1 =

k

k − 1
|u|1

(12)
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(the inequality is strict since the rightmost summand at (9) is nonzero; the
last equality follows from σend(n0)(n0) 6 |t| and n0 > |tu|+1), which completes
the case 2 | end(n0).

We can now assume that not only 2 - end(n0), but also 2 - end(n) for
any n that does not die (otherwise, if there were such n, we could take it for
n0, and the above proof would work). We still assume n0 > |tu|+ 1, without
loss of generality. Finally, a further assumption we can make is that end(n0)
is no greater than end(n) for any n that does not die and that n > |tu| + 1
(since otherwise we could again rechoose n0). With all these assumptions, we
proceed to the rest of the proof.

Using (10), we get

|tuv|2 =
∣∣(tuv)[n0 + 1, |tuv|]

∣∣
2

+

end(n0)−3
2∑
i=0

∣∣(tuv)[σ2i+2(n0) + 1, σ2i(n0)]
∣∣
2

+
∣∣(tuv)[1, σend(n0)−1(n0)]

∣∣
2

> (|tuv| − n0) +
k

k − 1

end(n0)−3
2∑
i=0

|(tuv)[σ2i+2(n0) + 1, σ2i(n0)]|1

+ |(tuv)[1, σend(n0)−1(n0)]|2

= |tuv| − n0 + |(tuv)[1, σend(n0)−1(n0)]|2

+
k

k − 1
|(tuv)[σend(n0)−1(n0) + 1, n0]|1.

Therefore, it is enough to prove

|tuv| − n0 + |(tuv)[1, σend(n0)−1(n0)]|2 >
k

k − 1
|(tuv)[1, σend(n0)−1(n0)]|1

(in that case the calculations above would give |tuv|2 > k
k−1 |u|1, which is

what we need).
The following sets will be needed through the proof, and for the sake of
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brevity, we name them as follows:

A= {m : |tu|+16m<σend(n0)(n0) and |t|+16 σend(m)(m)6 σend(n0)−1(n0)};

B = {m : |tu|+16m<σend(n0)(n0) and σend(n0)−1(n0)<σend(m)(m)6 |tu|};

C = {m :m> σend(n0)(n0) and m dies};

D= {m :m> |tu|+1, end(m)> end(n0) and σend(m)(m)> |tu|+1}

= {m :m> |tu|+1 and m does not die};

E = [σend(n0)−1(n0)+1, |tu|]N\P ;

F = [σend(n0)−1(n0)+1, |tu|]N\Q= [σend(n0)−1(n0), |tuv|]N\Q.

The equality between the two forms of D follows by the assumption intro-
duced above, and the one between the two forms of F is clear. We shall also
use the equality

|A|+ |B|+ |C|+ |D| = |v|
(which is easily seen), as well as the inequality

|E|+ |F | > |B|

(which follows by the observation that the function m 7→ σend(m)(m) injec-
tively maps the set B to the set E ∪ F ).

Note that, for each m where σend(n0)(n0) 6 m 6 |tuv|, we have |t| +
1 6 σQ(m) 6 σend(n0)−1(n0); that makes for |tuv| − σend(n0)(n0) + 1 let-
ters 2 in the word (tuv)[|t| + 1, σend(n0)−1(n0)]. Further, for each m ∈ A,
the value σend(m)(m) marks the position of another letter 2 in the word
(tuv)[|t| + 1, σend(n0)−1(n0)] (and all these positions are pairwise different,
and also different from the positions from the previous sentence, since we
recall that all the positions “generated” by a number that dies are unique).
Therefore:

|(tuv)[1, σend(n0)−1(n0)]|2 > |t|+ (|tuv| − σend(n0)(n0) + 1) + |A|.

From this inequality we get

|tuv| − n0+|(tuv)[1, σend(n0)−1(n0)]|2
> |tuv| − n0 + |t|+ (|tuv| − σend(n0)(n0) + 1) + |A|
> |D|+ |C|+ |t|+ |A| = |t|+ |v| − |B| = k − |B|

(13)
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(the second inequality is due to Lemma 6.5), and

|(tuv)[1,σend(n0)−1(n0)]|1
= σend(n0)−1(n0)− |(tuv)[1, σend(n0)−1(n0)]|2
6 2(|t|+ |v|) + |P | − σend(n0)(n0)− |[σend(n0)−1(n0), |tuv|]N \Q|
− (|t|+ (|tuv| − σend(n0)(n0) + 1) + |A|)

= |t|+ |v|+ (|P |+ |v| − |tuv|)− |F | − 1− |A|
= k − |[1, |tu|]N \ P | − |F | − 1− |A|
6 k − |E| − |F | − 1− |A| 6 k − 1− |A| − |B|

(14)

(the first inequality has been obtained with the help of Lemma 6.3b) for
n = σend(n0)−1(n0); note that then |[σQ(n), |tuv|]N\Q| = |[σend(n0)(n0), |tuv|]N\
Q| = 0, since σend(n0)(n0) > |tu|+ 1). Finally,

|tuv| − n0 + |(tuv)[1, σend(n0)−1(n0)]|2
|(tuv)[1, σend(n0)−1(n0)]|1

>
k − |B|

k − 1− |A| − |B|
>

k − |B|
k − 1− |B|

= 1 +
1

k − 1− |B|

> 1 +
1

k − 1
=

k

k − 1
,

(15)

which completes the proof. �

It turns out that the case when the equality in (5) is reached has an
interesting characterization, which can be obtained from the above proof in
the (more or less) straightforward manner.

Proposition 6.6. Under the conditions of Theorem 6.1, the equality in (5)
is reached if and only if, for a positive integer k and a nonnegative integer l,
we have u = (1k−12k)l1k−1, t = ε and v = 2k (or vice versa).

Proof. Assume that u, t, v, p and q are such that the equality is reached.
We may also assume that p and q are longest subpalindromes of tu and uv,
respectively.

We first note that p, respectively q, contains all the letters from t, respec-
tively v (since otherwise the equality cannot be reached because of the strict
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inequality in (6)). Let n0 be as in the proof. Since in the case 2 | end(n0)
we have a strict inequality in (12), we conclude 2 - end(n0), and we then
also recall all the assumptions from the paragraph following (12). Now, in
order for the second and the third inequalities in (15) to be equalities, we
conclude A = ∅ and B = ∅, and then, in order for the last inequality in
(14) to be equality, we conclude |E| + |F | = |B|, that is, E = F = ∅.
The penultimate inequality in (14) (when converted to equality) now gives
|[1, |tu|]N \ P | = |E| = 0, that is,

p = tu. (16)

Since Lemma 6.5 for n0 was used in (13), we need to have equality in that
lemma. Looking at (8), we see that there must not be any pleasant number
(in order to reach the equality at the end), as well as that there must not be
any number greater than n0 that dies (in order to reach the equality at the
beginning). In particular, |tuv| does not die (and this implies 2 - end(|tuv|),
that is, σend(|tuv|)(|tuv|) > |tu|+ 1, because of the recalled assumptions about
n0), end(|tuv|) 6 end(n0) (because there are no pleasant numbers), and from
this we conclude that the only possibility is end(|tuv|) = end(n0) (again
because of the assumptions about n0). Therefore, |tuv| satisfies all the same
assumptions as n0 does, and thus for the rest of the proof we may assume
n0 = |tuv| (we rechoose n0 if necessary).

Assume first end(|tuv|) = 1, that is, σQ(|tuv|) > |tu|+ 1. Then it is easy
to see that q = v, and furthermore, u contains only 1s (since otherwise 2|uv|2

would be a subpalindrome of uv longer than q). Now from (16) we get t = ε,

and thus the equality in (5) reduces to |u| = |v|−1
|v| |uv|2 = |v|−1

|v| |v| = |v| − 1;

in other words, v = 2k and u = 1k−1, which was to be proved.
Assume now end(|tuv|) > 1. Let k = |tv|. Then the second inequality in

(11) for i = 0 (when converted to equality) gives |tuv| − σ2(|tuv|) = 2k − 1,
and the first inequality gives∣∣(tuv)[σ2(|tuv|) + 1, |tuv|]

∣∣
2

=
|tuv| − σ2(|tuv|) + 1

2
= k (17)

and ∣∣(tuv)[σ2(|tuv|) + 1, |tuv|]
∣∣
1

=
|tuv| − σ2(|tuv|)− 1

2
= k − 1. (18)

Also note that the second inequality in (11) is an application of Lemma 6.3a),
and in order for the equality to hold in that lemma, from the last lines of (7)
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we see that |p|+|q| = 2|u|+1 must hold; (16) reduces this to |t|+|q| = |u|+1,
which implies

|uv| − |q| = |t|+ |v| − 1 = k − 1. (19)

Further, since (16) implies that tu ends with |t| letters 2, that is, tuv ends
with k letters 2, by (17) and (18) we conclude that there is an array of k− 1
letters 1 immediately preceding those 2s. In other words, 1k−12|t| ∈ Suff(tu),
and now because of (16) we have 2|t|1k−1 ∈ Pref(tu), that is, 1k−1 ∈ Pref(u).
Those 1s clearly do not participate in the palindrome q, and now (19) implies
that everything else has to, that is,

q = (uv)[k, |uv|]. (20)

Starting from tuv = 2|t|1k−1 . . . 1k−12k, by (20) we get

tuv = 2|t|1k−12k1k−1 . . . 1k−12k,

then by (16)
tuv = 2|t|1k−12k1k−1 . . . 1k−12k1k−12k,

then we again use (20) etc. To conclude,

tuv = 2|t|(1k−12k)l1k−12k for a nonnegative integer l.

Now we evaluate |u|1 = (l+ 1)(k−1) and |tuv|2 = |t|+ (l+ 1)k. The equality
case in (5) is now reduced to (l + 1)(k − 1) = k−1

k
(|t| + (l + 1)k), that is,

k(l + 1) = |t| + (l + 1)k, which gives |t| = 0, that is, t = ε. We then have
v = 2k and u = (1k−12k)l1k−1, and it is straightforward to check that these
words indeed satisfy the required equality. �

6.2 Second proof

Second proof of Theorem 6.1. We prove the theorem by induction on |u|. If
|u| = 0, then (5) trivially holds, since the left-hand side is 0 while the right-
hand side is always nonnegative. Now we assume that the assertion holds for
each word shorter than u, and prove that it holds for u. Let v′ denote the
shortest prefix of uv such that |v′|2 = |v|, and let t′ denote the shortest suffix
of tu such that |t′|2 = |t|.

Assume first that |v′| + |t′| < |u|. Let u = v′u′t′, and let p′ and q′ be
longest subpalindromes of u′t and vu′, respectively (note that we now put
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t to the right and v to the left of u′, not vice versa, as it was before!). We
claim that

|q′| > |p| − 2|t| − 2(|v′| − |v|).
We can write p = 2|t|p1p22

|t|, where p1 ∈ Subw(v′) and p2 ∈ Subw(u′). We
have that p1p2 is a palindrome of length |p|−2|t|; erasing all the letters 1 from
p1 (and there are at most |v′|1, which is |v′| − |v|, of them), and additionally
erasing (if necessary) all the “mirror images” (with respect to the midpoint
of p) of all these 1s, we obtain a subpalindrome of vu′ of length at least
|p| − 2|t| − 2(|v′| − |v|), which proves the claim. Analogously, we also obtain

|p′| > |q| − 2|v| − 2(|t′| − |t|).
We aim to use the inductive assumption on the words v, u′ and t. Clearly,

|u′| = |u|−|v′|−|t′| 6 |u|−|v|−|t| < |u|. Let us now show that the condition
of the theorem is satisfied:

|q′|+ |p′| > |p| − 2|t| − 2(|v′| − |v|) + |q| − 2|v| − 2(|t′| − |t|)
= |p|+ |q| − 2|v′| − 2|t′| > 2|u| − 2|v′| − 2|t′| = 2|u′|.

Therefore, by the inductive assumption, we get

|u′|1 6
|vt| − 1

|vt|
|vu′t|2. (21)

Note that, since 1s inside the word v′ do not participate in the palindrome
q (since the first |v| letters of q are 2), we have |v′|1 6 |uv|− |q|. Analogously,
|t′|1 6 |tu| − |p|. Therefore,

|v′|1 + |t′|1 6 |uv| − |q|+ |tu| − |p| < |t|+ |v|. (22)

Now, (21) and (22) yield:

|u|1 = |v′|1 + |u′|1 + |t′|1 6 |tv| − 1 + |u|1 6
|tv| − 1

|tv|
(|tv|+ |vu′t|2)

=
|tv| − 1

|tv|
(|t′|2 + |v′|2 + |vu′t|2) =

|tv| − 1

|tv|
|tuv|2,

which was to be proved.
Finally, we need to take care of the case |v′|+ |t′| > |u|. Then we have:

|u|1 6 |v′|1 + |t′|1 6 |t|+ |v| − 1 =
|tv| − 1

|tv|
|tv| 6 |tv| − 1

|tv|
|tuv|2,

(where the second inequality was already seen at (22)), which was to be
proved. �
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7 Another postponed technical theorem

Theorem 7.1. Let w ∈ {1, 2}∗ be such that 2|w|2 > |w|1. Let p and q
be two nonempty subpalindromes of w. Let wp, v, wq and t be such that
w = wpv = twq, p is a subword of wp, and q is a subword of wq. Then

|p|+ 2|v|2 + |q|+ 2|t|2 6 4|w|2 + |w|1.

Proof. We distinguish two cases:

• Case 1◦: |wp| 6 |t|;

• Case 2◦: |t| < |wp|.

Case 1◦. In this case we have |p|1 + |q|1 6 |w|1. Furthermore, we have:

|p|2 + 2|v|2 6 |w|2 + |v|2 6 2|w|2.

In an analogous way we obtain |q|2 + 2|t|2 6 2|w|2. Now, we get the required
inequality directly:

|p|+ 2|v|2 + |q|+ 2|t|2 6 |p|1 + |q|1 + |p|2 + 2|v|2 + |q|2 + 2|t|2
6 |w|1 + 4|w|2.

Case 2◦. In this case we may write w = tuv, where u is a nonempty
word. Now suppose that the required inequality does not hold, that is,

|p|+ 2|v|2 + |q|+ 2|t|2 > |w|1 + 4|w|2.

This reduces to

|p|+ |q| > |w|1 + 2|w|2 + 2|u|2 > 2|w|1 + 2|u|2. (23)

Let t̂ and v̂ be the words obtained from the words t and v, respectively,
by erasing all the letters 1 (or, equivalently, t̂ = 2|t|2 and v̂ = 2|v|2), and let
p̂ and q̂ be the longest subpalindromes of t̂u and uv̂, respectively. We then
have:

|p̂| > |p| − 2|t|1;
|q̂| > |q| − 2|v|1.
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Therefore,

|p̂|+ |q̂| > |p| − 2|t|1 + |q| − 2|v|1 > (2|w|1 + 2|u|2)− 2|t|1 − 2|v|1 = 2|u|,

which means that the conditions of Theorem 6.1 are satisfied (for u, t̂, v̂, p̂
and q̂); by that theorem we obtain

|u|1 6
|t̂v̂| − 1

|t̂v̂|
|t̂uv̂|2 < |t̂uv̂|2 6 |tuv|2 = |w|2.

On the other hand, since |p| + |q| 6 |w| + |u|, by the first inequality in (23)
we have |w| + |u| > |w|1 + 2|w|2 + 2|u|2, that is, |u|1 > |w|2 + |u|2 > |w|2, a
contradiction. The proof is completed. �
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