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Abstract

We consider the problem of characterizing the palindromic se-
quences 〈cd−1, cd−2, . . . , c0〉, cd−1 6= 0, having the property that for
any K ∈ N there exists a number that is a palindrome simultaneously
in K different bases, with 〈cd−1, cd−2, . . . , c0〉 being its digit sequence
in one of those bases. Since each number is trivially a palindrome in
all bases greater than itself, we impose the restriction that only palin-
dromes with at least two digits are taken into account. We further
consider a related problem, where we count only palindromes with a
fixed number of digits (that is, d). The first problem turns out not
to be very hard; we show that all the palindromic sequences have the
required property, even with the additional point that we can actually
restrict the counted palindromes to have at least d digits. The second
one is quite tougher; we show that all the palindromic sequences of
length d = 3 have the required property (and the same holds for d = 2,
based on some earlier results), while for larger values of d we present
some arguments showing that this tendency is quite likely to change.
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1 Introduction

Whenever a property of a number depends on the notational base, it might
be an interesting research direction to check whether a number can satisfy
the considered property simultaneously in two or more bases, or even in each
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base, how many such numbers exist, how the possession of the property with
respect to one base depends on the possession of the property with respect
to another base etc. Let us mention a few interesting results of this kind.

Senge and Straus [17] proved that the number of integers such that the
sum of its digits in each of the two bases a and b is smaller than a given
bound is finite if and only if ln a

ln b
/∈ Q; Stewart [18] gave an effective version

of this result, and obtained a generalization. The independence (in a way)
of the sum-of-digits function in different bases was a subject of research of
Bésineau [3], Kamae [10], Queffelec [15], Kim [11] etc. Mauduit, Pomerance
and Sárközy [14] considered some questions about numbers that are Niven
numbers with respect to multiple bases. In automata theory, Cobham [6]
obtained a very interesting characterization of sets of integers recognizable
independently of the notational base. Questions of this kind have been asked
not only for integers, but also for real numbers. We mention, for example, the
question when normality with respect to the base a implies the normality with
respect to the base b (Schmidt [16]), the same question for disjunctiveness
(El-Zanati and Transue [8]) and randomness (Calude and Jürgensen [4]) and
so forth.

Hereby we are concerned with the property of being a palindrome in base
b (we call a number a palindrome in base b if for its expansion in base b, say
〈cd−1, cd−2, . . . , c0〉b, cd−1 6= 0, the equality cj = cd−1−j holds for every j such
that 0 6 j 6 d− 1). Various arithmetic properties of palindromes have been
the subject of many works; for a few examples, see the introductory part of
[2] (which is a paper that the present paper is a direct continuation of), and
some more are [1, 12, 13] and the very recent result [5], which states that for
any base b > 2 and for any linear homogeneous recurrence sequence (an)n∈N
satisfying certain conditions there exists a positive constant c > 0 such that
|{n 6 x : an is palindromic in base b}| ∈ O(x1−c).

Answering a question by Goins [9], the main result in [2] shows not only
that for any given K there is a number that is a palindrome simultaneously in
K different bases, but there is actually a number that is a d-digit palindrome
simultaneously in K different bases, where d is given in advance. In fact, the
same question has been asked by Di Scala and Sombra [7] a few years before
Goins, but this was overlooked in the mentioned paper. The last section of
[2] states a few questions that seem to be a natural continuation of research
on this topic.

In particular, it is asked which palindromic sequences 〈cd−1, cd−2, . . . , c0〉,
cd−1 6= 0, have the property that for any K ∈ N there exists a num-
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ber that is a d-digit palindrome simultaneously in K different bases, with
〈cd−1, cd−2, . . . , c0〉 being its digit sequence in one of those bases. Is this true
for the sequences 〈1, 1, 1〉 and 〈1, 0, 1〉 and, more generally, 〈1, 1, . . . , 1〉 and
〈1, 0, 0, . . . , 0, 1〉, is this perhaps true for all palindromic sequences, or could
the sequences for which this is true be characterized? The only sequences for
which this is known to be true are all the sequences〈(

d− 1

d− 1

)
,

(
d− 1

d− 2

)
,

(
d− 1

d− 3

)
, . . . ,

(
d− 1

1

)
,

(
d− 1

0

)〉
(1)

where d > 2, as well as their multiples by a factor of the form td−1.
We could first ask a question that will turn out to be significantly easier:

which palindromic sequences 〈cd−1, cd−2, . . . , c0〉, cd−1 6= 0, have the property
that for any K ∈ N there exists a number that is a palindrome (not necessar-
ily with d digits) simultaneously in K different bases, with 〈cd−1, cd−2, . . . , c0〉
being its digit sequence in one of those bases? Of course, since each number
is a (one-digit) palindrome in all the bases greater than itself, the question
is trivial unless some restriction is imposed. Two restrictions that seem rea-
sonable are either to take into account only palindromes having at least two
digits, or to take into account only palindromes having at least d digits.
The first restriction is perhaps more natural, but in Section 2 we show that,
even under the second restriction (which is a stronger one), actually all the
palindromic sequence have the described property. In Sections 3 and 4 we
consider the question from the previous paragraph; we show that all the
palindromic sequences of length 3 have the property described there (and we
recall that this is also true for the palindromic sequences of length 2), while
for longer palindromic sequences we present some arguments showing that
this tendency is quite likely to change. Finally, in Section 5 we present a few
possible directions for further research.

2 Variable number of digits

The following theorem actually turns out to be easy to prove, but we never-
theless find it an interesting result. Note that (here and onward) N stands
for the set of positive integers.

Theorem 1. Let d > 2 and a palindromic sequence 〈cd−1, cd−2, . . . , c0〉,
cd−1 6= 0, be given. Then for any K ∈ N there exists n ∈ N and a list
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of bases {b1, b2, . . . , bK} such that, for each i such that 1 6 i 6 K, n is a
palindrome with at least d digits in base bi, and that, for some i0 such that
1 6 i0 6 K, we have 〈cd−1, cd−2, . . . , c0〉bi0

= n.

Proof. Choose any m ∈ N that is greater than each ci, and any s ∈ N that
has (at least) K divisors. Let 1 = a1, a2, . . . , aK be the divisors of s. We
claim that

n =
d−1∑
j=0

cjm
sj

and the list {bi : 1 6 i 6 K}, where bi = m
s
ai , satisfy the given requirements.

Indeed, for each i such that 1 6 i 6 K we have〈
cd−1, 0, 0, . . . , 0︸ ︷︷ ︸

ai − 1 zeros

, cd−2, 0, 0, . . . , 0︸ ︷︷ ︸
ai − 1 zeros

, cd−3, 0, 0, . . . , 0, 0, c1, 0, 0, . . . , 0︸ ︷︷ ︸
ai − 1 zeros

, c0

〉
bi

= n

which can be seen by noting that

d−1∑
j=0

cj(m
s
ai )aij =

d−1∑
j=0

cjm
sj = n.

Therefore, n is indeed a palindrome in base bi, and has ai(d − 1) + 1 >
d − 1 + 1 = d digits. Further, we have 〈cd−1, cd−2, . . . , c0〉b1 = n, which
completes the proof. �

3 Three digits

It is mentioned in the Introduction that all the sequences of the form (1), as
well as their multiples by a factor of the form td−1, have the property that we
are interested in here. Note that for d = 2 the sequence (1) becomes 〈1, 1〉;
multiplying it by a factor of the form td−1 actually becomes multiplying by
any factor t, which thus gives all the palindromic sequences of length 2. We
now show that also for d = 3 all sequences fulfill the requirement.

Theorem 2. Let a palindromic sequence 〈c0, c1, c0〉, c0 6= 0, be given. Then
for any K ∈ N there exists n ∈ N and a list of bases {b1, b2, . . . , bK} such
that, for each i such that 1 6 i 6 K, n is a 3-digit palindrome in base bi,
and that, for some i0 such that 1 6 i0 6 K, we have 〈c0, c1, c0〉bi0

= n.
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Proof. We actually give two constructions that prove this theorem, based
on completely different approaches. Since next to nothing is known in the
case d > 3, the author believes that offering two different approaches here
increases chances for researches to build on some of these ideas and make a
progress in the case d > 3.

In both constructions we assume that a palindromic sequence 〈c0, c1, c0〉,
c0 6= 0, andK ∈ N are given, and find n ∈ N and a list of bases {b1, b2, . . . , bK}
satisfying the statement.

3.1 First construction

Let s be a number that is coprime to all the numbers 1, 2, . . . , K − 1 and to
c0 (we may, e.g., choose s such that s − 1 is a multiple of c0(K − 1)!). We
further require that s is large enough, the meaning of which will be specified
later.

Note that, for each i such that 1 6 i 6 K − 1, since i is coprime to s, we
also have that i is coprime to s− ic0(K − 2)!; for a similar reason, (K − 2)!
is coprime to s − ic0(K − 2)!; finally, since c0 is coprime to s, we also have
that c0 is coprime to s− ic0(K− 2)!. Therefore, there exists modular inverse
of ic20(K − 2)! modulo s− ic0(K − 2)!. This shows that the right-hand sides
of the following system of congruences are well defined:

m ≡ − c1
c20(K − 2)!

(mod s− c0(K − 2)!),

m ≡ − c1
2c20(K − 2)!

(mod s− 2c0(K − 2)!),

m ≡ − c1
3c20(K − 2)!

(mod s− 3c0(K − 2)!),

...

m ≡ − c1
(K − 1)c20(K − 2)!

(mod s− (K − 1)c0(K − 2)!).

(2)

Since s can be chosen as large as we want, we can achieve that all the moduli
are positive. We now show that this system has a solution m. It is enough
to prove that the moduli are pairwise coprime, since the Chinese remainder
theorem then immediately gives the solution m. Suppose that p | s−i1c0(K−
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2)! and p | s− i2c0(K − 2)!, where p is prime and 1 6 i1 < i2 6 K − 1. Then

p | (s− i1c0(K − 2)!)− (s− i2c0(K − 2)!) = (i2 − i1)c0(K − 2)!.

If p | c0, then from p | s − i1c0(K − 2)! we get p | s, which contradicts the
fact that s and c0 are coprime. If p | (K − 2)!, then we similarly get p | s,
but since p | (K − 2)! implies p 6 K − 2 and s is coprime to all the numbers
1, 2, . . . , K − 1, this is again a contradiction. Finally, if p | i2 − i1, then
p 6 i2 − i1 6 K − 2 and thus p | (K − 2)!, which reduces this case to the
previous one.

Therefore, let m be a solution of the system (2). Note that we may choose
a solution m as large as we want, which will be needed. Finally, let

n = c0(ms)
2 + c1ms+ c0.

We claim that n is a 3-digit palindrome in each base bi, 1 6 i 6 K, where

bi = m
(
s− (i− 1)c0(K − 2)!

)
.

The rightmost digit of n in base b equals n mod b. If
⌊

n
b2

⌋
< b, then n

has at most 3 digits in base b, and its third digit from the right equals
⌊

n
b2

⌋
.

Therefore, n is a 3-digit palindrome in base b if and only if n mod b =
⌊

n
b2

⌋
.

We now claim that for each i, 2 6 i 6 K, we have

s− (i− 1)c0(K − 2)! | c0ms+ c1.

Indeed:

c0ms+ c1 ≡ c0m
(
(i− 1)c0(K − 2)!

)
+ c1

≡ c0

(
− c1

(i− 1)c20(K − 2)!

)(
(i− 1)c0(K − 2)!

)
+ c1

= −c
2
0c1(i− 1)(K − 2)!

(i− 1)c20(K − 2)!
+ c1 = −c1 + c1

= 0 (mod s− (i− 1)c0(K − 2)!).

Therefore, bi | m(c0ms+ c1) = c0m
2s+ c1m, and thus

bi | s(c0m2s+ c1m) = c0(ms)
2 + c1ms = n− c0.
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This means that n modulo bi equals c0 for each i such that 2 6 i 6 K. For
i = 1 we have b1 = ms, and thus again n modulo bi equals c0. (Recall that
m can be chosen large enough so that bi > c0.)

We now prove that
⌊

n
b2i

⌋
= c0, that is, c0 6 n

b2i
< c0+1. The first inequality

is obvious. Let us now show the second one. It is enough to show that n
b2i

can arbitrarily close to c0. As we observed earlier, for a fixed s, m can be
chosen as large as we want. Note that

lim
m→∞

n

b2i
= lim

m→∞

c0(ms)
2 + c1ms+ c0(

m
(
s− (i− 1)c0(K − 2)!

))2
= lim

m→∞

c0s
2 + c1s

m
+ c0

m2(
s− (i− 1)c0(K − 2)!

)2
=

c0s
2(

s− (i− 1)c0(K − 2)!
)2 .

Therefore, for any fixed value of s, the quotient n
b2i

can be arbitrarily close to

c0s
2

(s− (i− 1)c0(K − 2)!)2
.

Now, since s can be chosen as large as we want, in order to prove the claim
it is enough to note that

lim
s→∞

c0s
2(

s− (i− 1)c0(K − 2)!
)2 = lim

s→∞

c0(
1− (i−1)c0(K−2)!

s

)2 = c0.

Finally, the observation that b1 = ms and 〈c0, c1, c0〉b1 = c0(ms)
2+c1ms+

c0 = n completes the proof of Theorem 2.

3.2 Second construction

Since some details in this construction depend on whether c1 = 0 or not, we
need to distinguish two cases.

The case c1 6= 0. Let p and q be two positive integers such that: i)
ln p
ln q

/∈ Q; ii) c0 | pq; iii) pq is even; iv) pq > c1; v) 1 < q
p
<
√

c0+1
c0

. These

requirements are given in order in which they are needed through the proof.
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We also note that such numbers indeed exists: one possibility is to take p
equal to a multiple of c0 and take q = p+ 1, which satisfies the requirements
i), ii) and iii), and by taking such p large enough we can also fulfill iv) and
v).

We first show that there exist nonnegative integers g and h such that

1 <
pg

qh
<

√
c0 + 1

c0
.

This means that we need g and h such that

0 < g ln p− h ln q < ln

√
c0 + 1

c0
. (3)

Since i) states that ln p
ln q

/∈ Q, the sequence ({g ln p
ln q
})g∈N, where {·} denotes

the fractional part, is equidistributed in the interval [0, 1]. Therefore, we can
choose g ∈ N such that

0 <

{
g

ln p

ln q

}
<

ln
√

c0+1
c0

ln q
. (4)

Now letting h = bg ln p
ln q
c leads to

g ln p− h ln q = ln q

(
g

ln p

ln q
− h
)

= ln q

(
g

ln p

ln q
−
⌊
g

ln p

ln q

⌋)
= ln q

{
g

ln p

ln q

}
,

and (3) follows by (4).
We now choose large enough positive integer M such that (pq + 1)M >

4(dg+1
2
e+K) + 1, (pq + 1)M > h+ 1 and M > dg−1

2
e+K. Finally, let

a =
c1(pq)

(pq+1)M

c0

(note that a is an integer because of ii)), and let

n = c0a
2 + c1a+ c0.

We shall now find K bases b1, b2, . . . , bK such that n is a 3-digit palindrome
in all those bases. We take b1 = a, which gives n = 〈c0, c1, c0〉b1 . Let us now
construct K − 1 more bases.
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In fact, we shall find such bases that n begins and ends with c0 when
written in each of these bases. Note that the requirement n = 〈c0, f, c0〉b =
c0b

2+fb+c0 can be transformed to b(c0b+f) = n−c0 = a(c0a+c1). Therefore,

any divisor b of a(c0a + c1), larger than c0 and c1, such that a(c0a+c1)
b

equals
c0b+ f with 0 6 f < b, that is, that

c0b 6
a(c0a+ c1)

b
< (c0 + 1)b,

represents a base that satisfies the requirement. The last double inequality
reduces to √

a(c0a+ c1)

c0 + 1
< b 6

√
a(c0a+ c1)

c0
. (5)

Let us show that there indeed exist K − 1 divisors of a(c0a+ c1) that satisfy
this inequality.

Recall the following well-known fact (easily proved by induction): if x is
an odd integer and x | y + 1, then xj | yxj−1

+ 1 for each j. Since, by iii),
pq + 1 is odd, for x = pq + 1, y = pq and j = M + 1 we get

(pq + 1)M+1 | (pq)(pq+1)M

+ 1 =
c0a

c1
+ 1. (6)

We shall now show that for each i such that dg+5
2
e 6 i 6 dg+1

2
e+K there

exist ui, vi such that 0 6 ui, vi 6 (pq + 1)M − 1 and√
a(c0a+c1)

c0+1

(pq + 1)i
< puiqvi 6

√
a(c0a+c1)

c0

(pq + 1)i
. (7)

Let i be fixed, dg+5
2
e 6 i 6 dg+1

2
e+K, and let

z =

√
a(c0a+ c1)

(pq + 1)i
.

Then (7) reduces to
z√
c0 + 1

< puiqvi 6
z
√
c0
. (8)
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Let w be the largest integer such that (pq)w 6 z√
c0

, that is, w =
⌊

logpq
z√
c0

⌋
.

Since

z
√
c0

=

√
a(c0a+ c1)

(pq + 1)i
√
c0

>
a

(pq + 1)i
>

a

(2pq)i
>

a

(pq)2i

=
c1(pq)

(pq+1)M−2i

c0

ii)

> (pq)(pq+1)M−2i−1

(the relation ii) indeed implies that c0 6 pq) and

z
√
c0

=

√
a(c0a+ c1)

(pq + 1)i
√
c0

<

√
a(c0a+ pqc0a)

(pq + 1)i
√
c0

=
a
√
c0

(pq + 1)i− 1
2
√
c0
<

a

(pq)i− 1
2

=
c1(pq)

(pq+1)M−i+ 1
2

c0

iv)

6 (pq)(pq+1)M−i+ 1
2
+1 < (pq)(pq+1)M−i+2,

we get
(pq + 1)M − 2i− 1 6 w 6 (pq + 1)M − i+ 1.

Let l = 1 if pwqw+1 6 z√
c0

, and l = 0 otherwise. In any case we have

pwqw+l 6 z√
c0

and pwqw+l+1 > z√
c0

(if l = 0 this follows by the choice of l,

while if l = 1 this follows because pwqw+2 > (pq)w+1 > z√
c0

, by the choice of

w). If pwqw+l > z√
c0+1

, we may choose ui = w, vi = w + l, and we have (8),

as needed. Thus, let us assume that pwqw+l 6 z√
c0+1

. We shall now describe

a procedure that starts from the number pwqw+l and repeatedly multiplies it

by a factor less than
√

c0+1
c0

, all the time keeping the exponents of p and q

bounded between 0 and (pq+1)M−1 inclusively; after a finite number of steps
we shall obtain a number greater than z√

c0
. Since in each step the current

number is multiplied by a factor less than
√

c0+1
c0

, and since the leftmost and

the rightmost side of (8) differ by a factor of
√

c0+1
c0

, this will mean that

during the procedure a number that satisfies (8) is encountered.
We first repeatedly multiply by the factor q

p
(note the bounds v)) until the

exponent of q becomes equal to (pq+1)M−1. Since the sum of the exponents
of p and q remains constant (equal to 2w + l) during this multiplying, the
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number obtained at the end is

p2w+l−(pq+1)M+1q(pq+1)M−1. (9)

Let us check that the exponent of p is nonnegative. Since

w > (pq + 1)M − 2i− 1 > (pq + 1)M − 2

(⌈
g + 1

2

⌉
+K

)
− 1,

we have

2w + l − (pq + 1)M + 1 > (pq + 1)M − 4

(⌈
g + 1

2

⌉
+K

)
− 1 > 0,

where the latter inequality follows by the choice of M . Let us now multiply
the number (9) by pg

qh only once, and thus get the number

p2w+l−(pq+1)M+1+gq(pq+1)M−1−h. (10)

We check that the exponent of q is nonnegative, and that the exponent of p
is less than or equal to (pq + 1)M − 1. The first claim follows immediately
by the choice of M . Regarding the second claim, since

w 6 (pq + 1)M − i+ 1 6 (pq + 1)M −
⌈
g + 5

2

⌉
+ 1 = (pq + 1)M −

⌈
g + 3

2

⌉
,

we have

2w + l − (pq + 1)M + 1 + g 6 (pq + 1)M − 2

⌈
g + 3

2

⌉
+ 1 + 1 + g

6 (pq + 1)M − 2 · g + 3

2
+ 2 + g

6 (pq + 1)M − 1,

as needed. Finally, we multiply the number (10) by q
p

repeatedly h times.
We thus get the number

p2w+l−(pq+1)M+1+g−hq(pq+1)M−1.
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Since, by the upper bound for w, we have the inequality

(pq + 1)M − 1 > w + i− 2 > w +

⌈
g + 5

2

⌉
− 2 = w +

⌈
g + 1

2

⌉
> w + 2 > w + l + 1,

we get

p2w+l−(pq+1)M+1+g−hq(pq+1)M−1

> p2w+l−(pq+1)M+1+g−h+(pq+1)M−1−w−l−1qw+l+1

= pw+g−h−1qw+l+1 > pw+1−1qw+l+1

= pwqw+l+1 >
z
√
c0
.

The argument that shows the existence of ui, vi from (7) is thus finished.
Let us now complete the proof. By (7) we get√

a(c0a+ c1)

c0 + 1
< puiqvi(pq + 1)i 6

√
a(c0a+ c1)

c0

for each i such that dg+5
2
e 6 i 6 dg+1

2
e+K. Since 0 6 ui, vi 6 (pq+ 1)M − 1,

by the definition of a and the fact that c0 | pq we get puiqvi | a. Further,
since i 6 dg+1

2
e+K 6M + 1, by (6) we get (pq + 1)i | c0a+ c1. Altogether,

puiqvi(pq + 1)i | a(c0a+ c1).

Since there is a total of K − 1 values of i in the given range, we have thus
found K−1 divisors of a(c0a+c1) for which (5) holds, which was to be done.
This completes the proof in the case c1 6= 0.

The case c1 = 0. The underlying idea is actually very similar in this
case, but much less technically demanding. Let p and q be two positive
integers such that

1 <
q

p
<

(
c0 + 1

c0

) 1
2K−2

,

let
a = (pq)K−1,

12



and let
n = c0a

2 + c0.

We claim that n is a 3-digit palindrome in each base bi, 1 6 i 6 K, where

bi = pK+i−2qK−i.

As in the previous case, it is enough to show that each bi is a divisor of
a(c0a+ c1) = a2c0 such that

a

√
c0

c0 + 1
< bi 6 a (11)

(this is the inequality (5) for c1 = 0). And indeed, since K + i− 2 6 2K − 2
and K − i > 0, we get that bi is a divisor of a2, and hence also of a2c0.
Further,

bi = pK+i−2qK−i =
(pq)K−1pi−1

qi−1
=

(pq)K−1(
q
p

)i−1 =
a(

q
p

)i−1 ,

and thus bi 6 a and

bi >
a(

q
p

)K−1
>

a((
c0+1

c0

) 1
2K−2

)K−1
=

a√
c0+1

c0

= a

√
c0

c0 + 1
,

which proves (11). Finally, the observation that b1 = a and 〈c0, 0, c0〉b1 =
c0a

2 + c0 = n completes the proof of Theorem 2. �

3.3 Examples and comparison of the two constructions

In order to make these two constructions easier to grasp, we shall now present
their outputs on two explicit examples. We then compare some of their
aspects.

Let us first consider the sequence 〈1, 5, 1〉 and K = 4. For the first
construction we first need s that is coprime to 2 and 3, and large enough
so that s − 3 · 1 · 2! > 0 and

⌊
1·s2

(s−3·1·2!)2

⌋
= c0 = 1. The smallest such s is

s = 23. The system (2) becomes m ≡ −55 (mod 21), m ≡ −25 (mod 19)
and m ≡ −15 (mod 17), which has the solution m ≡ 2654 (mod 6783). We
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need m large enough so that
⌊1·(23m)2+115m+1

(17m)2

⌋
= 1; m = 2654 suffices. We

finally set
n = c0(ms)

2 + c1ms+ c0 = 3 726 430 975,

for which indeed

n = 〈1, 5, 1〉61042 = 〈1, 11127, 1〉55734 = 〈1, 23473, 1〉50426 = 〈1, 37475, 1〉45118

(where 61042 = 2654 · 23, 55734 = 2654 · 21, 50426 = 2654 · 19 and 45118 =
2654 · 17).

Let us now see what the second construction gives for the same input.
Choosing p = 3 and q = 4 fulfills all the requirements. We then may take
g = 4 and h = 3, and after that M = 6. Finally, let

a = 5 · 12136

= 29 653 618 · 34 826 809 · 5 = 28185 . . . 21760︸ ︷︷ ︸
5 209 003 digits

.

and
n = a2 + 5a+ 1 = 79441 . . . 06401︸ ︷︷ ︸

10 418 005 digits

.

For each i such that d4+5
2
e 6 i 6 d4+1

2
e + 4, that is, 5 6 i 6 7, we use the

described procedure in order to find ui, vi for which (7) holds. For i = 5
we first find w = 4 826 804, l = 0, and after a few steps we ultimately get
34 826 801 · 44 826 807 · 135 | a(a + 5); for i = 6 we get w = 4 826 803, l = 0 and
ultimately 34 826 800 ·44 826 806 ·136 | a(a+5), and for i = 7 we get w = 4 826 802,
l = 0 and ultimately 34 826 799 · 44 826 805 · 137 | a(a+ 5). We conclude:

n = 〈1, 5, 1〉29 653 618·34 826 809·5

= 〈1, 19906 . . . 06864︸ ︷︷ ︸
5 209 003 digits

, 1〉29 653 614·34 826 801·135

= 〈1, 15179 . . . 59936︸ ︷︷ ︸
5 209 003 digits

, 1〉29 653 612·34 826 800·136

= 〈1, 10550 . . . 83264︸ ︷︷ ︸
5 209 003 digits

, 1〉29 653 610·34 826 799·137 .

Since the second construction depends on whether c1 6= 0 or not, we also
check what happens for some example where c1 = 0. Consider the sequence

14



〈2, 0, 2〉 and K = 4. We then may take p = 15 and q = 16, and after that
a = (15 · 16)3 = 13 824 000. We finally set

n = c0a
2 + c0 = 382 205 952 000 002,

for which indeed

n = 〈2, 0, 2〉13 824 000 = 〈2, 3 571 200, 2〉12 960 000

= 〈2, 7 157 280, 2〉12 150 000 = 〈2, 10 773 182, 2〉11 390 625

(where 13 824 000 = 153 · 163, 12 960 000 = 154 · 162, 12 150 000 = 155 · 16 and
11 390 625 = 156). For the record, the first construction for this input gives

n = 375 223 562 302 052 = 〈2, 0, 2〉13 697 145 = 〈2, 3 374 800, 2〉12 879 405

= 〈2, 6 985 440, 2〉12 061 665 = 〈2, 10 883 376, 2〉11 243 925.

Let us now try to make some conclusions.
Based on the first example, one gets the impression that the second con-

struction is “worse” than the first one, in the sense that it produces a much
larger value of n than the first construction. However, this is not always
the case, as the second example illustrates. And in fact, if c1 = 0, then
for larger values of K the second construction indeed turns out to produce
quite smaller values of n than the first one: for example, for the sequence
〈2, 0, 2〉 and K = 20, the second construction produces a 151-digit number
n, while the first one produces a 724-digit number n; for K = 100 we get
a 1066-digit n from the second construction versus a 31394-digit n from the
first construction.

Furthermore, the idea the second construction relies on leaves much space
for improvement. Indeed, the core of the construction is finding a number a
such that the number a(c0a+ c1) has at least K − 1 divisors b for which the
bounds (5) hold. It seems very plausible that, using some other techniques,
this can be shown to hold for some number a that is much smaller than the
one we proposed here.

Finally, the main motivation for providing two different constructions
for the case d = 3 here is, as we have already mentioned, the belief that
this increases chances of making some progress on the case d > 3 by some
modification of one of the presented constructions. There is no reason to
believe that the construction that has the biggest chances of being useful
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for the case d > 3 is the one that produces the smallest values of n in
the case d = 3. In fact, as we shall see in the following section, there are
some arguments that suggest that for d > 3 the numbers we are looking for
become much rarer; thus, it is not at all impossible that a construction that
produces large values in the case d = 3 can be adapted to be of some use
also for d > 3, while the one that produces small values in the case d = 3
actually only picks some exceptions whose existence essentially relies on the
assumption that d = 3.

4 Some heuristic arguments for the cases of

more digits

We present some heuristic reasons that seem to indicate that the situa-
tion might change for d > 3, that is, that not every palindromic sequence
〈cd−1, cd−2, . . . , c0〉, cd−1 6= 0, has the property that for any K ∈ N there exists
a number that is a d-digit palindrome simultaneously in K different bases,
with 〈cd−1, cd−2, . . . , c0〉 being its digit sequence in one of those bases. For the
sake of simplicity, we present our argument for the sequence 〈1, 0, 0, . . . , 0, 1〉.

Note that the probability that a randomly chosen d-digit integer writ-
ten in base b is a palindrome equals 1

bb
d
2 c

. Let n = ad−1 + 1 (then n =

〈1, 0, 0, . . . , 0, 1〉a). Then n is a d-digit number in base b if and only if
b d
√
nc+1 6 b 6 a. We want to estimate for how many of the bases b from this

range, apart from b = a, the number n is a palindrome in base b. Assuming
that the probability that n is a palindrome in base b equals 1

bb
d
2 c

for each b

from the given range independently, we get that the expected number of d-
digit palindromic expansions of n in base b, apart from n = 〈1, 0, 0, . . . , 0, 1〉a,
equals

a−1∑
b=b d√nc+1

1

bb
d
2
c

=
a−1∑

b=
⌊

d
√

ad−1+1
⌋

+1

1

bb
d
2
c
6

a−1∑
b=
⌈

a
d−1

d

⌉ 1

bb
d
2
c
.

Therefore, the total number of d-digit palindromic expansions of numbers
that are written as 〈1, 0, 0, . . . , 0, 1〉a in some base a, where a is bounded above
by some bound A, not counting the expansions 〈1, 0, 0, . . . , 0, 1〉a themselves,
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has the expected value bounded above by

A∑
a=2

a−1∑
b=
⌈

a
d−1

d

⌉ 1

bb
d
2
c

We shall now transform the above expression in a more convenient form.
Note that, if a and b are integers, then b > da d−1

d e is equivalent to b > a
d−1

d ,

which is equivalent to a 6 b
d

d−1 , which is equivalent to a 6 bb
d

d−1 c. We have

A∑
a=2

a−1∑
b=
⌈

a
d−1

d

⌉ 1

bb
d
2
c

=
A−1∑

b=
⌈

2
d−1

d

⌉ 1

bb
d
2
c

∣∣{a : 2 6 a 6 A and da
d−1

d e 6 b 6 a− 1
}∣∣

=
A−1∑
b=2

1

bb
d
2
c

∣∣{a : 2 6 a 6 A and b+ 1 6 a 6 bb
d

d−1 c
}∣∣

=
A−1∑
b=2

1

bb
d
2
c

∣∣{a : b+ 1 6 a 6 min{A, bb
d

d−1 c}
}∣∣

=
A−1∑
b=2

min{A, bb
d

d−1 c} − (b+ 1) + 1

bb
d
2
c

=
A−1∑
b=2

min{A, bb
d

d−1 c} − b
bb

d
2
c

6
A−1∑
b=2

b
d

d−1 − b
bb

d
2
c

=
A−1∑
b=2

1

bb
d
2
c− d

d−1

−
A−1∑
b=2

1

bb
d
2
c−1

.

Note that for d > 6 the inequalities bd
2
c − d

d−1
> 1 and bd

2
c − 1 > 1 hold.

Therefore, for A→∞ the above value actually converges to

ζ

(⌊
d

2

⌋
− d

d− 1

)
− ζ

(⌊
d

2

⌋
− 1

)
.

This provides some heuristic evidence that for d > 6 there are in fact only
finitely many numbers that are written as 〈1, 0, 0, . . . , 0, 1〉 (a total of d digits)
in some base, and that are d-digit palindromes also in some other base. For
d ∈ {4, 5} the same heuristic suggests that such numbers, though there might
be infinitely many of them, are very rare.
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5 Future directions

By “very palindromic” sequences, let us refer to the palindromic sequences
〈cd−1, cd−2, . . . , c0〉, cd−1 6= 0, such that for any K ∈ N there exists a num-
ber that is a d-digit palindrome simultaneously in K different bases, with
〈cd−1, cd−2, . . . , c0〉 being its digit sequence in one of those bases. Of course,
the main question in this topic is the following one.

Open problem 1. Characterize all “very palindromic” sequences for d > 3.

If this problem turns out to be too hard, some simpler starting points
might be the following problems.

Open problem 2. Are sequences 〈1, 1, . . . , 1〉 and 〈1, 0, 0, . . . , 0, 1〉 “very
palindromic” (for any d, or for each d)?

Open problem 3. Provide at least a single example of a “very palindromic”
sequence, other than the “known sequences” (for d > 3), or prove that there
are not any. (By “known sequences” we mean the sequences of the form (1),
as well as their multiples by a factor of the form td−1.)

Open problem 4. Provide at least a single example of a palindromic se-
quence that is not “very palindromic” (for d > 3), or prove that there are
not any.

If palindromic sequences that are not “very palindromic” were found, a
further research direction could be to determine, for a given such sequence,
what the largest K ∈ N is such that there exists a number that is a d-digit
palindrome simultaneously in K different bases, with the given sequence
being its digit sequence in one of those bases. In particular, could such K be
equal to 1 for some sequence? If the answer is affirmative, such sequences can
be intuitively thought of as “very nonpalindromic”, that is, they would be
at exactly the opposite end of the scale in comparison to “very palindromic”
sequences.
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