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Abstract

In this short note we point to an error in the proof of a theo-
rem stated in [L. Balková & E. Pelantová & Š. Starosta, On Brlek-
Reutenauer conjecture, Theoret. Comput. Sci. 412 (2011), 5649–
5655]. By constructing a counterexample, we show that the assertion
of the theorem is actually incorrect. Although this theorem is of a
technical character, it was used in an argument leading to a corollary
of a general interest to the Brlek-Reutenauer conjecture, and thus as
a consequence of this note we have that the proof of the mentioned
corollary is also flawed.
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1 Introduction

For any infinite word u having the language closed under reversal and con-
taining infinitely many palindromes, it was claimed in [1, Theorem 5.7] that
the following statements are equivalent:

(a) the defect of u is finite;

(b) there exists an integer H such that the longest palindromic suffix of
any factor w of u, of length |w| > H, occurs in w exactly once.
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(For all the necessary notions, we refer the reader to [1].) The claimed proof
briefly states that the equivalence follows by the definition of defect. In fact,
by the definition of defect and [1, Corollary 2.3], it follows that the statements
(a) and

(b0) there exists an integer H such that the longest palindromic suffix of
any prefix w of u, of length |w| > H, occurs in w exactly once

are equivalent: the direction (⇐) is clear, while the direction (⇒) follows
from the observation that, if v is a prefix of u such that D(v) = D(u), then
each prefix w of u longer than v contains v as a prefix, and thus the longest
palindromic suffix of w must occur in w exactly once (since otherwise it
would follow D(w) > D(v) + 1 = D(u) + 1, a contradiction). Unfortunately,
the same reasoning cannot be applied with factors in place of prefixes, and
therefore the mentioned proof is erroneous (only the direction (b)⇒ (a) can
be seen to hold, since we have (b)⇒ (b0)⇒ (a)).

As we shall see, the assertion of the theorem is in fact incorrect. Since
this theorem was used in a proof of [1, Corollary 5.10] (which is an important
step towards a proof of the Brlek-Reutenauer conjecture), this proof is also
flawed, and thus the mentioned corollary, cited below, is still open.

Still open problem. Let u be an infinite word with the language closed
under reversal. Then we have

D(u) <∞⇒
∞X

n=0

Tu(n) <∞. (1)

2 Construction of a counterexample

We shall now construct an infinite word u for which (a) holds but (b) does
not. Let the morphism ϕ be defined by ϕ(1) = 1213, ϕ(2) = ε, ϕ(3) = 23,
and let u = ϕ∞(1).

Claim 1. For each i > 1 we have

ϕi+1(1) = ϕi(1) ϕi(1) 23.

Proof. Since ϕ(1) = 1213 and ϕ2(1) = ϕ(1)ϕ(2)ϕ(1)ϕ(3) = 1213 1213 23, the
assertion holds for i = 1. By induction, we have

ϕi+1(1) = ϕ(ϕi(1)) = ϕ(ϕi−1(1) ϕi−1(1) 23)

= ϕi(1) ϕi(1) ϕ(2) ϕ(3) = ϕi(1) ϕi(1) 23,
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which was to be proved. �

Claim 2. For each i > 1 we have

ϕi(1) = pi3(23)i−1,

where each pi is a palindrome that begins with 12 (and thus ends with 21).
Further, for i > 2, the largest power of 23 that is a factor of pi is (23)i−2,
and for i > 3 this factor is unioccurrent in pi.

Proof. Since ϕ(1) = 1213, the assertion holds for i = 1 (with p1 = 121).
Further, since ϕ2(1) = 1213121323, the second part of the assertion holds for
i = 2 (with p2 = 1213121). By induction, using Claim 1, we have

ϕi+1(1) = pi3(23)i−1 pi3(23)i−1 23 = pi3(23)i−1pi3(23)i, (2)

and since
pi+1 = pi3(23)i−1pi (3)

is a palindrome, the first part of the claim is proved. Further, since pi ends
with 1 and begins with 1, the largest power of 23 that is a factor of pi+1 is
(23)i−1, which is unioccurrent in pi+1 for i + 1 > 3, and thus the proof is
finished. �

Claim 3. The language of u is closed under reversal, and u contains in-
finitely many palindromes.

Proof. Each factor w of u is a factor of ϕi(1) for i large enough. Since ϕi(1)
is a factor of pi+1 (see Claim 2), it follows that w is a factor of pi+1, and thus
its reversal is also a factor of pi+1 and in turn a factor of u.

The second part is clear by Claim 2. �

Claim 4. The word u does not satisfy the statement (b).

Proof. By (3), for each i > 1 we have that (23)i12 is a factor of pi+2 and in
turn a factor of u. The longest palindromic suffix of this word is clearly only
the letter 2, having i + 1 occurrences in (23)i12. Thus, there are arbitrarily
large factors w of u such that the longest palindromic suffix of w occurs in
w more than once. Therefore, (b) fails. �

Claim 5. The defect of u is finite.
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Proof. We shall prove that the longest palindromic suffix of any prefix w of u,
of length |w| > 10, is unioccurrent in w. Therefore, u satisfies the statement
(b0), which is equivalent to (a).

Let w be a prefix of u, |w| > 10. Choose i such that w is not a prefix
of ϕi(1) (also not equal to it), but is a prefix of ϕi+1(1). If |w| = 10, then
w = 1213121323 = ϕ2(1), and the longest palindromic suffix of w is 323,
which is indeed unioccurrent in w. Thus, assume that |w| > 11. It now
follows that i > 2.

By (2), w is a prefix of pi3(23)i−1pi3(23)i longer than pi3(23)i−1. Let
us first consider the case when w is a prefix of pi3(23)i−1pi. In this case,
it holds that w = pi3(23)i−1v, where v is a prefix of pi. Therefore, v is a
suffix of pi, and thus v3(23)i−1v is a palindromic suffix of w. This suffix
is also the longest palindromic suffix of w, since if there were a longer one,
there would be at least two occurrences of 3(23)i−1 in it and thus also in
pi+1 = pi3(23)i−1pi, contradicting Claim 2. For the same reason, the suffix
v3(23)i−1v is unioccurrent in w, which was to be proved.

Assume now that w is longer than pi3(23)i−1pi. Therefore, it holds that
either w = pi3(23)i−1pi3(23)j for 0 6 j 6 i, or w = pi3(23)i−1pi(32)j for
1 6 j 6 i.

First, let
w = pi3(23)i−1pi3(23)j (4)

for 0 6 j 6 i. If j = i, we claim that the longest palindromic suffix of w
is 3(23)i. Since this suffix is indeed palindromic, it is enough to show that
there does not exist a longer one. Suppose that v is a longer palindromic
suffix. Since, by Claim 2, pi ends with 1, we see that v = . . . 13(23)i, and by
the fact that v is palindromic we now get v = 3(23)i . . . 13(23)i. It follows
that 3(23)i is a factor of pi3(23)i−1pi = pi+1, while by Claim 2 we have that
the largest power of 23 that is a factor of pi+1 is (23)i−1, a contradiction.
Therefore, 3(23)i is indeed the longest palindromic suffix of w, and it has
to be unioccurrent in w since otherwise it would again follow that 3(23)i is
a factor of pi3(23)i−1pi, an already seen contradiction. We shall now treat
the case 0 6 j 6 i − 1. In this case, the suffix 3(23)jpi3(23)j of w is clearly
palindromic, and we show that there does not exist a longer one. Suppose
that v is a longer palindromic suffix. We see that, in the word v, the letter at
the position 2j + 2 from the right is 1 (because pi ends with 1), and thus, by
the fact that v is palindromic, the letter at the position 2j + 2 from the left
also has to be 1. Since v ends with 3(23)jpi3(23)j and is longer than it, it
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follows that there has to be the letter 1 in v before 3(23)jpi3(23)j. Recalling
that w is of the form (4), we conclude that v encompasses the whole factor
3(23)i−1, that is, v = . . . 13(23)i−1pi3(23)j. However, in the word v, there
are at most |pi| letters before 3(23)i−1 (since there are no more letters in w),
and there are |pi| + 2j + 1 > |pi| letters after it. By this and the fact that
v is a palindrome, it follows that 13(23)i−1 = 3(23)i−11 must be a factor of
(23)i−1pi3(23)j, and therefore a factor of pi3(23)j. This is a contradiction (by
Claim 2, the largest power of 23 that is a factor of pi is (23)i−2). Therefore,
3(23)jpi3(23)j is indeed the longest palindromic suffix of w, and it has to be
unioccurrent in w since there are only two occurrences of pi in w and the
first one has no letters preceding it.

We now check the case

w = pi3(23)i−1pi(32)j

for 1 6 j 6 i. If j = i, we claim that the longest palindromic suffix of w
is 2(32)i−1. And indeed, this suffix is indeed palindromic, and in a similar
manner as in the previous paragraph we see that there does not exist a longer
one (since it would have to be of the form (23)i . . . 1(32)i, and a contradiction
would be reached). Further, it has to be unioccurrent in w, since otherwise it
would follow that 2(32)i−1 is a factor of either pi or 3(23)i−1, a contradiction
(the first possibility cannot hold because of Claim 2 and i > 2, while the
second one clearly is not true). We shall now treat the case 1 6 j 6 i − 1.
In this case, the suffix (23)jpi(32)j of w is clearly palindromic, and we show
that there does not exist a longer one. Suppose that v is a longer palindromic
suffix. In a similar manner as in the previous paragraph, noting that, in the
word v, the letter at the position 2j + 1 from the right is 1, we conclude that
v encompasses the whole factor 3(23)i−1, and get a contradiction as before.
Therefore, (23)jpi(32)j is indeed the longest palindromic suffix of w, and it
has to be unioccurrent in w since, again, there are only two occurrences of
pi in w and the first one has no letters preceding it. �

In conclusion: by Claims 3, 5 and 4, u is a counterexample to the assertion
of the considered theorem.

3 Further comments

We may note that the defect of u equals 1. Indeed, by the proof of Claim 5, it
is seen that D(u) = D(121312132). Since the word 121312132 is of length 9
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and has 9 palindromic factors: ε, 1, 2, 3, 121, 131, 21312, 31213, 1213121, the
assertion follows (by definition, D(w) equals the difference between |w| + 1
and the number of palindromic factors of w).

It may be asked whether the word u perhaps disproves even the impli-
cation (1). That said, nothing in this paper suggests so. And actually, the
present author has managed to prove that the constructed word u indeed
satisfies

P∞
n=0 Tu(n) < ∞. However, the proof is quite long and tedious,

while the result does not seem to be of a significant importance (that is:
the conjecture survives, and the word u turns out to be just one more word
obeying it). That is why this question has not been dealt with here.
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