A note on the paper "On Brlek-Reutenauer conjecture"

Bojan Bašić

Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia bojan.basic@dmi.uns.ac.rs

Abstract

In this short note we point to an error in the proof of a theorem stated in [L. Balková & E. Pelantová & Š. Starosta, On Brlek-Reutenauer conjecture, *Theoret. Comput. Sci.* **412** (2011), 5649– 5655]. By constructing a counterexample, we show that the assertion of the theorem is actually incorrect. Although this theorem is of a technical character, it was used in an argument leading to a corollary of a general interest to the Brlek-Reutenauer conjecture, and thus as a consequence of this note we have that the proof of the mentioned corollary is also flawed.

Mathematics Subject Classification (2010): 68R15 Keywords: Brlek-Reutenauer conjecture, defect, palindrome

1 Introduction

For any infinite word \mathbf{u} having the language closed under reversal and containing infinitely many palindromes, it was claimed in [1, Theorem 5.7] that the following statements are equivalent:

- (a) the defect of \mathbf{u} is finite;
- (b) there exists an integer H such that the longest palindromic suffix of any factor w of \mathbf{u} , of length $|w| \ge H$, occurs in w exactly once.

(For all the necessary notions, we refer the reader to [1].) The claimed proof briefly states that the equivalence follows by the definition of defect. In fact, by the definition of defect and [1, Corollary 2.3], it follows that the statements (a) and

(b₀) there exists an integer H such that the longest palindromic suffix of any *prefix* w of \mathbf{u} , of length $|w| \ge H$, occurs in w exactly once

are equivalent: the direction (\Leftarrow) is clear, while the direction (\Rightarrow) follows from the observation that, if v is a prefix of \mathbf{u} such that $D(v) = D(\mathbf{u})$, then each prefix w of \mathbf{u} longer than v contains v as a prefix, and thus the longest palindromic suffix of w must occur in w exactly once (since otherwise it would follow $D(w) \ge D(v) + 1 = D(\mathbf{u}) + 1$, a contradiction). Unfortunately, the same reasoning cannot be applied with factors in place of prefixes, and therefore the mentioned proof is erroneous (only the direction (b) \Rightarrow (a) can be seen to hold, since we have (b) \Rightarrow (b₀) \Rightarrow (a)).

As we shall see, the assertion of the theorem is in fact incorrect. Since this theorem was used in a proof of [1, Corollary 5.10] (which is an important step towards a proof of the Brlek-Reutenauer conjecture), this proof is also flawed, and thus the mentioned corollary, cited below, is still open.

Still open problem. Let \mathbf{u} be an infinite word with the language closed under reversal. Then we have

$$D(\mathbf{u}) < \infty \Rightarrow \sum_{n=0}^{\infty} T_{\mathbf{u}}(n) < \infty.$$
 (1)

2 Construction of a counterexample

We shall now construct an infinite word **u** for which (a) holds but (b) does not. Let the morphism φ be defined by $\varphi(1) = 1213$, $\varphi(2) = \varepsilon$, $\varphi(3) = 23$, and let $\mathbf{u} = \varphi^{\infty}(1)$.

Claim 1. For each $i \ge 1$ we have

$$\varphi^{i+1}(1) = \varphi^{i}(1) \,\varphi^{i}(1) \,23.$$

Proof. Since $\varphi(1) = 1213$ and $\varphi^2(1) = \varphi(1)\varphi(2)\varphi(1)\varphi(3) = 1213121323$, the assertion holds for i = 1. By induction, we have

$$\varphi^{i+1}(1) = \varphi(\varphi^{i}(1)) = \varphi(\varphi^{i-1}(1) \varphi^{i-1}(1) 23)$$

= $\varphi^{i}(1) \varphi^{i}(1) \varphi(2) \varphi(3) = \varphi^{i}(1) \varphi^{i}(1) 23$

which was to be proved.

Claim 2. For each $i \ge 1$ we have

$$\varphi^i(1) = p_i 3(23)^{i-1},$$

where each p_i is a palindrome that begins with 12 (and thus ends with 21). Further, for $i \ge 2$, the largest power of 23 that is a factor of p_i is $(23)^{i-2}$, and for $i \ge 3$ this factor is unioccurrent in p_i .

Proof. Since $\varphi(1) = 1213$, the assertion holds for i = 1 (with $p_1 = 121$). Further, since $\varphi^2(1) = 1213121323$, the second part of the assertion holds for i = 2 (with $p_2 = 1213121$). By induction, using Claim 1, we have

$$\varphi^{i+1}(1) = p_i 3(23)^{i-1} p_i 3(23)^{i-1} 23 = p_i 3(23)^{i-1} p_i 3(23)^i, \tag{2}$$

and since

$$p_{i+1} = p_i 3(23)^{i-1} p_i \tag{3}$$

is a palindrome, the first part of the claim is proved. Further, since p_i ends with 1 and begins with 1, the largest power of 23 that is a factor of p_{i+1} is $(23)^{i-1}$, which is unioccurrent in p_{i+1} for $i+1 \ge 3$, and thus the proof is finished.

Claim 3. The language of \mathbf{u} is closed under reversal, and \mathbf{u} contains infinitely many palindromes.

Proof. Each factor w of \mathbf{u} is a factor of $\varphi^i(1)$ for i large enough. Since $\varphi^i(1)$ is a factor of p_{i+1} (see Claim 2), it follows that w is a factor of p_{i+1} , and thus its reversal is also a factor of p_{i+1} and in turn a factor of \mathbf{u} .

The second part is clear by Claim 2.

Claim 4. The word **u** does not satisfy the statement (b).

Proof. By (3), for each $i \ge 1$ we have that $(23)^i 12$ is a factor of p_{i+2} and in turn a factor of **u**. The longest palindromic suffix of this word is clearly only the letter 2, having i + 1 occurrences in $(23)^i 12$. Thus, there are arbitrarily large factors w of **u** such that the longest palindromic suffix of w occurs in w more than once. Therefore, (b) fails.

Claim 5. The defect of **u** is finite.

Proof. We shall prove that the longest palindromic suffix of any prefix w of \mathbf{u} , of length $|w| \ge 10$, is unioccurrent in w. Therefore, \mathbf{u} satisfies the statement (\mathbf{b}_0) , which is equivalent to (a).

Let w be a prefix of \mathbf{u} , $|w| \ge 10$. Choose i such that w is not a prefix of $\varphi^{i}(1)$ (also not equal to it), but is a prefix of $\varphi^{i+1}(1)$. If |w| = 10, then $w = 1213121323 = \varphi^{2}(1)$, and the longest palindromic suffix of w is 323, which is indeed unioccurrent in w. Thus, assume that $|w| \ge 11$. It now follows that $i \ge 2$.

By (2), w is a prefix of $p_i 3(23)^{i-1} p_i 3(23)^i$ longer than $p_i 3(23)^{i-1}$. Let us first consider the case when w is a prefix of $p_i 3(23)^{i-1} p_i$. In this case, it holds that $w = p_i 3(23)^{i-1} v$, where v is a prefix of p_i . Therefore, \overline{v} is a suffix of p_i , and thus $\overline{v} 3(23)^{i-1} v$ is a palindromic suffix of w. This suffix is also the longest palindromic suffix of w, since if there were a longer one, there would be at least two occurrences of $3(23)^{i-1}$ in it and thus also in $p_{i+1} = p_i 3(23)^{i-1} p_i$, contradicting Claim 2. For the same reason, the suffix $\overline{v} 3(23)^{i-1} v$ is unioccurrent in w, which was to be proved.

Assume now that w is longer than $p_i 3(23)^{i-1} p_i$. Therefore, it holds that either $w = p_i 3(23)^{i-1} p_i 3(23)^j$ for $0 \leq j \leq i$, or $w = p_i 3(23)^{i-1} p_i (32)^j$ for $1 \leq j \leq i$.

First, let

$$w = p_i 3(23)^{i-1} p_i 3(23)^j \tag{4}$$

for $0 \leq j \leq i$. If j = i, we claim that the longest palindromic suffix of w is $3(23)^i$. Since this suffix is indeed palindromic, it is enough to show that there does not exist a longer one. Suppose that v is a longer palindromic suffix. Since, by Claim 2, p_i ends with 1, we see that $v = \dots 13(23)^i$, and by the fact that v is palindromic we now get $v = 3(23)^i \dots 13(23)^i$. It follows that $3(23)^i$ is a factor of $p_i 3(23)^{i-1} p_i = p_{i+1}$, while by Claim 2 we have that the largest power of 23 that is a factor of p_{i+1} is $(23)^{i-1}$, a contradiction. Therefore, $3(23)^i$ is indeed the longest palindromic suffix of w, and it has to be unioccurrent in w since otherwise it would again follow that $3(23)^i$ is a factor of $p_i 3(23)^{i-1} p_i$, an already seen contradiction. We shall now treat the case $0 \leq j \leq i-1$. In this case, the suffix $3(23)^j p_i 3(23)^j$ of w is clearly palindromic, and we show that there does not exist a longer one. Suppose that v is a longer palindromic suffix. We see that, in the word v, the letter at the position 2j + 2 from the right is 1 (because p_i ends with 1), and thus, by the fact that v is palindromic, the letter at the position 2j + 2 from the left also has to be 1. Since v ends with $3(23)^j p_i 3(23)^j$ and is longer than it, it

follows that there has to be the letter 1 in v before $3(23)^j p_i 3(23)^j$. Recalling that w is of the form (4), we conclude that v encompasses the whole factor $3(23)^{i-1}$, that is, $v = \ldots 13(23)^{i-1} p_i 3(23)^j$. However, in the word v, there are at most $|p_i|$ letters before $3(23)^{i-1}$ (since there are no more letters in w), and there are $|p_i| + 2j + 1 > |p_i|$ letters after it. By this and the fact that v is a palindrome, it follows that $\overline{13(23)^{i-1}} = 3(23)^{i-1}1$ must be a factor of $(23)^{i-1}p_i 3(23)^j$, and therefore a factor of $p_i 3(23)^j$. This is a contradiction (by Claim 2, the largest power of 23 that is a factor of p_i is $(23)^{i-2}$). Therefore, $3(23)^j p_i 3(23)^j$ is indeed the longest palindromic suffix of w, and it has to be unioccurrent in w since there are only two occurrences of p_i in w and the first one has no letters preceding it.

We now check the case

$$w = p_i 3(23)^{i-1} p_i (32)^j$$

for $1 \leq j \leq i$. If j = i, we claim that the longest palindromic suffix of w is $2(32)^{i-1}$. And indeed, this suffix is indeed palindromic, and in a similar manner as in the previous paragraph we see that there does not exist a longer one (since it would have to be of the form $(23)^i \dots 1(32)^i$, and a contradiction would be reached). Further, it has to be unioccurrent in w, since otherwise it would follow that $2(32)^{i-1}$ is a factor of either p_i or $3(23)^{i-1}$, a contradiction (the first possibility cannot hold because of Claim 2 and $i \ge 2$, while the second one clearly is not true). We shall now treat the case $1 \leq i \leq i-1$. In this case, the suffix $(23)^{j} p_{i}(32)^{j}$ of w is clearly palindromic, and we show that there does not exist a longer one. Suppose that v is a longer palindromic suffix. In a similar manner as in the previous paragraph, noting that, in the word v, the letter at the position 2j + 1 from the right is 1, we conclude that v encompasses the whole factor $3(23)^{i-1}$, and get a contradiction as before. Therefore, $(23)^{j} p_{i}(32)^{j}$ is indeed the longest palindromic suffix of w, and it has to be unioccurrent in w since, again, there are only two occurrences of p_i in w and the first one has no letters preceding it.

In conclusion: by Claims 3, 5 and 4, \mathbf{u} is a counterexample to the assertion of the considered theorem.

3 Further comments

We may note that the defect of **u** equals 1. Indeed, by the proof of Claim 5, it is seen that $D(\mathbf{u}) = D(121312132)$. Since the word 121312132 is of length 9

and has 9 palindromic factors: ε , 1, 2, 3, 121, 131, 21312, 31213, 1213121, the assertion follows (by definition, D(w) equals the difference between |w| + 1 and the number of palindromic factors of w).

It may be asked whether the word **u** perhaps disproves even the implication (1). That said, nothing in this paper suggests so. And actually, the present author has managed to prove that the constructed word **u** indeed satisfies $\sum_{n=0}^{\infty} T_{\mathbf{u}}(n) < \infty$. However, the proof is quite long and tedious, while the result does not seem to be of a significant importance (that is: the conjecture survives, and the word **u** turns out to be just one more word obeying it). That is why this question has not been dealt with here.

Acknowledgments

The research was supported by the Ministry of Science and Technological Development of Serbia (project 174006).

References

L. Balková & E. Pelantová & Š. Starosta, On Brlek-Reutenauer conjecture, *Theoret. Comput. Sci.* 412 (2011), 5649–5655.