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Abstract

In a recent work, Luca and Stănică examined quotients of the
form ϕ(Cm)

ϕ(Cn) , where ϕ is Euler’s totient function and C0, C1, C2 . . . is
the sequence of the Catalan numbers. They observed that the num-
ber 4 (and analogously 1

4) appears noticeably often as a value of these
quotients. We give an explanation of this phenomenon, based on Dick-
son’s conjecture. It turns out not only that the value 4 is (in a certain
sense) special in relation to the quotients ϕ(Cn+1)

ϕ(Cn) , but also that the
value 4k has similar “special” properties with respect to the quotients
ϕ(Cn+k)
ϕ(Cn) , and in particular we show that Dickson’s conjecture implies

that, for each k, the number 4k appears infinitely often as a value of
the quotients ϕ(Cn+k)

ϕ(Cn) .
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conjecture

1 Introduction

A well-known Carmichael’s conjecture [4] states that for each positive inte-
ger n there is a different positive integer m such that ϕ(m) = ϕ(n), where
ϕ is Euler’s totient function. Though there are some results related to this
conjecture—for example, it is known that a counterexample, if exists, must
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be greater than 101010
, and that in that case there are infinitely many coun-

terexamples [8]; it is known that if there exists an integer n such that for
each prime p for which p− 1 | ϕ(n) we have p2 | n, then n is a counterexam-
ple to Carmichael’s conjecture [13]; it is known that every positive integer
greater than 1 is a multiplicity of some value of ϕ [9] etc.—but the solution
to Carmichael’s conjecture seems out of reach.

Instead of studying the equality of values of ϕ, this line of research can
be generalized by considering the quotients of the values of ϕ. In a recent
work [10], Luca and Stănică did this with a restriction of the domain to the
Catalan numbers C0, C1, C2 . . . ; in other words, they examined quotients of
the form ϕ(Cm)

ϕ(Cn)
. They observed that the number 4 (and analogously 1

4
) ap-

pears noticeably often as a value of these quotients. In this work we give
an explanation of this phenomenon, based on Dickson’s conjecture. Further-
more, it turns out not only that the value 4 is (in a certain sense) special

in relation to the quotients ϕ(Cn+1)
ϕ(Cn)

, but also that the value 4k has similar

“special” properties with respect to the quotients ϕ(Cn+k)

ϕ(Cn)
, and in particular

we show that Dickson’s conjecture implies that, for each k, the number 4k

appears infinitely often as a value of the quotients ϕ(Cn+k)

ϕ(Cn)
.

The paper is organized as follows. In Section 2 we state Dickson’s conjec-
ture and prove two lemmas that will be useful later. In Section 3 we consider
the quotient ϕ(Cn+1)

ϕ(Cn)
, where we show that for all integers n of a certain, ar-

guably quite general form, we have the equality ϕ(Cn+1)
ϕ(Cn)

= 4; results of Luca
and Stănică on this topic are, as is to be shown, two special cases of this
theorem. Section 4 is devoted to quotients of the form ϕ(Cn+k)

ϕ(Cn)
. Finally, in

the Appendix given at the end we collect some results, needed during the
work, on divisibility of the Catalan numbers by primes and prime powers.

2 Preliminaries

Dickson’s conjecture [5] generalizes Dirichlet’s theorem of primes in arith-
metic progressions and implies many interesting results such as the infini-
tude of twin primes, the infinitude of Sophie Germain primes, the infinitude
of composite Mersenne numbers etc. (and, needless to say, its proof seems
to be hopelessly beyond reach).

Dickson’s Conjecture. Let Pi(x) = aix+ bi for 1 6 i 6 k, where ai, bi ∈ Z
and ai > 1. Then there are infinitely many positive integers x such that
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P1(x), P2(x), . . . , Pk(x) are all primes, unless there exists a prime number p
such that for each x ∈ Z at least one of P1(x), P2(x), . . . , Pk(x) is divisible
by p.

The following lemma give two sufficient conditions (which will be enough
for our needs) for the conditions from Dickson’s conjecture to be satisfied.

Lemma 1. a) Let Pi(x) = aix + 1 for 1 6 i 6 k. Then the polynomials
P1, P2, . . . , Pk satisfy the conditions from Dickson’s conjecture.

b) Let Pi(x) = aix+bi for 1 6 i 6 k. If each ai is coprime to each bj, and
each prime factor less than or equal to k divides some ai, then the polynomials
P1, P2, . . . , Pk satisfy the conditions from the Dickson’s conjecture.

Proof. a) Let p be a given prime number. Then whenever x is a multiple of
p we have that none of P1(x), P2(x), . . . , Pk(x) are divisible by p.

b) Let p be a given prime number. Assume first that p - bi for each i. Then
whenever x is a multiple of p we have that none of P1(x), P2(x), . . . , Pk(x)
are divisible by p.

Let now p | bi0 for some i0. Then p - ai for each i. We claim that there
is a residue class modulo p such that for each x from that residue class none
of P1(x), P2(x), . . . , Pk(x) are divisible by p. Note first that, since p - ai for
each i, we have p > k. Now, the polynomial P1(x)P2(x) · · ·Pk(x) mod p is
of degree exactly k in Zp[x] (because p - a1a2 · · · ak), and since p > k, there
exists x ∈ Zp that is not a root of this polynomial. �

We shall also need the following lemma.

Lemma 2. If coprime integers m and n satisfy the equality

m

ϕ(m)
=

n

ϕ(n)
,

then m = n = 1.

Proof. The assertion follows by noting that the largest prime factor of the
numerator of n

ϕ(n)
(as a fraction in lowest terms) is exactly the largest prime

factor of n. �

Finally, for the end of the list of the necessary prerequisites, by rad(n)
we denote the product of the distinct prime factors of n (that is, if n =
pα1

1 p
α2
2 · · · p

αk
k is the prime factorization of n, then rad(n) = p1p2 · · · pk), and

by 〈al, al−1, . . . , a1, a0〉b we denote the digits expansion of n in the base b
(that is, n =

∑l
i=0 aib

i and 0 6 ai < b for each i).
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3 The quotient ϕ(Cn+1)
ϕ(Cn)

Let us first recall Theorem 1.1 from [10].

Theorem 3. The equality

ϕ(Cn+1) = 4ϕ(Cn)

holds in each of the following two instances:

(i) n = 2p−2, where p > 5 is a prime such that q = 4p−3 is also a prime;

(ii) n = 3p−2, where p > 5 is a prime such that q = 2p−1 is also a prime.

The theorem cited above is actually a special case of the following more
general theorem.

Theorem 4. Let an integer u, u > 2, be given, and let p, p > 2u + 1, be a
prime such that 2u − 3 | 2up − 3 and that 2up−3

2u−3
is also a prime. Then for

n = up− 2 the equality
ϕ(Cn+1) = 4ϕ(Cn)

holds if and only if rad(u) | Cn+1 and rad(2(2u − 3)) | Cn, respectively

rad(u
3
) | Cn+1 and rad(2(2u−3)

3
) | Cn, depending on whether 3 - u, respectively

3 | u.

Proof. Since Cn =
(2n

n )
n+1

, we have

(n+ 2)Cn+1 = 2(2n+ 1)Cn.

Let u and p be as in the statement, and let q = 2up−3
2u−3

(recall that q is also a
prime number). Putting n = up−2 (then 2n+1 = 2(up−2)+1 = 2up−3 =
(2u− 3)q) in the previous equality gives

upCn+1 = 2(2u− 3)qCn.

Put η = 1 if 3 - u and η = 3 otherwise. Note that, if 3 | u, then also 3 | 2u−3.
From the previous equality we get

u

η
pCn+1 = 2

2u− 3

η
qCn. (1)
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Let c be the product of those prime factors of u
η
p that do not divide Cn+1.

Then it is not hard to see

ϕ

(
u

η
pCn+1

)
= ϕ(c)

up

ηc
ϕ(Cn+1). (2)

In a similar manner, if d is the product of those prime factors of 22u−3
η
q that

do not divide Cn, we have

ϕ

(
2

2u− 3

η
qCn

)
= ϕ(d)

2(2u− 3)q

ηd
ϕ(Cn). (3)

By (1), (2) and (3), we now have

ϕ(Cn+1)

ϕ(Cn)
=
cϕ(d)2(2u− 3)q

dϕ(c)up
. (4)

Note that, since u 6 p−1
2

and n + 2 = up = 〈u, 0〉p, by Theorem 9 we
have p - Cn+1 (that is, p | c). Let us now show q - Cn. We first show
n+ 1 = 〈u− 2, q+1

2
〉q. Using q = 2up−3

2u−3
, it is straightforward to verify

(u− 2)q +
q + 1

2
= up− 1 = n+ 1, (5)

and therefore it is enough to prove u − 2 6 q − 1 (that is, that u − 2 is a
digit in the base q). We shall prove more: u− 2 6 q−1

2
, which by Theorem 9

immediately leads to q - Cn. We have

q − 1 =
2up− 3

2u− 3
− 1 =

2u(p− 1)

2u− 3
>

2u · 2u
2u− 3

=
4u2

2u− 3
. (6)

Therefore, it is enough to prove 2u2

2u−3
> u− 2. We calculate

2u2

2u− 3
− (u− 2) =

2u2 − 2u2 + 4u+ 3u− 6

2u− 3
=

7u− 6

2u− 3
. (7)

The obtained expression is clearly positive, which proves the claim.
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Therefore, c = pc′ and d = qd′ (and, of course, p - c′, q - d′). The
expression (4) reduces to

ϕ(Cn+1)

ϕ(Cn)
=
pc′ϕ(qd′)2(2u− 3)q

qd′ϕ(pc′)up
=
c′ϕ(qd′)2(2u− 3)

d′ϕ(pc′)u

=
c′ϕ(q)ϕ(d′)2(2u− 3)

d′ϕ(p)ϕ(c′)u
=
c′(q − 1)ϕ(d′)2(2u− 3)

d′(p− 1)ϕ(c′)u

=
c′ 2u(p−1)

2u−3
ϕ(d′)2(2u− 3)

d′(p− 1)ϕ(c′)u
=

4c′ϕ(d′)

d′ϕ(c′)

(8)

(during this evaluation we used the equality q−1 = 2u(p−1)
2u−3

, obtained in (6)).

We claim that c′ and d′ are coprime. Note that c′ | u
η

and d′ | 22u−3
η

.
Therefore,

GCD(c′, d′) | 4u
η
− 2

2u− 3

η
=

6

η
. (9)

We first note that c′ is odd: indeed, since 2 | Cn+1 (which follows by Theorem
8, given the fact that (n+1)+1 = n+2 = up, which is clearly not a power of
2), we have 2 - c, and therefore also 2 - c′. Therefore, GCD(c′, d′) is odd. Now,
if η = 1, then 3 - u, and therefore neither c′ nor d′ is divisible by 3; on the
other hand, if η = 3, then (9) gives GCD(c′, d′) | 2. In both cases, together
with the conclusion that GCD(c′, d′) is odd, we obtain GCD(c′, d′) = 1, which
was to be proved.

We are now ready to finish the proof. By (8) we get ϕ(Cn+1) = 4ϕ(Cn)
if and only if c′

ϕ(c′)
= d′

ϕ(d′)
, and since c′ and d′ are coprime, by Lemma 2 this

occurs if and only if c′ = d′ = 1, that is, c = p and d = q. By the definition
of c, we have that c = p holds if and only if there is no prime factor of u

η
p,

apart from p, that does not divide Cn+1; by the fact that p - u
η

(which follows

from p > 2u+ 1 > u
η
), this is equivalent to

rad

(
u

η

)
| Cn+1.

In a similar manner, we have that d = q is equivalent to

rad

(
2(2u− 3)

η

)
| Cn
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(the only thing that might need explanation here is why q - 2u−3
η

, which

follows from q = 2up−3
2u−3

> 2up−3p
2u−3

= p > 2u + 1 > 2u−3
η

). The proof is thus
completed. �

Note. Note that for u = 2 in Theorem 4 the condition from the end reduces
to rad(2) | Cn+1 and rad(2) | Cn, that is, 2 | Cn+1 and 2 | Cn. The first
condition is always satisfied since (n + 1) + 1 = n + 2 = 2p, which is not a
power of 2. The second condition is also always satisfied, since n+1 = 2p−1,
which, being an odd number, cannot be a power of 2. Therefore, Theorem
3(i) is indeed a special case of Theorem 4 for u = 2.

In a similar manner, putting u = 3 in Theorem 4 reduces the considered
condition to rad(1) | Cn+1 (which is trivially satisfied) and rad(2) | Cn,
that is, 2 | Cn. As shown during the proof of Theorem 3 in [10], this is
always satisfied, since otherwise we would have n = 2a − 1 where a is odd
(because 3 | n+ 2 = 2a+ 1), p = n+2

3
= 2a+1

3
, and then q = 2p−1 = 2a+1−1

3
=

(2
a+1
2 −1)(2

a+1
2 +1)

3
, which cannot be a prime number since 2

a+1
2 −1, 2

a+1
2 +1 > 3.

Therefore, Theorem 3(ii) is indeed a special case of Theorem 4 for u = 3.

We now show that, under Dickson’s conjecture, prime pairs from the
statement of Theorem 4 occur infinitely often for each integer u, u > 2.

Theorem 5. Let an integer u, u > 2, be given. Then, assuming Dickson’s
conjecture, there are infinitely many prime numbers p such that 2u − 3 |
2up− 3 and that 2up−3

2u−3
is also a prime number.

Proof. Let us state the condition 2u − 3 | 2up − 3 in the form 2up ≡ 3
(mod 2u− 3), that is,

3p ≡ 3 (mod 2u− 3). (10)

This is equivalent to p ≡ 1 (mod 2u−3
η

), that is,

p =
2u− 3

η
i+ 1

for some i ∈ N0, where we again denote η = 1 if 3 - u and η = 3 otherwise.
We then have

q =
2up− 3

2u− 3
=

2u(2u−3
η
i+ 1)− 3

2u− 3
=

2u

η
i+ 1.

By Lemma 1a) we obtain that there are infinitely many values of i such that
p and q are both primes, which was to be proved. �
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Finally, since for each prime number p almost all Catalan numbers are
divisible by p (see Corollary 10), the condition from the end of Theorem 4
is almost always satisfied. Everything said so far explains, at least on an
intuitive level, why the value 4 appears so often among the values of the
considered quotient.

So far we have analyzed only the equality ϕ(Cn+1)
ϕ(Cn)

= 4. In the last part
of this section we would like to make some comments on the limitations of
the used method, that is, what would be needed in order to analyze the
considered equality with 4 replaced by another constant.

Let p be a prime number that satisfies the conditions from Theorem 4.
Note that c′ is a product of those prime factors of u

η
that do not divide Cn+1,

while d′ is the product of those prime factors of 22u−3
η

that do not divide Cn.
Therefore, we almost always have c′ = 1 and d′ = 1. However, if r is a given
prime number, then by Theorem 9 there is still infinitely many indices n such
that r - Cn+1 (respectively r - Cn). This is also a good moment to recall the
result from [7], which states that for any two given primes r1 and r2 there
are infinitely many integers n such that GCD(

(
2n
n

)
, r1r2) = 1. But that is not

exactly what we need. In order to use the equality (8) to prove the infinitude

of some other possible values of ϕ(Cn+1)
ϕ(Cn)

, we not only have to show that there

are infinitely many indices n such that Cn+1 (respectively Cn) is not divisible
by a given prime (or given primes), but we need infinitely many such indices
of the form up− 2 (where u is a fixed number, and p takes prime values such
that 2up−3

2u−3
is also a prime). Based on the cited results (more precisely, on

a hope that the behavior does not change substantially when restricting the
values of n to the given form), we believe that this indeed holds when c′ and
d′ have few prime factors (say, no more than 2 in total).

For the sake of amusement, we tried to find some values of n for c′ = 5,
d′ = 7 (then ϕ(Cn+1)

ϕ(Cn)
= 4·5·ϕ(7)

7·ϕ(5)
= 30

7
) and u = 40 (here is why this value

of u is chosen: the least value of u that allows c′ = 5 and d′ = 7, that is,
such that 5 | u

η
and 7 | 22u−3

η
, is u = 5; we intentionally chose the next

larger value of u, because for u = 5 the required values of n seem to be
fairly dense, and we were interested whether we could find any values for a
larger u). There are three such values for p < 1011: n = 305 444 240 678 (p =
7 636 106 017 and q = 7 933 616 641), n = 777 707 219 558 (p = 19 442 680 489
and q = 20 200 187 521) and n = 1 564 994 532 678 (p = 39 124 863 317 and
q = 40 649 208 641).

Trying to control the divisibility of the Catalan numbers simultaneously

8



by 3 (or more) primes (which is needed in the cases of c′ and d′ having more
prime factors) is related to the following quite well-known open problem:
are there infinitely many values of n such that GCD(

(
2n
n

)
, 105) = 1? It is

believed (and suggested by a heuristic) that the answer is yes, and Graham
offers $1,000 to anyone who proves that [11, 3, 15, 12]. For the same question
but with 105 replaced by a product of 4 or more different primes, the answer
is likely to be negative, but this is also an open problem.

4 The quotient
ϕ(Cn+k)
ϕ(Cn)

We now prove a theorem analogous to Theorem 4 for the quotient ϕ(Cn+k)

ϕ(Cn)
.

Although the statement includes a number of technical restrictions, after this
theorem we shall show that, in a certain sense, it is not substantially hard
to satisfy these restrictions.

Theorem 6. Assume that integers u1, u2, . . . , uk greater than 1 and different
primes p1, p2, . . . , pk are chosen such that:

• for each i, 1 6 i 6 k, we have pi > 2u+1, where u = max{u1, . . . , uk};

• u1p1 = u2p2 − 1 = u3p3 − 2 = · · · = ukpk − k + 1;

• for each i, 1 6 i 6 k, we have 2ui − 3 | 2uipi − 3 and 2uipi−3
2ui−3

is also a
prime, and furthermore, all those k primes are different.

Then for n = u1p1 − 2 the equality

ϕ(Cn+k) = 4kϕ(Cn)

holds if and only if

rad

(∏k
i=1 ui
η

)
| Cn+k and rad

(
2

∏k
i=1(2ui − 3)

η

)
| Cn, (11)

where η = GCD
(∏k

i=1 ui,
∏k

i=1(2ui − 3)
)

.

Proof. We have

Cn+k

Cn
= 2k

k∏
i=1

2n+ 2i− 1

n+ i+ 1
,
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that is, (
k∏
i=1

(n+ i+ 1)

)
Cn+k =

(
2k

k∏
i=1

(2n+ 2i− 1)

)
Cn.

Let u1, u2, . . . , uk and p1, p2, . . . , pk be as in the statement, and let qi = 2uipi−3
2ui−3

for 1 6 i 6 k (recall that each qi is also a prime number). Put n = u1p1−2 =
u2p2 − 3 = · · · = ukpk − k− 1. Then 2n+ 2i− 1 = 2(uipi − i− 1) + 2i− 1 =
2uipi − 3 = (2ui − 3)qi. The previous equality then reduces to(

k∏
i=1

uipi

)
Cn+k =

(
2k

k∏
i=1

(2ui − 3)qi

)
Cn.

Let

η = GCD

(
k∏
i=1

ui,
k∏
i=1

(2ui − 3)

)
.

We therefore have

u1u2 · · ·uk
η

p1p2 · · · pkCn+k = 2k
∏k

i=1(2ui − 3)

η
q1q2 · · · qkCn.

Denote by c the product of those prime factors of u1u2···uk

η
p1p2 · · · pk that

do not divide Cn+k, and denote by d the product of those prime factors of

2k
∏k

i=1(2ui−3)

η
q1q2 · · · qk that do not divide Cn. It follows

ϕ

(
u1u2 · · ·uk

η
p1p2 · · · pkCn+k

)
= ϕ(c)

u1u2 · · ·ukp1p2 · · · pk
ηc

ϕ(Cn+k)

and

ϕ

(
2k
∏k

i=1(2ui − 3)

η
q1q2 · · · qkCn

)
= ϕ(d)

2k
∏k

i=1(2ui − 3)
∏k

i=1 qi
ηd

ϕ(Cn),

that is,

ϕ(Cn+k)

ϕ(Cn)
=
cϕ(d)2k

(∏k
i=1(2ui − 3)

)
q1q2 · · · qk

dϕ(c)u1u2 · · ·ukp1p2 · · · pk
. (12)

We now claim that for each i, 1 6 i 6 k, we have pi | c. It is enough to
prove pi - Cn+k. Since n+k+1 = uipi+k−i = 〈ui, k−i〉pi

, the claim follows by
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Theorem 9 and the inequalities ui 6
pi−1

2
and k− i 6 pi+1

2
. We further claim

that for each i, 1 6 i 6 k, we have qi | d. From 〈ui−2, qi+1
2
〉qi = uipi−1 = n+i

(verified in the same way as (5)) we get n + 1 = 〈ui − 2, qi−2i+3
2
〉qi , where

the left-hand digit is positive as in (6) and (7), while the right-hand digit is
nonnegative because of

qi− 2i+ 3 =
2uipi − 3

2ui − 3
− 2i+ 3 >

2ui(2i− 1)− 3

2ui − 3
− 2i+ 3 =

2(2ui + 3i− 6)

2ui − 3
;

therefore, by Theorem 9 we conclude qi - Cn and thus qi | d. We now write
c = p1p2 · · · pkc′ and d = q1q2 · · · qkd′, and put this into (12), which leads to

ϕ(Cn+k)

ϕ(Cn)
=
c′ϕ(q1q2 · · · qkd′)2k

∏k
i=1(2ui − 3)

d′ϕ(p1p2 · · · pkc′)u1u2 · · ·uk

=
2kc′ϕ(d′)

d′ϕ(c′)

k∏
i=1

(qi − 1)(2ui − 3)

(pi − 1)ui

=
2kc′ϕ(d′)

d′ϕ(c′)

k∏
i=1

2ui(pi−1)
2ui−3

(2ui − 3)

(pi − 1)ui
=

4kc′ϕ(d′)

d′ϕ(c′)

(13)

Since n + k + 1 = ukpk, which is clearly not a power of 2, by Theorem

8 we get 2 | Cn+k, and hence 2 - c′. Since c′ | u1u2···uk

η
and d′ | 2k

∏k
i=1(2ui−3)

η
,

and since c′ is odd, by the definition of η we obtain that c′ and d′ are co-
prime. Therefore, since ϕ(Cn+k) = 4kϕ(Cn) if and only if c′

ϕ(c′)
= d′

ϕ(d′)
, by

the coprimality of c′ and d′ and Lemma 2 we conclude that this happens if
and only if c′ = 1 and d′ = 1, that is, c = p1p2 · · · pk and d = q1q2 · · · qk. The
first condition holds if and only if all prime factors of u1u2···uk

η
, except possi-

bly p1, p2, . . . , pk, divide Cn+k; since neither of p1, p2, . . . , pk divides u1u2···uk

η

(because pi is greater than each of u1, u2, . . . , uk, and thus divides none of
them), this is further equivalent to

rad

(
u1u2 · · ·uk

η

)
| Cn+k.

In a similar manner, the second condition is equivalent to

rad

(
2

∏k
i=1(2ui − 3)

η

)
| Cn
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(the inequality qi = 2uipi−3
2ui−3

> 2uipi−3pi

2ui−3
= pi >

2ui−3
η

is relevant here), which
completes the proof. �

Note. As we can see, the core of the previous theorem are the equalities
n+ 2 = u1p1, n+ 3 = u2p2, . . . , n+ k + 1 = ukpk and 2n+ 1 = (2u1 − 3)q1,
2n + 3 = (2u2 − 3)q2, . . . , 2n + 2k − 1 = (2uk − 3)qk, where, thanks to the
coefficients 2ui − 3, it turns out that qi − 1 is a “nice” rational multiple of
pi − 1, namely,

qi − 1 =
2n+ 2i− 1

2ui − 3
− 1 =

2(uipi − i− 1) + 2i− 2ui + 2

2ui − 3
=

2ui
2ui − 3

(pi − 1).

It can be asked whether a different pairing of qi’s with pi’s—that is, making
each qi a “nice” rational multiple of pσ(i) − 1, where σ is a permutation of
{1, 2, . . . , n}—can lead to another value of the considered quotient instead
of 4k. And unfortunately, although the pairing can be made in a different
manner, we do not get another value instead of 4k. For example, let us see
how to pair q1 with p2, q2 with p1 and qi with pi for other i. We need the
conditions 2n+ 1 = v1q1 and 2n+ 3 = v2q2 (and 2n+ 2i− 1 = (2ui− 3)qi for
i > 3), where we shall now choose the values v1 and v2 in a suitable manner.
We have

q1 − 1 =
2n+ 1

v1

− 1 =
2(u2p2 − 3) + 1

v1

− 1 =
2u2p2 − 5− v1

v1

;

therefore, in order to make p2−1 a factor of the expression above, we choose
v1 = 2u2 − 5. In a similar manner we find out that the choice v2 = 2u1 − 1
is adequate. In this case, the product from (13) is replaced by

(q1 − 1)(2u2 − 5)

(p2 − 1)u2

· (q2 − 1)(2u1 − 1)

(p1 − 1)u1

·
k∏
i=3

(qi − 1)(2ui − 3)

(pi − 1)ui
,

which evaluates to 2k, that is, the same value as in (13).

As we shall now see, relying on Theorem 6, Dickson’s conjecture implies
that for each positive integer k there are infinitely many positive integers
n such that ϕ(Cn+k)

ϕ(Cn)
= 4k. We shall prove this by fixing u1 = 2, u2 = 3,

. . . , uk = k + 1, and showing that the conditions from Theorem 6 can be
satisfied in infinitely many cases. We would just like to note that there is
nothing very special about those fixed values. In fact, by suitable changes in

12



the proof that is about to follow the same result can be shown to hold for
many other values fixed for ui (though this may be much more technically
challenging), and in particular, if any consecutive positive integers are fixed
for u1, u2, . . . , uk, the required changes are fairly simple.

Theorem 7. Let a positive integer k be given. Assuming Dickson’s conjec-
ture, there are infinitely many positive integers n such that

ϕ(Cn+k)

ϕ(Cn)
= 4k. (14)

Proof. Fix ui = i + 1 for 1 6 i 6 k. We need to find n (actually, infinitely
many of them) such that

n = u1p1 − 2 = u2p2 − 3 = · · · = ukpk − k − 1, (15)

where p1, p2, . . . , pk are different primes. Further, we should also have 2ui−3 |
2uipi − 3, that is, 2i− 1 | 2n+ 2i− 1 (which is equivalent to 2i− 1 | n), and
2n+2i−1

2i−1
should be different primes. Because of (15), we conclude i+1 = ui | n,

which together with the previous set of divisibility conditions gives C | n,
where C = LCM(2, 3, . . . , k + 1, 1, 3, 5, . . . , 2k − 1). Let

M = LCM

C2,
∏

p prime
p62k

p

 .

Before proceeding to show how to find such n and the corresponding
primes, we shall see how to make sure that, for a chosen n, the conditions
(11) are satisfied. Let s1, s2, . . . , sh be all the prime divisors of either of

rad
(∏k

i=1 ui

η

)
or rad

(
2
∏k

i=1(2ui−3)

η

)
, and for each i, 1 6 i 6 h, let αi be the

smallest positive integer such that sαi+1
i - M and sαi

i > k+1 (note that, since
clearly si | M , we have αi > 1, that is, αi is indeed positive). We impose
the congruence n ≡ si+1

2
sαi
i (mod sαi+1

i ); as an exception, if si = 2, we then
impose the congruence n ≡ 0 (mod 2αi+1) instead. Finally, we impose one
more congruence: n ≡ 0 (mod M ′), where M ′ is the greatest divisor of M
coprime to s1s2 · · · sh. Note that, since sαi

i | n, all these congruences are
compatible with the condition M | n (because the greatest power of si that
divides M is not greater than sαi

i ), and thus also compatible with C | n.

13



Now, since the last αi + 1 digits of n in the base si form the number si+1
2
sαi
i ,

and since si+1
2
sαi
i + k + 1 < si+1

2
sαi
i + sαi

i = si+3
2
sαi
i , the digit at the position

αi + 1 from the right in the number n+ k + 1 written in the base si is si+1
2

,
which by Theorem 9 implies si | Cn+k; for the same reason, si | Cn (if si = 2,
then the observed digit is 0 instead of si+1

2
, and then the same conclusion

holds by Theorem 8). By the Chinese remainder theorem, the imposed set
of congruences has infinitely many solutions, and all of them are of the form
n = Qx+L for some constants Q and L (where, by construction, M | Q and
rad(M) = rad(Q), and furthermore M | L, all of which will be needed soon).

Rewritting the equation (15), we obtain

pi =
n+ i+ 1

ui
=

Q

i+ 1
x+

L

i+ 1
+ 1.

We need to find infinitely many x such that all these values (for 1 6 i 6 k)
are different primes, and that all the values 2n+2i−1

2i−1
= 2Q

2i−1
x+ 2L

2i−1
+1 (for 1 6

i 6 k) are different primes. However, note that these 2k polynomials satisfy
the conditions from Lemma 1b) (indeed, by the choice of M and the relations
M | Q, rad(M) = rad(Q) and M | L we directly get GCD( Q

i+1
, L
j+1

) > 1 etc.,

which implies that Q
i+1

and L
j+1

+ 1 are coprime, and similarly for the other

three pair types), and thus these 2k values are indeed simultaneously prime
for infinitely many values of x. It is obvious that, for each such x, no two of
pi can be equal, and no two of the other k primes can be equal. �

Note. By a quantitative version of Dickson’s conjecture (known, in its very
general form, under the name Bateman-Horn conjecture), the number of val-
ues x from the interval [1, z] such that the 2k polynomials from the preceding
proof are simultaneously prime at the point x is of order at least

∫ z
2

dt
(ln t)2k

(or, which is asymptotically the same, z
(ln z)2k ). Therefore, we also have a

(conjectured) lower bound for the number of values n such that (14) holds.

Appendix: On divisibility of the Catalan num-

bers by primes

In this section we give various theorems about divisibility of the Catalan
numbers by primes and prime powers, needed in the previous sections.

We give the first theorem without proof (for the proof see, for example
[14], and more different proofs are given in [1]).
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Theorem 8. The number Cn is odd if and only if n+ 1 is a power of 2.

We need a similar criterion for divisibility of Cn by odd primes. Our
proof of it will rely on the following (well-known) theorem. (We would like
to add that, since the criterion that is about to follow is quite elegant and
not hard to prove, it seems like it certainly has already appeared somewhere
in the literature. However, our search of the literature in order to find it
was unsuccessful. There are some criteria of divisibility of Cn by odd primes
in [2], but they are not practical for our purpose here, and there is also a
very recent criterion from [6, Corollary 18], that bears a resemblance to our
Theorem 9, but we still find our criterion more convenient for the present
work.)

Kummer’s theorem. Let a prime p and nonnegative integers n and m be
given, n > m. Then the largest integer α such that pα |

(
n
m

)
is equal to the

number of carries when m is added to n−m in the base p.

And here is the announced criterion.

Theorem 9. Let p be an odd prime number. Then p - Cn if and only if the
rightmost digit of the number n+ 1 in the base p is less than or equal to p+1

2
,

and all the other digits are less than or equal to p−1
2

.

Proof. First note that n satisfies the digit condition from the statement if
and only if n written in the base p is of one of the following two forms: (i)
all the digits are less than or equal to p−1

2
; or (ii) the rightmost α digits (for

some α) are p− 1, the digit immediately left of them is less than or equal to
p−3
2

, and all the other digits are less than or equal to p−1
2

. In the rest of the
proof we shall use these conditions instead of the ones from the statement.

(⇒): Assume p - Cn. This implies that either p -
(
2n
n

)
, or p appears with

the same power in
(
2n
n

)
as in n + 1. In the first case, by Kummer’s theorem

we conclude that there must not be any carries when n is added to n in the
base p, which immediately implies that n is of the form (i). Assume now the
second case. If the considered power of p is pα, then because of pα | n + 1
we conclude that the rightmost α digits of n in the base p are p− 1. Clearly,
in each of these positions there will be a carry when n is added to n in the
base p, which gives a total of α carries so far. However, since pα+1 -

(
2n
n

)
, by

Kummer’s theorem there must not be any more carries apart from those α,
which implies that n is of the form (ii).
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(⇐): This direction is easier. If n is of the form (i), there are no carries,
and therefore p -

(
2n
n

)
(and thus p - Cn). If n is of the form (ii), then there

are exactly α carries (precisely those in the rightmost α positions), and n+1
ends with α zeros, that is, is divisible by pα, which again implies p - Cn. �

Finally, the following corollary is an immediate consequence of the theo-
rem above.

Corollary 10. For a given z ∈ R, the number of the values n less than z
such that Cn is not divisible by a given prime p is at most Op(z

logp
p+1
2 ), where

the multiplicative constant implied by the Landau symbol Op depends only on
p.
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