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Department of Mathematics and Informatics, University of Novi Sad,
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Abstract

We consider the functional equation f q(n) = f(n + 1) + k, where
q > 2 and k ∈ Z are given, and f : N → N. This functional equation
is related to roots of translations of positive integers, and another
motivation for studying this functional equation is the fact that it can
be thought of as the “prototypical case” of a more general functional
equation of a very broad scope. Our main result is that the considered
functional equation has a solution if and only if either k = 0 or k > −1
and q − 1 | k + 1. We further find all solutions for the case q = 3
and k = 1, which is an example that illustrates that the considered
functional equation can have a very unexpected set of solutions even
with quite small parameters.
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1 Introduction

Given a function f , by f q we denote the composition f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
q times

. For

functions f and g such that f q = g, we say that the function f is a q-th
iterative root of the function g. When g is a translation, that is, g(n) = n+k,
Sarkaria [5] showed that the functional equation f q(n) = n + k (where q and
k are fixed) has a solution f : N→ N if and only if q | k, and noted that the
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same conclusion holds for f : Z→ Z, while for f : R→ R the solution always
exists. A few years before that, a “multiplicative” variant of this equation,
namely f q(n) = kn where (f(n))n>0 is an increasing sequence of nonnegative
integers, was analyzed for q = 2 [1], and very recently the case for a general
q has also been analyzed [3]. There are also some general results on the
functional equation f q = g: this equation was solved for q = 2 by Isaacs [2],
and for a general q by  Lojasiewicz [4] when g is a bijection and finally by
Zimmermann [6] for any g.

We here consider the functional equation

f q(n) = f(n + 1) + k, (1.1)

where q > 2 and k ∈ Z are given, and f : N → N (here and onward, N
denotes the set of positive integers). The functional equation (1.1) is a mod-
ification of the already mentioned functional equation determining roots of
translation, f q(n) = n + k (note, however, that the functional equation (1.1)
is not of the form f q(n) = g(n) for some function g given in advance). The
motivation for studying the functional equation (1.1) is not only its relation
to roots of translations, but also the fact that the functional equation (1.1)
can be thought of as the “prototypical case” of the more general functional
equation f q(n) = f(n+ l)+k, or even f q(n) = f r(n+ l)+k; these functional
equations are of a very broad scope and yet quite natural looking, and thus
gaining a better knowledge about the behavior of their solutions might be
very interesting.

Our main result is the following theorem.

Theorem 1.1. Given q > 2 and k ∈ Z, the functional equation

f q(n) = f(n + 1) + k (1.1 revisited)

has a solution f : N → N if and only if either k = 0 or k > −1 and
q − 1 | k + 1.

In Section 2 we show that there are no solutions for k 6 −2, while in
Section 3 we show that there are no solutions when k > −1 and q−1 - k + 1,
which, together with explicit examples of solutions that we shall provide in
all the other cases, completes the proof. In Section 4 we then completely
solve the considered functional equation in the case q = 3 and k = 1, which
is, as we shall see, an example that suggests that the solutions can have a
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very unexpected behavior and that it might be pretty hard to describe all
solutions in the general case. In what follows, we let f denote a function
from N to itself that satisfies the functional equation (1.1), where q > 2 and
k ∈ Z are fixed. To introduce one more convenient notation, for any U ⊆ N
we let f [U ] denote the set {f(u) : u ∈ U}.

2 The case k 6 −2

Let k 6 −2, and let k′ = −k; therefore, k′ > 2. We prove the following
lemma.

Lemma 2.1. There does not exist a function f : N → N such that the
equality

f q(n) = f(n + 1)− k′ (2.1)

holds for each n ∈ N.

Proof. We first prove that such a function f , if it existed, would have to be
strictly increasing. By induction on n1, we prove that for each n1 and all
n2 > n1 the inequality f(n2) > f(n1) holds.

Let first n1 = 1. Suppose the opposite: there exists n2 > 1 such that
f(n2) 6 f(1). Choose such n2 for which f(n2) is minimal. Since n2 > 1, we
have n2 − 1 ∈ N. By the equation (2.1) for n = n2 − 1 we obtain

f(f q−1(n2 − 1)) = f q(n2 − 1) = f(n2)− k′ < f(n2) 6 f(1). (2.2)

It follows that f q−1(n2 − 1) 6= 1, and therefore f q−1(n2 − 1) > 1. However,
since by (2.2) we have f(f q−1(n2−1)) < f(n2), this contradicts the fact that
n2 is chosen among all the numbers greater than 1 in such a way that f(n2)
is minimal. Therefore, the base of induction, for n1 = 1, is proved.

Let now n1 be given, and assume that for each n′1 < n1 and all n2 > n′1
the inequality f(n2) > f(n′1) holds. We need to prove that for all n2 > n1 the
inequality f(n2) > f(n1) holds. Suppose the opposite: there exists n2 > n1

such that f(n2) 6 f(n1). Choose such n2 for which f(n2) is minimal. By
the equation (2.1) for n = n2 − 1 we obtain

f(f q−1(n2 − 1)) = f q(n2 − 1) = f(n2)− k′ < f(n2) 6 f(n1). (2.3)

Note that for any v > n1 the induction hypothesis gives f(v) > f(n1 − 1) >
f(n1 − 2) > · · · > f(1) > 1, from which we get f(v) > n1. Since n2 > n1,
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it follows that n2 − 1 > n1, and thus f(n2 − 1) > n1. Repeating the same
argument gives f(f(n2−1)) > n1, and after q−1 repetitions we get f q−1(n2−
1) > n1. Further, by (2.3) we see that f q−1(n2 − 1) 6= n1, and therefore
f q−1(n2− 1) > n1. However, since by (2.3) we have f(f q−1(n2− 1)) < f(n2),
this contradicts the fact that n2 is chosen among all the numbers greater
than n1 in such a way that f(n2) is minimal. This completes the inductive
step, and thus we get that f is strictly increasing.

Let (ai)
∞
i=1 be the auxiliary sequence defined recursively by a1 = 1 and

ai+1 = (q − 1)ai + 2. By induction on i, we are going to prove that for each
i and all n > 3 we have the inequality

f(n) > n + aik
′ − ai. (2.4)

Putting n = 1 into (2.1) gives f q(1) = f(2) − k′, from which we get f(2) >
k′ + 1 = 2 + k′ − 1. Since f is strictly increasing, we further get

f(n) > n + k′ − 1 for all n > 2. (2.5)

This proves (2.4) for i = 1 (and actually for n > 2, which is more than
claimed). Assume now that (2.4) holds for a given i, and let us prove that it
also holds for i + 1. Let n > 3 be given. Keeping in mind that f is strictly
increasing, we get

f(n)
(2.1)
= f q(n− 1) + k′ = f q−1(f(n− 1)) + k′

(2.5)

> f q−1(n + k′ − 2) + k′

= f q−2(f(n + k′ − 2)) + k′
(2.4)

> f q−2(n + k′ − 2 + aik
′ − ai) + k′

= f q−2(n + (ai + 1)k′ − (ai + 2)) + k′

(2.4)

> f q−3(n + (2ai + 1)k′ − (2ai + 2)) + k′
(2.4)

> · · ·
(2.4)

> f
(
n + ((q − 2)ai + 1)k′ − ((q − 2)ai + 2)

)
+ k′

(2.4)

> n + ((q − 1)ai + 1)k′ − ((q − 1)ai + 2) + k′

= n + ((q − 1)ai + 2)k′ − ((q − 1)ai + 2) = n + ai+1k
′ − ai+1,

which was to be proved. (Here is a clarification of some steps in the preceding
chain of inequalities. In the first line, where the inequality (2.5) is applied,
the argument of f is n−1, which is indeed > 2, and thus the inequality (2.5)
can be applied, but since this argument might not be > 3, we cannot apply
the induction hypothesis (2.4) here. In the second line, where the inequality

4



(2.4) is applied, the argument of f is n + k′ − 2, and since n > 3 and k′ > 2,
this argument is indeed > 3 and thus the induction hypothesis (2.4) can be
applied here; the same holds for further applications of (2.4).)

The fact that the inequality (2.4) holds for each i and all n > 3 is a
clear contradiction: indeed, for any fixed n, the right-hand side of (2.4) is
unbounded as i → ∞, and thus it is impossible that the inequality (2.4)
holds for each i. This contradiction completes the proof. �

3 The case k > −1 and putting the pieces to-

gether

We first prove a lemma that gives a very useful conclusion when q > 3 and
k > 0.

Lemma 3.1. Let q > 3 and k > 0. Then any f : N → N that satisfies the
functional equation (1.1) must be injective.

Proof. Suppose the opposite: there exist d, e ∈ N, d 6= e, such that f(d) =
f(e). Then f q(d) = f q(e), and thus by (1.1) we get f(d+1)+k = f(e+1)+k,
that is, f(d+1) = f(e+1). Repeating the same argument leads to f(d+j) =
f(e + j) for each j ∈ N, which implies that the function f takes only finitely
many values.

Let f(z) be the greatest value of the function f . If it were z > 1, putting
n = z − 1 in (1.1) gives f q(z − 1) = f(z) + k > f(z), a contradiction.
Therefore, f(1) is the unique greatest value of the function f . Let f(z2)
be the second largest value of the function f (we do not assume that it is
unique). Since

f q(z2 − 1) = f(z2) + k, (3.1)

that is, f(z2) + k belongs to the set of values of f , and since f(z2) is the
second largest value, we conclude that f(z2) + k must be the greatest value
of f , that is, f(z2) + k = f(1). In a similar manner, if f(z3) is the third
largest value of f , we have f q(z3 − 1) = f(z3) + k, from which we conclude
f(z3) + k = f(z2). By continuing this reasoning, we conclude that the set of
values of the function f forms an arithmetic progression with step k. Finally,
by (3.1) we get f q(z2 − 1) = f(1); since we earlier obtained that there does
not exist z 6= 1 such that f(z) = f(1), it follows that

f q−1(z2 − 1) = 1, (3.2)
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that is, the number 1 belongs to the set of values of f . Altogether, we
conclude that the set of values of the function f is

{1 + ik : 0 6 i 6 m} (3.3)

for some m ∈ N.
Since f(1) 6= 1, by (3.2) we get f q−2(z2 − 1) > 1. Since q > 3, it

follows that f q−2(z2 − 1) belongs to the set of values of f . By the fact
that this set is of the form (3.3), we get that there exists v ∈ N such that
f(v) = f q−2(z2 − 1) − k. Since f(1) is the greatest value of f , we conclude
that v 6= 1, and thus we may substitute n = v − 1 in (1.1), which gives
f q(v − 1) = f(v) + k = f q−2(z2 − 1). By (3.2), this implies

f q+1(v − 1) = f q−1(z2 − 1) = 1.

On the other hand, (1.1) gives

f q+1(v − 1) = f q(f(v − 1)) = f(f(v − 1) + 1) + k > 1.

The contradiction from the last two conclusions proves that f is an injection.
�

The following lemma establishes a restriction on the relationship between
q and k.

Lemma 3.2. If there exists a solution of the functional equation (1.1), where
k > −1 and k 6= 0, then q − 1 | k + 1.

Proof. Let f be a solution of the functional equation (1.1). If q = 2 or
k = −1, then the conclusion holds. Therefore, we may assume q > 3 and
k > 0. By Lemma 3.1, f is injective.

Let
A1 = N \ f [N] and Ai = f [Ai−1] for 2 6 i 6 q.

Since f is injective, we have

|A1| = |A2| = · · · = |Aq|. (3.4)

Also by the injectivity of f we get

Ai = f i−1[N] \ f i[N],
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which implies that the sets A1, A2, . . . , Aq are pairwise disjoint. Since
f [N] ⊇ f 2[N] ⊇ · · · ⊇ f q[N], we easily get

A2 ∪ A3 ∪ · · · ∪ Aq = f [N] \ f q[N]. (3.5)

The following observation, which immediately follows from (1.1), will be
useful:

s ∈ f q[N] if and only if s− k ∈ f [N] \ {f(1)}. (3.6)

For a given i, 0 6 i 6 k − 1, let us define

si = min{f(n) : f(n) ≡ i (mod k)}.

We also define

sk = min{f(n) : f(n) > f(1) and f(n) ≡ f(1) (mod k)}.

In case that any of these values is undefined (because the set at the right-hand
side is empty), any further reference to such si should be simply ignored. We
claim that

A2 ∪ A3 ∪ · · · ∪ Aq = {si : 0 6 i 6 k}. (3.7)

To show the direction (⊇), by (3.5) we see that it is enough to prove that
for each i, 0 6 i 6 k, we have si ∈ f [N] and si /∈ f q[N]. It is clear that
si ∈ f [N]. Suppose now that for some i we have si ∈ f q[N]. By (3.6) we then
get si − k ∈ f [N] \ {f(1)}, but this contradicts the minimality of si. This
proves the direction (⊇) in (3.7).

Before we show the direction (⊆), we need a few preparatory observations.
Note that from (3.6) we get that if s ∈ f [N] and s 6= f(1), then s + k ∈ f [N].
Repeating this argument leads to s+jk ∈ f [N] for each nonnegative j, unless
f(1) is among these values. In particular, since si ∈ f [N], we conclude that
si + jk ∈ f [N] for each nonnegative j and each i, 0 6 i 6 k, with at most one
possible exception for i: namely, i = i0 such that 0 6 i0 6 k−1 and f(1) ≡ i0
(mod k). Furthermore, we get that si0 + jk ∈ f [N] for each nonnegative j
such that si0 + jk 6 f(1).

Let us now return to the direction (⊆). Suppose the opposite, that an
element x different from all si belongs to the left-hand side. If x > f(1) and
x ≡ f(1) (mod k), choose j ∈ N such that x = sk + jk; otherwise, we may
choose a suitable i, 0 6 i 6 k−1, and j ∈ N such that x = si+jk. (Of course,
j is nonzero since we supposed that x is none of the si’s.) In the first case,
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since x−k = sk+(j−1)k, by the previous paragraph we get x−k ∈ f [N], and
in fact x− k ∈ f [N] \ {f(1)} since x− k = sk + (j − 1)k > sk > f(1). In the
other cases, if i 6= i0 then x−k = si+(j−1)k and clearly x−k ∈ f [N]\{f(1)}
(again by the previous paragraph), while if x = si0 + jk, then we have
x 6 f(1) (since otherwise, as x ≡ si0 ≡ i0 ≡ f(1) (mod k), x would fall
under the first case), and thus x− k = si0 + (j − 1)k < f(1), from which we
again conclude x − k ∈ f [N] \ {f(1)}. Therefore, the conclusion is always
x− k ∈ f [N] \ {f(1)}, and now (3.6) gives x ∈ f q[N]. However, by (3.5) then
x cannot belong to the left hand side of (3.7), a contradiction. This proves
the equality (3.7).

The equality (3.7) implies that A2 ∪A3 ∪ · · · ∪Aq has only finitely many
elements. By (3.4), the set A1, that is, N\f [N] is also finite. We thus get that
each si, 0 6 i 6 k, is indeed well defined (since if any of the sets used in the
definition of some si were empty, it would follow that N\f [N] is infinite), and
now by (3.7) and the observation that all si’s are clearly pairwise different
we get

|A2 ∪ A3 ∪ · · · ∪ Aq| = k + 1. (3.8)

Together with (3.4) and the fact that the sets A1, A2, . . . , Aq are pairwise
disjoint, this implies q − 1 | k + 1. The proof is completed. �

We are now ready for the proof of the main result.

Proof of Theorem 1.1. If k = 0, the functional equation (1.1) has a solution
f(n) ≡ c, where c is an arbitrary constant. If k > −1 and q − 1 | k + 1, the
functional equation (1.1) has a solution f(n) = n + k+1

q−1
(indeed, both sides

evaluate to n + q(k+1)
q−1

). If k 6 −2 then there is no solution by Lemma 2.1,

while if k > −1 but q−1 - k +1, then there is no solution by Lemma 3.2. �

4 Obtaining all solutions for the case q = 3

and k = 1

In this section we completely solve the example q = 3, k = 1. These values are
chosen because they neatly illustrate that the considered functional equation
can have a very unexpected set of solutions even with quite small parameters.
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Example 4.1. There exist exactly two functions that satisfy the functional
equation

f(f(f(n))) = f(n + 1) + 1, (4.1)

namely

f(n) = n + 1 and f(n) =


n + 1, for n ≡ 1, 3 (mod 4);
n + 5, for n ≡ 2 (mod 4);
n− 3, for n ≡ 0 (mod 4).

(4.2)

Proof. Let f be a function that satisfies the functional equation (4.1). By
Lemma 3.1, f is an injection. (Note: in this special case the injectivity of f
can also be established in a somewhat simpler manner than in Lemma 3.1.
Namely, as in Lemma 3.1 we get that f takes only finitely many values. On
the other hand, by the equality (4.1) applied twice, we get

f(f(f(f(n + 1)))) = f(f(n + 1) + 1) + 1 = f(f(f(f(n)))) + 1,

from which it follows that the set of values of the function f 4, and thus also
of the function f , is infinite. This contradiction proves that f is injective.)

As in the proof of Lemma 3.2, the observation

s ∈ f [f [f [N]]] if and only if s− 1 ∈ f [N] \ {f(1)} (4.3)

will be very useful. We shall employ some more ideas from the proof of
Lemma 3.2. We let

A1 = N \ f [N], A2 = f [N] \ f 2[N] and A3 = f 2[N] \ f 3[N].

As in the proof of Lemma 3.2 we get |A2 ∪ A3| = 2 (namely, this is the
equation (3.8)), that is, |A2| = |A3| = 1, and now also |A1| = 1, that is,

N \ f [N] = {a}

for some a ∈ N. In the rest of the proof we distinguish two cases: a = 1 and
a > 1.

The case a = 1. Choose b ∈ N such that f(b) = 2. If b 6= 1, then
there exists b′ ∈ N such that f(b′) = b, that is, f(f(b′)) = 2. Since, by
(4.3), 2 /∈ f [f [f [N]]], the only possibility is b′ = 1. Then f(f(f(1))) =
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f(f(b)) = f(2), which contradicts (4.1). Hence, the assumption b 6= 1 leads
to a contradiction, and we thus conclude b = 1, that is,

f(1) = 2. (4.4)

Choose c ∈ N such that f(c) = 3. Clearly, c 6= 1, and therefore there
exists c′ ∈ N such that f(c′) = c, that is, f(f(c′)) = 3. If c′ 6= 1, then
there exists c′′ ∈ N such that f(c′′) = c′, that is, f(f(f(c′′))) = 3. The
equality (4.1) now gives f(f(f(c′′))) = f(c′′ + 1) + 1, from which it follows
that f(c′′ + 1) = 2, but this contradicts (4.4) and the injectivity of f . We
thus conclude c′ = 1, f(c′) = f(1) = 2 and

f(2) = f(f(c′)) = 3.

Let us now show by induction that f(n) = n + 1 for each n ∈ N. We
already have this for n = 1 and n = 2. Assume now that the assertion holds
for all the numbers less than a given n > 3, and let us prove the assertion
for n. From the equality (4.1) we obtain

f(f(f(n− 2))) = f(n− 1) + 1,

and by the induction hypothesis we get f(f(f(n−2))) = f(f(n−1)) = f(n)
and f(n− 1) + 1 = n + 1. To summarize, if a = 1, then

f(n) = n + 1.

The case a > 1. Note that f(1) 6= 1, since otherwise it would follow
that f(f(f(1))) = 1, which contradicts (4.1). Therefore, 1 ∈ f [N] \ {f(1)},
and now by (4.3) we obtain 2 ∈ f [f [f [N]]], that is, a > 3. Since a− 1 ∈ f [N]
but a /∈ f [f [f [N]]], by (4.3) we conclude

a− 1 = f(1). (4.5)

Further, we have a − 2 ∈ f [N] \ {f(1)}, and again by (4.3) we conclude
a − 1 ∈ f [f [f [N]]]. The last two conclusion, together with the injectivity
of f , imply that there exists b ∈ N such that f(f(b)) = 1. If b 6= a, then
b ∈ f [N] and thus 1 ∈ f [f [f [N]]], which we have already seen to be impossible.
Therefore, b = a, that is,

f(f(a)) = 1. (4.6)
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Choose c ∈ N such that f(c) = a + 1. If c 6= a, then there exists c′ ∈ N
such that f(c′) = c, that is, f(f(c′)) = a + 1. By (4.6) it follows that c′ 6= a,
from which we get c′ ∈ f [N] and then a + 1 ∈ f [f [f [N]]], which by (4.3)
implies a ∈ f [N], a contradiction. Hence, the assumption c 6= a leads to a
contradiction, and we thus conclude c = a, that is,

f(a) = a + 1. (4.7)

Now from the equality f(f(f(a))) = f(a+1)+1, together with f(f(f(a))) =
f(1) (by (4.6)) and f(a + 1) = f(f(a)) = 1 (by (4.7) and (4.6)), we get
f(1) = 2. Together with (4.5) this implies

a = 3.

Therefore, so far we have f(1) = 2, f(3) = 4 and f(4) = 1. We further
obtain

f(f(2)) = f(f(f(1))) = f(2) + 1

(we have used (4.1) for n = 1), then

f(f(2) + 1) = f(f(f(2))) = f(3) + 1 = 5,

and now

f(5) = f(f(f(f(2)))) = f(f(2) + 1) + 1 = 5 + 1 = 6

(the second equality follows from (4.1) for n = f(2)). Finally, we get

f(2) = f(f(1)) = f(f(f(4))) = f(5) + 1 = 7.

Our aim here is to prove that in the current case (that is, a > 1) the only
solution is the second function from (4.2). Since the values of f obtained so
far support this conclusion for n 6 5, in order to finish the proof it is enough
to show the following inductive step: if f(4t− 2), f(4t− 1), f(4t), f(4t + 1)
equal 4t + 3, 4t, 4t − 3, 4t + 2 for all t 6 t0, respectively, then f(4t0 + 2),
f(4t0 + 3), f(4t0 + 4), f(4t0 + 5) equal 4t0 + 7, 4t0 + 4, 4t0 + 1, 4t0 + 6,
respectively. We note

f(4t0+3) = f(f(4t0−2)) = f(f(f(4t0−3))) = f(4t0−2)+1 = 4t0+4, (4.8)

from which it follows that

f(4t0+4) = f(f(4t0+3)) = f(f(f(4t0−2))) = f(4t0−1)+1 = 4t0+1. (4.9)
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We further note

f(f(4t0 + 2)) = f(f(f(4t0 + 1))) = f(4t0 + 2) + 1,

then

f(f(4t0 + 2) + 1) = f(f(f(4t0 + 2))) = f(4t0 + 3) + 1 = 4t0 + 5,

and now

f(4t0+5) = f(f(f(f(4t0+2)))) = f(f(4t0+2)+1)+1 = 4t0+5+1 = 4t0+6.
(4.10)

Finally, we get

f(4t0+2) = f(f(4t0+1)) = f(f(f(4t0+4))) = f(4t0+5)+1 = 4t0+7. (4.11)

The equalities (4.8), (4.9), (4.10) and (4.11) are what was needed to complete
the proof. �

5 Future directions

As mentioned in the Introduction, establishing a necessary and sufficient
condition for the existence of solution of the more general functional equation

f q(n) = f(n + l) + k

or even
f q(n) = f r(n + l) + k

is a natural next step. The present author believes that the condition q− r |
k + l has some role in that necessary and sufficient condition, but it seems
that there is a lot of work still to be done here.

The question after that is whether the set of all solutions of these func-
tional equations, at least in some special case, admits some nice description.
Judging by Example 4.1, this might be harder than it seems.

Another interesting line of research is to analyze these functional equa-
tions when f : Z → Z. It seems that, unfortunately, not many ideas from
this work are applicable in that case.
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