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Abstract

We investigate possible cardinalities of maximal antichains in the poset of
copies 〈P(X),⊂〉 of a countable ultrahomogeneous relational structure X. It
turns out that if the age of X has the strong amalgamation property, then,
defining a copy of X to be large iff it has infinite intersection with each orbit
of X, the structure X can be partitioned into countably many large copies,
there are almost disjoint families of large copies of size continuum and,
hence, there are (maximal) antichains of size continuum in the poset P(X).
Finally, we show that the posets of copies of all countable ultrahomogeneous
partial orders contain maximal antichains of cardinality continuum and de-
termine which of them contain countable maximal antichains. That holds, in
particular, for the random (universal ultrahomogeneous) poset.
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1 Introduction

In this paper we investigate antichains in the posets of the form 〈P(X),⊂〉, where
P(X) := {f [X] : f ∈ Emb(X)} is the set of the substructures of a countable ul-
trahomogeneous relational structure X which are isomorphic to X. Recall that a
structure X is ultrahomogeneous iff for each isomorphism ϕ : A → B between
finite substructures A and B of X, there is an automorphism f of X extending ϕ.
These posets were analyzed from various viewpoints recently. Typically, the re-
sults obtained would be compared to the poset 〈[ω]ω,⊂〉 of all infinite subsets of
a countable set, ordered by inclusion. Set theorists thoroughly investigated this
object and, most often, an antichain in this context is a set of pairwise incompati-
ble elements, i.e. a collection of sets in [ω]ω with pairwise finite intersections (an
almost disjoint family). Two basic facts are that there is no countable maximal
antichain in [ω]ω, whereas there is a maximal antichain of size continuum in that
poset. We follow this approach. So, in this paper, an antichain is always a set of
pairwise incompatible elements of the partial order in question.
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Section 2 contains definitions and facts which are used in the paper. Defining a
copy of X to be large iff it has infinite intersection with each orbit of X, in Sections
3 and 4 we prove the following general statement.

Theorem 1.1 If X is a countable ultrahomogeneous relational structure satisfying
the strong amalgamation property, then

(a) X can be partitioned into countably many large copies of X;
(b) There are almost disjoint families of large copies of X of size continuum;
(c) There are (maximal) antichains of size continuum in the poset 〈P(X),⊂〉.

In Section 5 we take a closer look on the case of countable ultrahomogeneous
posets, using the following well-known classification due to Schmerl [19].

Theorem 1.2 (Schmerl) Each countable ultrahomogeneous partial order is iso-
morphic to one of the following:

- Aω, a countable antichain (that is, the empty relation on ω);
- Bn = n×Q, 1 ≤ n ≤ ω, where 〈i1, q1〉 < 〈i2, q2〉 ⇔ i1 = i2 ∧ q1 <Q q2;
- Cn = n×Q, 1 ≤ n ≤ ω, where 〈i1, q1〉 < 〈i2, q2〉 ⇔ q1 <Q q2;
- D, the random poset.

So, in Section 5 we prove the following theorem.

Theorem 1.3 Let X be a countable ultrahomogeneous partial order. Then

(a) There are maximal antichains of size continuum in the poset 〈P(X),⊂〉;
(b) There are countable maximal antichains in 〈P(X),⊂〉 if and only if X is

neither isomorphic to Aω nor to Bω.

At this point we mention some related concepts. First, antichains in the poset of
copies of the random (Rado) graph were analyzed in [12]. Second, forcing-related
properties of the posets of copies of ultrahomogeneous structures were investigated
in [13, 14, 15]. Third, in [7, 8, 9] a classification of relational structures with re-
spect to the properties of posets 〈P(X),⊂〉 is given. Fourth, the order types of the
maximal chains in the posets of copies of countable ultrahomogeneous graphs and
countable ultrahomogeneous partial orders are described in [10, 11]. Finally, if
X is a first order structure and �R right Green’s pre-order on its self-embedding
monoid, EmbX, the corresponding antisymmetric quotient 〈EmbX/ ≈R,�R〉
(right Green’s order) is isomorphic to the partial order 〈P(X),⊃〉. Hence, our
results provide some information about self-embedding monoids of structures.
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2 Preliminaries

If L = 〈Ri : i ∈ I〉 is a relational language, where ar(Ri) = ni ∈ N, for i ∈ I ,
and X = 〈X, ρ〉 is an L-structure, where ρ = 〈ρi : i ∈ I〉 and ρi ⊂ Xni , for i ∈ I ,
then, for a subset A of X , by ρ �A we will denote the sequence 〈ρi �A : i ∈ I〉,
where ρi �A := ρi ∩Ani . Then the structure A = 〈A, ρ�A〉 is a substructure of X.

If Y = 〈Y, σ〉 is also an L-structure, an injection f : X → Y is called an
embedding (we write f : X ↪→ Y or f ∈ Emb(X,Y)) iff for each i ∈ I and
x̄ ∈ Xni we have: x̄ ∈ ρi iff fx̄ ∈ σi. If, in addition, f is a surjection, it is
an isomorphism, the structures X and Y are isomorphic, and we write X ∼= Y.
If, in particular, Y = X, then f is an automorphism of the structure X. Aut(X)
will denote the set of all automorphisms of X and Emb(X) is Emb(X,X). By
P(X) we denote the set of domains of substructures of X isomorphic to X, that is
P(X) = {A ⊂ X : 〈A, ρ�A〉 ∼= 〈X, ρ〉} = {f [X] : f ∈ Emb(X)}.

If 〈P,≤〉 is a poset, the elements x and y of P are compatible iff there is an
element z ∈ P such that z ≤ x and z ≤ y. Otherwise, x and y are incompatible
and we write x ⊥ y. A set A ⊂ P is an antichain in P if its elements are pairwise
incompatible. An antichain A is a maximal antichain in P iff each z ∈ P is
compatible with some x ∈ A.

We recall some basic facts from Fraı̈ssé theory. The age, AgeX, of an ul-
trahomogeneous L-structure X (i.e., the class of all finite L-structures embed-
dable in X) satisfies the amalgamation property (AP): if A,B,C ∈ AgeX and
f0 : A ↪→ B and g0 : A ↪→ C are embeddings, then there are D ∈ AgeX
and embeddings f1 : B ↪→ D and g1 : C ↪→ D such that f1 ◦ f0 = g1 ◦ g0.
If, in addition, the amalgam D and the embeddings f1 and g1 can be chosen so
that f1[B] ∩ g1[C] = f1[f0[A]] = g1[g0[A]], then (the age of) X satisfies the
strong amalgamation property (SAP). We will use the following classical results
of Fraı̈ssé (see [4], p. 332–333).

Theorem 2.1 (a) A countable structure X is ultrahomogeneous iff for each finite
substructure A of X, each f ∈ Emb(A,X) and each x ∈ X \ A there is y ∈ X
such that f ∪ {〈x, y〉} ∈ Emb(A ∪ {x} ,X).

(b) Countable ultrahomogeneous structures with the same age are isomorphic.

If X is an L-structure, the pointwise stabilizer of a finite set F ⊂ X is the subgroup
AutF (X) := {g ∈ Aut(X) : ∀x ∈ F g(x) = x} of the group Aut(X). The binary
relation∼F on the setX \F defined by x ∼F y iff there is g ∈ AutF (X) such that
g(x) = y, is an equivalence relation and the equivalence class of an x ∈ X \ F is
denoted by orbF (x) and called the orbit of x under AutF (X). Thus

orbF (x) =
{
y ∈ X \ F : ∃g ∈ Aut(X) (g �F = idF ∧ g(x) = y)

}
.
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The sets orbF (x), where F ∈ [X]<ω and x ∈ X \ F , are called the orbits of X.
Later in the paper, the strong amalgamation property will play a significant role
and the next theorem provides convenient characterizations of this property.

Theorem 2.2 (see [4] p. 399 and [1] p. 37) For a countable ultrahomogeneous
relational structure X the following conditions are equivalent:

(a) X satisfies the strong amalgamation property,
(b) X is strongly inexhaustible, that is, X \ F ∈ P(X), for each finite F ⊂ X ,
(c) The orbits of X are infinite.

The following characterization of copies of ultrahomogeneous structures is, most
likely, a known fact. We include its proof for completeness of the paper.

Theorem 2.3 If X is a countable ultrahomogeneous L-structure and A ⊂ X , then
A ∈ P(X) iff

∀F ∈ [A]<ω ∀x ∈ X \ F orbF (x) ∩A 6= ∅. (1)

Consequently, if the set A intersects all orbits of X, then A ∈ P(X).

Proof. Let A ∼= X, F ∈ [A]<ω and x ∈ X \ F . Then there are F ′ ⊂ A, a′ ∈ A
and an isomorphism ψ : F ′ ∪ {a′} → F ∪ {x} such that ψ(a′) = x. Since the
structure A is ultrahomogeneous, by Theorem 2.1(a) there is a ∈ A such that ϕ :=
(ψ �F ′)∪{〈a′, a〉} : F ′ ∪{a′} → F ∪{a} is an isomorphism. Now η := ϕ ◦ψ−1
is an isomorphism, η �F = idF and η(x) = a. Since X is ultrahomogeneous, there
is g ∈ Aut(X) extending η; so g ∈ AutF (X), g(x) = a and a ∈ orbF (x) ∩A.

Assuming (1) we prove that the set Pi(A,X) of all finite partial isomorphisms
from A into X has the back-and-forth property. So, let ϕ ∈ Pi(A,X). First, if
a ∈ A\domϕ, then by Theorem 2.1(a) there is x ∈ X such that ψ := ϕ∪{〈a, x〉}
is an isomorphism and, clearly, ψ ∈ Pi(A,X). Second, if x ∈ X \ ranϕ, then by
Theorem 2.1(a) there is x′ ∈ X such that ψ := ϕ−1∪{〈x, x′〉} is an isomorphism.
Since x′ 6∈ domϕ, by (1) there exists a ∈ orbdomϕ(x′) ∩ A and, hence, there is
g ∈ Autdomϕ(X) such that g(x′) = a. Now, η := g◦ψ is a finite isomorphism with
domain ranϕ∪{x} and η[ranϕ∪{x}] = g[ψ[ranϕ]]∪g[ψ[{x}]] = domϕ∪{a}.
In addition, for y ∈ ranϕ we have η(y) = g(ψ(y)) = g(ϕ−1(y)) = ϕ−1(y),
which gives η = ϕ−1 ∪ {〈x, a〉}. So η−1 = ϕ ∪ {〈a, x〉} ∈ Pi(A,X). 2

3 Partitions into large copies

Here we make some observations about copies of ultrahomogeneous structures
incompatible in a very strong way. By DC we denote the class of countable struc-
tures having disjoint copies (there are copies A,B ∈ P(X) such that A ∩ B = ∅)
and by SAP the class of countable ultrahomogeneous structures satisfying SAP.
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Example 3.1 A countable ultrahomogeneous structure without disjoint copies. Let
X = Q ∪ Y, where Q is the rational line and Y := 〈{y}, {〈y, y〉}〉, where y 6∈ Q.
Then y ∈ A, for each A ∈ P(X).

A structure X is called indivisible (resp. strongly indivisible) iff for each partition
X = A ∪ B there is C ∈ P(X) such that C ⊂ A or C ⊂ B (resp. A ∈ P(X)
or B ∈ P(X)). Let UH , I , and SI , denote the classes of ultrahomogeneous,
indivisible and strongly indivisible countable relational structures respectively.

Confirming a conjecture of Fraı̈ssé, Pouzet proved that each countable in-
divisible structure X has disjoint copies [18]; thus, I ⊂ DC. Here we prove
that more holds for countable ultrahomogeneous structures satisfying SAP; thus
SAP ⊂ DC. We note that SAP 6⊂ I , for example, Bn ∈ SAP \I , for 1 < n < ω.

Theorem 3.2 Each countable ultrahomogeneous structure X satisfying SAP can
be partitioned into countably many large copies of X.

Proof. W.l.o.g. we assume that X = ω. By Theorem 2.2, the set of orbits, Ω :=
{orbF (x) : F ∈ [ω]<ω ∧ x ∈ ω \ F}, is a countable subfamily of [ω]ω. Let Ω =
{On : n ∈ ω} be an enumeration of Ω and let the sequence 〈mn,k : n ≤ k < ω〉 in
ω be constructed by recursion as follows. First, let m0,0 = minO0.

Second, if 0 < k < ω and mn′,k′ are defined for n′ ≤ k′ < k, then we define
mn,k for n ≤ k by: m0,k = min[O0 \ {mn′,k′ : n′ ≤ k′ < k}] and, for 0 < n ≤ k,

mn,k = min
[
On \

(
{mn′,k′ : n′ ≤ k′ < k} ∪ {mn′,k : n′ < n}

)]
. (2)

The recursion works, since |On| = ω, for all n ∈ ω. By the construction, all the
mn,k’s are different. So, defining Ai := {mn,n+i : n < ω}, for all i ∈ ω, we have
Ai1 ∩ Ai2 = ∅, for i1 6= i2. By (2), for each n ∈ ω we have mn,n+i ∈ Ai ∩ On,
thus the set Ai intersects all the orbits of X and, by Theorem 2.3, Ai ∈ P(X).

Clearly we have A :=
⋃
i∈ω Ai = {mn,k : n ≤ k < ω} ⊂

⋃
n∈ω On = X .

Suppose that On 6⊂ A, for some n ∈ ω and let m = min(On \A). By (2) we have
|A ∩ On| = |{mn,k : k < ω}| = ω, so there is k = min{k′ < ω : m < mn,k′}
and we have m < mn,k. Since {mn′,k′ : n′ ≤ k′ < k} ∪ {mn′,k : n′ < n} ⊂ A
we have S := On \ {mn′,k′ : n′ ≤ k′ < k} ∪ {mn′,k : n′ < n} ⊃ On \ A and,
by (2), mn,k = minS ≤ min(On \ A) = m, which gives a contradiction. Thus
A = X and {Ai : i < ω} is a partition of X(= ω).

Now, let {Sj : j ∈ ω} ⊂ [ω]ω be a partition of ω and Bj :=
⋃
i∈Sj

Ai, for
j ∈ ω. Then {Bj : j ∈ ω} ⊂ P(X) is a partition of X and for n ∈ ω we have
{mn,n+i : i ∈ Sj} ⊂ Bj ∩On; thus Bj , j ∈ ω, are large copies of X. 2

Example 3.3 A countable ultrahomogeneous divisible structure which does not
have the SAP, but has disjoint copies. Let X be the wreath product Iω[T3] (see [2]),
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that is the disjoint union
⋃
n∈ω T

n
3 of ω-many copies of the oriented triangle. By

Theorem 2.2 the structure X does not satisfy SAP, it is clear that X is not indivisible,
but for each S ∈ [ω]ω we have AS :=

⋃
n∈S T

n
3 ∈ P(X). Concerning Theorems

2.3 and 3.2 we note that each one-element subset of X is an orbit of X. Hence X
is the only subset of X intersecting all the orbits of X.

Figure 1 shows the relationship between the mentioned five classes. For XLach see
[4], p. 402. Gω is the linear graph on ω, i.e. 〈ω,∼〉, wherem ∼ n⇔ |m− n| = 1.
Q ∪ 1re is the structure from Example 3.1.

XLach GRado 〈ω,<〉 SI

DC

Q [0, 1]Q

I

⋃
ω T3 B2 〈Z, <〉

SAP

Q ∪ 1re Gω

UH

Figure 1: Countable relational structures

4 Large almost disjoint families of large copies

By Theorem 5.3 of [7], if X is a countable indivisible L-structure, then the set P(X)
contains an almost disjoint family of size c and, hence, the poset P(X) contains
maximal antichains of size c. Here, proving Theorem 1.1(b) and (c), we show that
more is true for countable ultrahomogeneous structures satisfying SAP.

Theorem 4.1 If X is a countable ultrahomogeneous L-structure satisfying SAP,
then there is an almost disjoint family of large copies of size c.

Proof. W.l.o.g. we assume that X = ω. By Theorem 2.2, the set of orbits, Ω :=
{orbF (x) : F ∈ [ω]<ω ∧ x ∈ ω \ F}, is a countable subfamily of [ω]ω. Let
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Ω = {On : n ∈ ω} be an enumeration of Ω and let 〈mn,k : n ≤ k < ω〉 be the
sequence in ω constructed in Theorem 3.2. Namely, m0,0 = minO0 and if mn′,k′

are defined for n′ ≤ k′ < k, then

mn,k = min
[
On \

(
{mn′,k′ : n′ ≤ k′ < k} ∪ {mn′,k : n′ < n}

)]
. (3)

Since all the mn,k’s are different, defining Dn := {mn,k : k ∈ [n, ω)}, for
n ∈ ω, we have Dn ∈ [On]ω and Dm ∩ Dn = ∅, for m 6= n. Clearly we
have D :=

⋃
n∈ωDn = {mn,k : n ≤ k < ω} and (see the proof of Theorem 3.2)

D = ω. So {Dn : n < ω} is a partition of ω refining Ω.

Claim. If {Dn : n < ω} ⊂ [ω]ω is a partition of ω, then there exists an almost
disjoint family {Aα : α < c} ⊂ [ω]ω, such that |Aα ∩ Dn| = ω, for each α < c
and each n ∈ ω.

Proof of Claim. W.l.o.g. instead of ω we can take the set of rationals, Q, and
suppose that Dn, n < ω, are dense suborders of Q. Let f : ω → ω be a surjection
such that |f−1[{n}]| = ω, for each n ∈ ω. By recursion, for each real x ∈ R
we construct an increasing sequence 〈qxk : k ∈ ω〉 in Q converging to x in the
following way. First we take qx0 ∈ Df(0) ∩ (−∞, x); if qx0 , . . . , q

x
k are defined,

then we take qxk+1 ∈ Df(k+1) ∩ (max{qxk , x−
1

k+1}, x). By the density of the sets
Dn the recursion works. Now, defining the sets Ax := {qxk : k ∈ ω}, for x ∈ R,
and A := {Ax : x ∈ R} ∈ [Q]ω we obtain an almost disjoint family of size c. In
addition, for x ∈ R, n ∈ ω and k ∈ f−1[{n}] we have qxk ∈ Ax∩Df(k) = Ax∩Dn

and, since |f−1[{n}]| = ω and qxk ’s are different, we have |Ax ∩Dn| = ω. 2

By Claim, there is an almost disjoint family {Aα : α < c} ⊂ [ω]ω such that
for each α < c and each n ∈ ω we have |Aα ∩ Dn| = ω and, since Dn ⊂ On,
|Aα ∩On| = ω. By Theorem 2.3 we have Aα ∈ P(X). 2

Example 4.2 Applications of Theorem 1.1. The countable ultrahomogeneous di-
graphs (structures with one irreflexive and asymmetric binary relation) have been
classified by Cherlin [2, 3]. Following the organization of the Cherlin’s list given
in [17], we mention some structures satisfying SAP. By Theorem 1.1 their posets of
copies contain almost disjoint families and maximal antichains of size continuum.

- The posets Aω, Bn, for n ≤ ω, and D from Schmerl’s list (see Theorem 1.2);
- All countable ultrahomogeneous tournaments (Lachlan’s list [16]): Q; the

random tournament, T∞; the circular tournament, S(2); (see [3], p. 18);
- All Henson’s digraphs with forbidden sets of tournaments [5]; ([17], p. 11);
- Digraphs Γn, n > 1, where Γn is the Fraı̈ssé limit of the amalgamation class

of all finite digraphs not embedding the empty digraph of size n;
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- Two “sporadic” primitive digraphs S(3) and P(3);
- The digraphs n ∗ I∞, for 2 ≤ n ≤ ω, which are universal subject to the

constraint that non-relatedness is an equivalence relation with n classes.

We remark that some of these structures are not indivisible (so Theorem 5.3 of [7]
can not be applied) for example: S(2), S(3), Bn and Cn, for 1 < n < ω.

5 Ultrahomogeneous partial orders

Here we prove Theorem 1.3 showing that there are maximal antichains of copies
of size c for all ultrahomogeneous partial orders and that Aω and Bω are the only
structures on Schmerl’s list, for which there are no countable maximal antichains
of copies.

First, since the poset P(Aω) is isomorphic to the poset 〈[ω]ω,⊂〉, it contains
maximal antichains of size c, but does not contain countable maximal antichains.

5.1 The posets Bn (disjoint copies of the rational line)

It is evident that for each n ≤ ω the poset Bn is strongly inexhaustible. So, by
Theorem 2.2, the structure Bn satisfies the SAP and, by Theorem 1.1, its poset of
copies, P(Bn), contains maximal antichains of size c. Here we show that, concern-
ing the existence of countable maximal antichains of copies, the finite unions Bn,
n ∈ N, and the infinite union Bω are different. First, the basic case is B1

∼= Q.

Lemma 5.1 The poset P(Q) contains both ω-sized and c-sized maximal antichains.

Proof. Clearly, the family A = {In : n ∈ Z} of the open intervals in Q given
by In = ((2n − 1)

√
2, (2n + 1)

√
2) ∩ Q, for n ∈ Z, is an antichain in P(Q). If

C ∈ P(Q), then |C∩In| > 1, for some n ∈ Z, (otherwise we would haveC ↪→ Z).
Thus, if x, y ∈ C ∩ In and x < y, then (since C ∼= Q) we have (x, y)C ∈ P (Q)
and (x, y)C ⊂ In ∩ C. So, A is a countable maximal antichain in P(Q). 2

The following, more general consideration will be used in our analysis of the
poset P(Bω). For each i ∈ ω, let Pi = 〈Pi,≤i〉 be a partial order with a minimum
0i and let |Pi| ≥ 2. By

∏
i∈ω Pi we denote the direct product of Pi’s, the poset

〈P,≤〉, where P :=
∏
i∈ω Pi and 〈xi〉 ≤ 〈yi〉 iff xi ≤i yi, for all i ∈ ω. Defining

the support of an element x = 〈xi〉 ∈ P by supp(x) := {i ∈ ω : xi 6= 0i} we
consider the suborder P cs := {x ∈ P : | supp(x)| = ω} of the product

∏
i∈ω Pi,

call it the countable support product of Pi’s and denote it by
∏cs
i∈ω Pi.

Lemma 5.2
∏cs
i∈ω Pi does not contain countable maximal antichains.
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Proof. Let A = {an : n ∈ ω} be an antichain in P cs, where an = 〈ani 〉. First we
show that for different m,n ∈ ω the set

Km,n = {i ∈ supp(am) ∩ supp(an) : ∃bi ∈ Pi 0i <i bi ≤i ami , ani }

is finite. Otherwise, defining ci = bi, for i ∈ Km,n and ci = 0i, for i ∈ ω \Km,n,
we would have c = 〈ci〉 ∈ P cs and c ≤ am, an, which is false.

Let 〈in : n ∈ ω〉 be the sequence in ω defined by i0 = min(supp(a0)) and

in = min
(

supp(an) \ ({i0, . . . , in−1} ∪K0,n ∪ · · · ∪Kn−1,n)
)
. (4)

Let c = 〈ci : i ∈ ω〉, where cin = anin , for n ∈ ω, and ci = 0i, if i 6∈ {in : n ∈ ω}.
For n ∈ ω we have in ∈ supp(an); thus, cin = anin > 0in and, hence, c ∈ P cs.

Assuming that d ≤ am, c, for some d = 〈di〉 ∈ P cs and m ∈ ω, we would
have supp(d) ⊂ supp(c) and, hence, supp(d) = {in : n ∈M}, where M ∈ [ω]ω.
For each n ∈ M we would have 0in < din ≤ amin , a

n
in

and, hence, in ∈ Km,n,
which is, by (4), impossible for n > m. Thus the element c of P cs is incompatible
with all the elements of A and, hence, A is not a maximal antichain in

∏cs
i∈ω Pi. 2

Theorem 5.3 (a) For each n ∈ N there is a countable maximal antichain in P(Bn).
(b) Each infinite maximal antichain in P(Bω) is uncountable.

Proof. (a) It is evident that P(Bn) =
{⋃

i<n {i} × Ci : ∀i < n Ci ∈ P(Q)
}

(see
the proof of Theorem 5.1 of [10]), which implies that P(Bn) ∼= P(Q)n. By Lemma
5.1 there is a countable maximal antichainA = {Aj : j ∈ ω} in P(Q) and, defining
Āj := 〈Aj ,Q, . . . ,Q〉 ∈ P(Q)n, for j ∈ ω, we obtain a countable antichain
A := {Āj : j ∈ ω} in the product P(Q)n. Now, if C̄ := 〈C0, . . . , Cn−1〉 ∈ P(Q)n,
then, by the maximality ofA, there are j ∈ ω andC ∈ P(Q) such thatC ⊂ C0∩Aj
and for D̄ := 〈C,C1, . . . , Cn−1〉 in the poset P(Q)n we have D̄ ≤ C̄ and D̄ ≤ Āj .
Thus A is a maximal antichain in the product P(Q)n.

(b) It is easy to see that the copies of Bω are of the form
⋃
i∈S {i} ×Ci, where

S ∈ [ω]ω and Ci ∈ P(Q), for all i ∈ S (see the proof of Theorem 5.2 of [10]).
Thus, the poset P(Bω) is isomorphic to the countable support product

∏cs
i∈ω Pi,

where Pi = 〈P(Q) ∪ {∅},⊂〉, for all i ∈ ω, and we apply Lemma 5.2. 2

5.2 The posets Cn (dense antichains)

It is easy to check (see, for example, [10], p. 96) that

P(Cn) := {n×A : A ∈ P(Q)}, for n < ω, (5)

P(Cω) := {
⋃
q∈ACq × {q} : A ∈ P(Q) ∧ ∀q ∈ A Cq ∈ [ω]ω}. (6)

For n ≤ ω and Z ⊂ n×Q, let supp(Z) = {q ∈ Q : Z ∩ (n× {q}) 6= ∅}. Notice
that Z ∈ P(Cn) implies supp(Z) ∼= Q.
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Theorem 5.4 For each n satisfying 1 ≤ n ≤ ω we have
(a) If A is a maximal antichain in P(Q), then B = {n×A : A ∈ A} is a

maximal antichain in P(Cn) and |A| = |B|;
(b) The poset P(Cn) contains both ω-sized and c-sized maximal antichains.

Proof. (a) Clearly we have B ⊂ P(Cn). First we prove that B is an antichain.
Assuming that for different A,A′ ∈ A there is Z ∈ P(Cn) such that Z ⊂ n ×
A,n×A′, we would have Z ⊂ n× (A∩A′) and Q ∼= supp(Z) ⊂ A∩A′, which
is impossible since A is an antichain in P(Q).

Second we prove that B is a maximal antichain in P(Cn). If Z ∈ P(Cn), then
supp(Z) ∼= Q and, by the maximality of A, there are A ∈ A and B ∈ P(Q) such
thatB ⊂ A∩supp(Z). Now, for Y =

⋃
q∈B Z∩(n×{q}) we have Y ⊂ Z∩(n×A)

and Y ∈ P(Cn) because for each q ∈ supp(Z) there is a bijection between n and
Z ∩ (n× {q}). So, Y witnesses the compatibility of Z and n×A ∈ B.

(b) follows from (a) and Lemma 5.1. 2

5.3 The poset D (the random poset)

Recall that D = 〈D,<〉 is the unique, up to isomorphism, countable ultrahomoge-
neous partial order which embeds all countable partial orders. Since the structure
D satisfies the SAP, by Theorem 1.1 the poset P(D) contains maximal antichains
of size c. So, Theorem 5.9 given below completes the proof of Theorem 1.3.

First we recall some definitions and facts from [10] which will be used in the
proof of Theorem 5.9 (see Fact 3.1, Fact 3.2 and Lemma 3.3 of [10]) and note that
‖ will denote the incomparability relation: p ‖ q ⇔ p 6= q ∧ ¬p < q ∧ ¬q < p.

Definition 5.5 Let P = 〈P,<〉 be a partial order. By C(P) we denote the set of all
triples 〈L,G,U〉 of pairwise disjoint finite subsets of P such that:

(C1) ∀l ∈ L ∀g ∈ G l < g,
(C2) ∀u ∈ U ∀l ∈ L ¬u < l,
(C3) ∀u ∈ U ∀g ∈ G ¬g < u.

For 〈L,G,U〉 ∈ C(P), let P〈L,G,U〉 be the set of all p ∈ P \(L∪G∪U) satisfying:
(S1) ∀l ∈ L p > l,
(S2) ∀g ∈ G p < g,
(S3) ∀u ∈ U p ‖ u.

Fact 5.6 A countable partial order P = 〈P,<〉 is (isomorphic to) a countable
random poset iff P〈L,G,U〉 6= ∅, for each 〈L,G,U〉 ∈ C(P).

Fact 5.7 Let P = 〈P,<〉 be a partial order and ∅ 6= A ⊂ P . Then
(a) C(A,<) = {〈L,G,U〉 ∈ C(P) : L,G,U ⊂ A};
(b) A〈L,G,U〉 = P〈L,G,U〉 ∩A, for each 〈L,G,U〉 ∈ C(A,<).
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Fact 5.8 Let D = 〈D,<〉 be a countable random poset. Then
(a) D〈L,G,U〉 ∈ P(D), for each 〈L,G,U〉 ∈ C(D);
(b) If C ⊂ D and A 6⊂ C, for each A ∈ P(D), then D \ C ∈ P(D);
(c) If L ⊂ P(D) is a chain, then

⋃
L ∈ P(D).

Theorem 5.9 There is a countable maximal antichain in P(D).

Proof. Let C be a maximal chain in D. Assuming that x = max C (resp. x =
min C) we would have D〈{x},∅,∅〉 = ∅ (resp. D〈∅,{x},∅〉 = ∅). Thus C is an un-
bounded chain in D and, since |C| = ω, it has a cofinal subset isomorphic to ω and
a coinitial subset isomorphic to ω∗. This implies that D contains an unbounded
copy of the integers. W.l.o.g. we suppose that Z itself is that copy. For m ∈ Z, let
Am = {x ∈ D : x < m} and Xm = Am \ (Am−1 ∪ {m− 1}); that is,

Xm = {x ∈ D : x < m ∧ x 6≤ m− 1}. (7)

Claim. Xm ∈ P(D), for every m ∈ Z.

Proof of Claim. We show that Xm
∼= D using Fact 5.6. If 〈L,G,U〉 ∈ C(Xm),

then by Fact 5.7(a) we have 〈L,G,U〉 ∈ C(D) and L,G,U ⊂ Xm. By Fact 5.7(b),
we have to show that D〈L,G,U〉 ∩Xm 6= ∅. There are four cases.

Case I: L 6= ∅ and G 6= ∅. Since 〈L,G,U〉 ∈ C(D), there is d ∈ D〈L,G,U〉
and we show that d ∈ Xm. Since ∅ 6= G ⊂ Xm, for g ∈ G we have d < g < m.
Assuming that d ≤ m− 1, for l ∈ L we would have l < d ≤ m− 1, which is false
because L ⊂ Xm and, by (7), l 6≤ m− 1. So, d 6≤ m− 1 and, by (7), d ∈ Xm.

Case II: L = ∅ and G 6= ∅. Suppose that 〈∅, G, U ∪ {m− 1}〉 6∈ C(D). Then
(C3) fails and, since 〈∅, G, U〉 ∈ C(D), there is g ∈ G such that g < m− 1. But,
since G ⊂ Xm, this is impossible by (7). Thus 〈∅, G, U ∪ {m− 1}〉 ∈ C(D) and,
hence, there is d ∈ D〈∅,G,U∪{m−1}〉, which implies d ∈ D〈∅,G,U〉. We prove that
d ∈ Xm. First, for g ∈ G we have d < g < m. Second, since d ‖ m− 1, we have
d 6≤ m− 1 and, by (7), d ∈ Xm indeed.

Case III: L 6= ∅ and G = ∅. Consider the condition 〈L, {m} , U〉. Since
L ⊂ Xm, by (7) we have l < m, for all l ∈ L, and (C1) is true. (C2) is true because
〈L, ∅, U〉 ∈ C(D). Since U ⊂ Xm, by (7) for each u ∈ U we have ¬m < u and
(C3) is true. So, 〈L, {m} , U〉 ∈ C(D), there is d ∈ D〈L,{m},U〉 ⊂ D〈L,∅,U〉 and we
show that d ∈ Xm. Clearly d < m and d ≤ m−1 would imply that l < d ≤ m−1,
for some l ∈ L, which is false because ∅ 6= L ⊂ Xm. So, d 6≤ m− 1 and d ∈ Xm.

Case IV: L = ∅ and G = ∅. Suppose that 〈∅, {m} , U ∪ {m− 1}〉 6∈ C(D).
Then (C3) fails so there is u ∈ U ∪ {m− 1} such that m < u. Since m 6< m− 1
we have u ∈ U , which is false because u ∈ Xm. Thus 〈∅, {m} , U ∪ {m− 1}〉 ∈
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C(D), there is d ∈ D〈∅,{m},U∪{m−1}〉 ⊂ D〈∅,∅,U〉 and we show that d ∈ Xm.
Clearly d < m and d ‖ m− 1 gives d 6≤ m− 1; so, d ∈ Xm indeed. 2

Claim. X =
⋃
m∈ZXm is isomorphic to the random poset.

Proof of Claim. By Fact 5.8(a) we have Am = D〈∅,{m},∅〉 ∈ P(D), for all m ∈ Z.
Since {Am : m ∈ Z} is a chain in P(D), Fact 5.8(c) gives A =

⋃
m∈ZAm ∈ P(D)

Since for each m ∈ Z we have Xm ⊂ Am and Xm ∩ Z = ∅ it follows that
X ⊂ A \ Z. Conversely, since

⋂
m∈ZAm = ∅ (by the unboundedness of Z), for

x ∈ A \ Z there is m ∈ Z such that x ∈ Am \ Am−1 and, since x 6= m − 1, we
have x ∈ Xm ⊂ X; so X = A \Z. Since A ∼= D and Z does not contain copies of
D, by Fact 5.8(b) we have A \ Z ∈ P(D) that is, X ∈ P(D). 2

Finally, we prove that A = {Xm : m ∈ Z} is a maximal antichain in P(X).
SinceXm∩Xn = ∅, for differentm,n ∈ Z,A is an antichain in P(X). For a proof
of its maximality we take C ∈ P(X) and first, towards a contradiction, suppose
that

∀m ∈ Z ∀x, y ∈ C ∩Xm (x 6= y ⇒ x ‖ y). (8)

Let us fix x ∈ C and m0 ∈ Z, where x ∈ C ∩ Xm0 . Since C〈{x},∅,∅〉 6= ∅
there are m ≥ m0 and z ∈ C ∩ Xm such that x < z, which by (8) implies that
m > m0. Thus the set M := {m > m0 : ∃z ∈ C ∩Xm x < z} is non-empty.
Let m1 = minM and let us pick z ∈ C ∩ Xm1 such that x < z. Then, since
C〈{x},{z},∅〉 6= ∅ there are m ∈ Z and y ∈ C ∩ Xm such that x < y < z. Now,
m ∈M , we havem0 ≤ m ≤ m1, and, by (8),m0 < m < m1, which is impossible
because m1 = minM .

Thus (8) is false and, hence, there are m ∈ Z and x, y ∈ Xm ∩ C such that
x < y. Since C ∈ P(X), by Fact 5.8(a) we have C〈{x},{y},∅〉 ∈ P(X). If t ∈
C〈{x},{y},∅〉, then x < t < y < m and t ≤ m− 1 would imply x < m− 1, which
is false because x ∈ Xm; so, t ∈ Xm. Thus, C〈{x},{y},∅〉 ⊂ C ∩Xm, that is, C and
Xm are compatible elements of P(X) and A is a maximal antichain in P(X). 2
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