
MAXIMAL CHAINS OF ISOMORPHIC SUBGRAPHS
OF COUNTABLE ULTRAHOMOGENEOUS GRAPHS
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Abstract

For a countable ultrahomogeneous graph G = 〈G, ρ〉 let P(G) denote the
collection of sets A ⊂ G such that 〈A, ρ ∩ [A]2〉 ∼= G. The order types of
maximal chains in the poset 〈P(G) ∪ {∅},⊂〉 are characterized as:

(I) the order types of compact sets of reals having the minimum non-
isolated, if G is the Rado graph or the Henson graph Hn, for some n ≥ 3;

(II) the order types of compact nowhere dense sets of reals having the
minimum non-isolated, if G is the union of µ disjoint complete graphs of
size ν, where µν = ω.
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1 Introduction

IfX is a relational structure, P(X) will denote the set of domains of substructures of
X which are isomorphic to X. X is called ultrahomogeneous iff each isomorphism
between two finite substructures of X can be extended to an automorphism of X.

A structure G = 〈G, ρ〉 is a graph iff G is a set and ρ a symmetric irreflexive
binary relation on G. We will also use the following equivalent definition: a pair
G = 〈G, ρ〉 is a graph iff G is a set and ρ ⊂ [G]2. Then for H ⊂ G, 〈H, ρ ∩ [H]2〉
(or 〈H, ρ ∩ (H × H)〉, in the relational version) is the corresponding subgraph
of G. For a cardinal ν, Kν will denote the complete graph of size ν. A graph is
called Kn-free iff it has no subgraphs isomorphic to Kn. We will use the following
well-known classification of countable ultrahomogeneous graphs [9]:

Theorem 1.1 (Lachlan and Woodrow) Each countable ultrahomogeneous graph
is isomorphic to one of the following graphs

- Gµν , the union of µ disjoint copies of Kν , where µν = ω,
- GRado, the unique countable homogeneous universal graph, the Rado graph,
- Hn, the unique countable homogeneous universal Kn-free graph, for n ≥ 3,
- the complements of these graphs.

Properties of maximal chains in posets are widely studied order invariants (see [1],
[3], [4], [10], [11]) and, as a part of investigation of the partial orders of the form
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〈P(X),⊂〉, where X is a relational structure, the class of order types of maximal
chains in the poset 〈P(GRado),⊂〉 was characterized in [7]. The aim of this paper
is to complete the picture for all countable ultrahomogeneous graphs in this context
and, thus, the following theorem is our main result.

Theorem 1.2 Let G be a countable ultrahomogeneous graph. Then
(I) If G = GRado or G = Hn, for some n ≥ 3, then for each linear order L the
following conditions are equivalent:

(a) L is isomorphic to a maximal chain in the poset 〈P(G) ∪ {∅},⊂〉;
(b) L is an R-embeddable complete linear order with 0L non-isolated;
(c) L is isomorphic to a compact set K ⊂ R having the minimum non-isolated.

(II) If G = Gµν , where µν = ω, then for each linear order L the following condi-
tions are equivalent:

(a) L is isomorphic to a maximal chain in the poset 〈P(G) ∪ {∅},⊂〉;
(b) L is an R-embeddable Boolean linear order with 0L non-isolated;
(c) L is isomorphic to a compact nowhere dense set K ⊂ R having the mini-

mum non-isolated.

It is easy to check that for a relational structure 〈X, ρ〉 we have P(〈X, ρ〉) =
P(〈X, ρc〉) and, hence, regarding Theorem 1.1, Theorem 1.2 in fact covers all
countable ultrahomogeneous graphs. The statement (I) for the Rado graph is proved
in [7] and in this paper we consider the Henson graphs Hn and the graphs Gµν .

The outline of the paper is as follows. Section 2 contains necessary defini-
tions and facts. The main result of Section 3, Theorem 3.2, is general and gives a
condition (for a countable relational structure X) providing that for each compact
set K ⊂ R satisfying minK ∈ K ′ (e.g. for [0, 1] or the Cantor set) the poset of
copies of X contains a maximal chain isomorphic to K \ {minK}. In Section 4
we show that the graphs Hn satisfy this condition and, using Theorem 3.2, prove
the corresponding part of Theorem 1.2 for the most complex class of countable
ultrahomogeneous graphs - the class of Henson graphs. Essentially we construct
a relational structure 〈Q, <, ρ〉 satisfying conditions of Theorem 3.2 and such that
〈Q, ρ〉 ∼= Hn. Our construction is generic - we use the partial order of finite ap-
proximations of the structure 〈Q, ρ〉 and, applying the Rasiowa-Sikorski theorem to
a countable family of suitably chosen dense subsets of this partial order, we obtain
a filter intersecting all of them and coding the relation ρ. In Section 5 we prove
Theorem 1.2 for disjoint unions of complete graphs, which completes its proof.

2 Preliminaries

In this section we recall basic definitions and facts which will be used in the paper.
If 〈P,≤〉 is a partial order, then the smallest and the largest element of P are

denoted by 0P and 1P ; the intervals (x, y)P , [x, y]P , (−∞, x)P etc. are defined in
the usual way. A set D ⊂ P is dense iff for each p ∈ P there is q ∈ D such that
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q ≤ p. A set G ⊂ P is a filter iff (F1) for each p, q ∈ G there is r ∈ G such that
r ≤ p, q and (F2) G 3 p ≤ q implies q ∈ G.

Fact 2.1 (Rasiowa-Sikorski) IfDn, n ∈ ω are dense sets in a partial order 〈P,≤〉,
then there is a filter G in P intersecting all of them.

Proof. Let p0 ∈ D0 and, for n ∈ ω, let us pick pn+1 ∈ Dn+1 such that pn+1 ≤ pn.
Then G = {p ∈ P : ∃n ∈ ω pn ≤ p} is a filter intersecting all Dn’s. 2

A pair 〈A,B〉 is a cut in a linear order 〈L,<〉 iff L = A
.
∪ B, A,B 6= ∅ and

a < b, for each a ∈ A and b ∈ B. A cut 〈A,B〉 is a gap iff neither maxA nor
minB exist. 〈L,<〉 is called: complete iff it has 0 and 1 and has no gaps; dense iff
(x, y)L 6= ∅, for each x, y ∈ L satisfying x < y; R-embeddable iff it is isomorphic
to a subset of R; Boolean iff it is complete and has dense jumps, which means that
for each x, y ∈ L satisfying x < y there are a, b ∈ L such that x ≤ a < b ≤ y
and (a, b)L = ∅. A set D ⊂ L is called dense in L iff for each x, y ∈ L satisfying
x < y there is z ∈ D such that x < z < y. If 〈I,<I〉 and 〈Li, <i〉, i ∈ I , are linear
orders and Li ∩ Lj = ∅, whenever i 6= j, then the corresponding lexicographic
sum

∑
i∈I Li is the linear ordering 〈

⋃
i∈I Li, <〉 where the relation < is defined

by: x < y ⇔ ∃i ∈ I (x, y ∈ Li ∧ x <i y)∨ ∃i, j ∈ I (i <I j ∧ x ∈ Li ∧ y ∈ Lj).

Fact 2.2 If 〈L,<〉 is an at most countable complete linear order, it is Boolean.

Proof. Let x, y ∈ L and x < y. Suppose that for each a, b ∈ [x, y]L satisfying
a < b we have (a, b)L 6= ∅. Then [x, y]L would be a dense complete linear order,
which is impossible because L is countable. Thus L has dense jumps. 2

P ⊂ P (ω) is called a positive family iff (P1) ∅ /∈ P; (P2) P 3 A ⊂ B ⊂ ω ⇒
B ∈ P; (P3) A ∈ P ∧ |F | < ω ⇒ A\F ∈ P; (P4) ∃A ∈ P |ω\A| = ω.

Fact 2.3 (See [6]) If P ⊂ P (ω) is a positive family, then for each linear order L
the following conditions are equivalent:

(a) L is isomorphic to a maximal chain in the poset 〈P ∪ {∅},⊂〉;
(b) L is an R-embeddable Boolean linear order with 0L non-isolated;
(c) L is isomorphic to a compact nowhere dense set K ⊂ R having the mini-

mum non-isolated.
(d) L is isomorphic to a maximal chain L in the poset 〈P ∪ {∅},⊂〉 such that⋂

(L \ {∅}) = ∅.

Fact 2.4 Let A ⊂ B ⊂ ω and let L be a complete linear ordering, such that
|B \A| = |L| − 1. Then there is a chain L in [A,B]P (B) satisfying A,B ∈ L ∼= L
and such that

⋃
A,
⋂
B ∈ L and |

⋂
B \

⋃
A| ≤ 1, for each cut 〈A,B〉 in L.

Proof. If |B \ A| is a finite set, say B = A ∪ {a1, . . . an}, then |L| = n + 1 and
L = {A,A ∪ {a1}, A ∪ {a1, a2}, . . . , B} is a chain with the desired properties.

If |B\A| = ω, then L is a countable and, hence,R-embeddable complete linear
order. It is known that an infinite linear order is isomorphic to a maximal chain in



Maximal chains of isomorphic subgraphs of countable ultrahomogeneous ... 4

P (ω) iff it is R-embeddable and Boolean (see, for example, [5]). By Fact 2.2 L is
a Boolean order and, thus, there is a maximal chain L1 in P (B \A) isomorphic to
L. Let L = {A ∪ C : C ∈ L1}. Since ∅, B \ A ∈ L1 we have A,B ∈ L and the
function f : L1 → L, defined by f(C) = A ∪ C, witnesses that 〈L1, 〉 ∼= 〈L, 〉
so L is isomorphic to L. For each cut 〈A,B〉 in L1 we have

⋃
A ⊂

⋂
B and, by

the maximality of L1,
⋃
A,
⋂
B ∈ L1 and |

⋂
B \

⋃
A| ≤ 1. Clearly, the same is

true for each cut in L. 2

3 General results

The following three general statements, concerning the class of the order types
of maximal chains of copies of relational structures, will be used in the proof of
Theorem 1.2. The first one gives a necessary condition for a type to be in the class
corresponding to a countable ultrahomogeneous structure.

Theorem 3.1 ([8]) Let X be a countable ultrahomogeneous structure of an at most
countable relational language and P(X) 6= {X}. Then for each linear order L we
have (a)⇒ (b), where

(a) L is isomorphic to a maximal chain in the poset 〈P(X) ∪ {∅},⊂〉;
(b) L is an R-embeddable complete linear order with 0L non-isolated.

In particular, the union of a chain in 〈P(X),⊂〉 belongs to P(X).

The following statement describes a class of structures such that, regarding Theo-
rem 3.1, the implication (b)⇒ (a) holds for each linear order L.

Theorem 3.2 Let X be a countable relational structure and Q the set of rationals.

(A) If there exist a partition {Jn : n ∈ ω} of Q and a structure with the domain
Q of the same signature as X such that

(i) J0 is a dense subset of Q,

(ii) Jn, n ∈ N, are coinitial subsets of Q,

(iii) J0∩(−∞, x) ⊂ A ⊂ Q∩(−∞, x) impliesA ∼= X, for all x ∈ R∪{∞},
(iv) J0 ∩ (−∞, q] ⊂ C ⊂ Q ∩ (−∞, q] implies C 6∼= X, for each q ∈ J0,

then for each uncountable R-embeddable complete linear order L with 0L
non-isolated and such that all initial segments of L \ {0L} are uncountable
there is a maximal chain in 〈P(X) ∪ {∅},⊂〉 isomorphic to L.

(B) If, in addition,

(v) for each countable complete linear order L with 0L non-isolated there
is a maximal chain in 〈P(X) ∪ {∅},⊂〉 isomorphic to L,
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then for each R-embeddable complete linear order L with 0L non-isolated
there is a maximal chain in 〈P(X) ∪ {∅},⊂〉 isomorphic to L.

Proof. Let L be an uncountable R-embeddable complete linear order with 0L non-
isolated.

Claim 3.3 L ∼=
∑

x∈[−∞,∞] Lx, where
(L1) Lx, x ∈ [−∞,∞], are at most countable complete linear orders,
(L2) The set M = {x ∈ [−∞,∞] : |Lx| > 1} is at most countable,
(L3) |L−∞| = 1 or 0L−∞ is non-isolated.

Proof. L =
∑

i∈I Li, where Li are the equivalence classes corresponding to the
condensation relation ∼ on L given by: x ∼ y ⇔ |[min{x, y},max{x, y}]| ≤ ω
(see [12]). Since L is complete and R-embeddable I is too and, since the cofi-
nalities and coinitialities of Li’s are countable, I is a dense linear order; so I ∼=
[0, 1] ∼= [−∞,∞]. Hence Li’s are complete and, since minLi ∼ maxLi, count-
able. If |Li| > 1, Li has a jump (Fact 2.2) so, L ↪→ R gives |M | ≤ ω. 2

(A) Let all initial segments of L \ {0L} be uncountable. Then, by Claim 3.3,
|L−∞| = 1, that is −∞ /∈M , and we have two cases.
Case I: ∞ ∈ M . By (L2) there is an injection ϕ : M → N. By (L1), for
y ∈ M we have |Ly| ≤ ω and by (ii) |Jϕ(y) ∩ (−∞, y)| = ω so we take Iy ∈
[Jϕ(y) ∩ (−∞, y)]|Ly |−1. Let us define the sets Ax, x ∈ [−∞,∞] and A+

x , x ∈M ,
by

Ax =

{
∅, for x = −∞,
(J0 ∩ (−∞, x)) ∪

⋃
y∈M∩(−∞,x)Iy, for x ∈ (−∞,∞];

A+
x = Ax ∪ Ix, for x ∈M.

Since J0 ⊂ A+
∞ = J0 ∪

⋃
y∈M Iy ⊂ Q, by (iii) we have A+

∞
∼= X and we construct

a maximal chain L in 〈P(A+
∞) ∪ {∅},⊂〉, such that L ∼= L.

Claim 3.4 The sets Ax, x ∈ [−∞,∞] and A+
x , x ∈ M are subsets of the set A+

∞.
In addition, for each x, x1, x2 ∈ [−∞,∞] we have

(a) Ax ⊂ (−∞, x);
(b) A+

x ⊂ (−∞, x), if x ∈M ;
(c) x1 < x2 ⇒ Ax1  Ax2 ;
(d) M 3 x1 < x2 ⇒ A+

x1  Ax2 ;
(e) |A+

x \Ax| = |Lx| − 1, if x ∈M ;
(f) Ax ∈ P(A+

∞), for each x ∈ (−∞,∞].
(g) A+

x ∈ P(A+
∞) and [Ax, A

+
x ]P(A+

∞) = [Ax, A
+
x ]P (A+

x ), for each x ∈M .

Proof. Statements (c) and (d) are true since J0 is a dense subset of Q; (a), (b) and
(e) follow from the definitions of Ax and A+

x and the choice of the sets Iy. For x ∈
(−∞,∞] we have J0∩(−∞, x) ⊂ Ax ⊂ Q∩(−∞, x) so, by (iii),Ax ∼= X ∼= A+

∞
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and (f) is true. If x ∈ M , then J0 ∩ (−∞, x) ⊂ Ax ⊂ A+
x ⊂ Q ∩ (−∞, x) so, by

(iii), Ax ⊂ A ⊂ A+
x implies A ∼= X ∼= A+

∞ and (g) is true as well. 2

Now, for x ∈ [−∞,∞] we define chains Lx in 〈P(A+
∞) ∪ {∅},⊂〉 as follows.

For x 6∈M we define Lx = {Ax}. In particular, L−∞ = {∅}.
For x ∈ M , using Claim 3.4(g) and Fact 2.4 we obtain Lx ⊂ [Ax, A

+
x ]P (A+

x )

such that 〈Lx, 〉 ∼= 〈Lx, <x〉 and

Ax, A
+
x ∈ Lx ⊂ [Ax, A

+
x ]P(A+

∞), (1)⋃
A,
⋂
B ∈ Lx and |

⋂
B \

⋃
A| ≤ 1, for each cut 〈A,B〉 in Lx. (2)

For A,B ⊂ P(A+
∞) we will write A ≺ B iff A  B, for each A ∈ A and B ∈ B.

Claim 3.5 Let L =
⋃
x∈[−∞,∞] Lx. Then

(a) If −∞ ≤ x1 < x2 ≤ ∞, then Lx1 ≺ Lx2 and
⋃
Lx1 ⊂ Ax2 ⊂

⋃
Lx2 .

(b) L is a chain in 〈P(A+
∞) ∪ {∅},⊂〉 isomorphic to L =

∑
x∈[−∞,∞] Lx.

(c) L is a maximal chain in 〈P(A+
∞) ∪ {∅},⊂〉.

Proof. (a) Let A ∈ Lx1 and B ∈ Lx2 . If x1 ∈ (−∞,∞] \M , then, by (1) and
Claim 3.4(c) we have A = Ax1  Ax2 ⊂ B. If x1 ∈ M , then, by (1) and Claim
3.4(d), A ⊂ A+

x1  Ax2 ⊂ B. The second statement follows from Ax2 ∈ Lx2 .
(b) By (a), 〈[−∞,∞], <〉 ∼= 〈{Lx : x ∈ [−∞,∞]},≺〉. Since Lx ∼= Lx, for

x ∈ [−∞,∞], we have 〈L, 〉 ∼=
∑

x∈[−∞,∞]〈Lx, 〉 ∼=
∑

x∈[−∞,∞] Lx = L.
(c) Suppose that C ∈ P(A+

∞) ∪ {∅} witnesses that L is not maximal. Clearly
L = A∪̇B and A ≺ B, where A = {A ∈ L : A  C} and B = {B ∈ L :
C  B}. Now ∅ ∈ L−∞ and, since ∞ ∈ M , by (1) we have A+

∞ ∈ L∞. Thus
∅, A+

∞ ∈ L, which implies A,B 6= ∅ and, hence, 〈A,B〉 is a cut in 〈L, 〉. By (1)
we have {Ax : x ∈ (−∞,∞]} ⊂ L \ {∅} and, by Claim 3.4(a),

⋂
(L \ {∅}) ⊂⋂

x∈(−∞,∞]Ax ⊂
⋂
x∈(−∞,∞](−∞, x) = ∅, which implies A 6= {∅}. Clearly,⋃

A ⊂ C ⊂
⋂
B. (3)

Case 1: A∩Lx0 6= ∅ and B ∩Lx0 6= ∅, for some x0 ∈ (−∞,∞]. Then |Lx0 | > 1,
x0 ∈ M and 〈A ∩ Lx0 ,B ∩ Lx0〉 is a cut in Lx0 satisfying (2). By (a), A =⋃
x<x0

Lx ∪ (A ∩ Lx0) and, consequently,
⋃
A =

⋃
(A ∩ Lx0) ∈ L. Similarly,⋂

B =
⋂
(B ∩ Lx0) ∈ L and, since |

⋂
B \

⋃
A| ≤ 1, by (3) we have C ∈ L. A

contradiction.

Case 2: ¬ Case 1. Then for each x ∈ (−∞,∞] we have Lx ⊂ A or Lx ⊂ B. Since
L = A

.
∪ B, A 6= {∅} and A,B 6= ∅, the sets A′ = {x ∈ (−∞,∞] : Lx ⊂ A}

and B′ = {x ∈ (−∞,∞] : Lx ⊂ B} are non-empty and (−∞,∞] = A′
.
∪ B′.

Since A ≺ B, for x1 ∈ A′ and x2 ∈ B′ we have Lx1 ≺ Lx2 so, by (a), x1 < x2.
Thus 〈A′,B′〉 is a cut in (−∞,∞] and, consequently, there is x0 ∈ (−∞,∞] such
that x0 = maxA′ or x0 = minB′.
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Subcase 2.1: x0 = maxA′. Then x0 < ∞ because B 6= ∅ and A =
⋃
x≤x0 Lx

so, by (a),
⋃
A =

⋃
x≤x0

⋃
Lx =

⋃
x<x0

⋃
Lx ∪

⋃
Lx0 =

⋃
Lx0 which, together

with (1) implies ⋃
A =

{
Ax0 if x0 6∈M,
A+
x0 if x0 ∈M.

(4)

Since B =
⋃
x∈(x0,∞] Lx, we have

⋂
B =

⋂
x∈(x0,∞]

⋂
Lx. By (1)

⋂
Lx = Ax,

so we have
⋂
B = (

⋂
x∈(x0,∞](−∞, x) ∩ J0) ∪ (

⋂
x∈(x0,∞]

⋃
y∈M∩(−∞,x)Iy) =

((−∞, x0] ∩ J0) ∪
⋃
y∈M∩(−∞,x0]Iy = Ax0 ∪ ({x0} ∩ J0) ∪

⋃
y∈M∩{x0}Iy, so

⋂
B =


Ax0 if x0 /∈ J0 ∧ x0 /∈M,
Ax0 ∪ {x0} if x0 ∈ J0 ∧ x0 /∈M,
A+
x0 if x0 /∈ J0 ∧ x0 ∈M,

A+
x0 ∪ {x0} if x0 ∈ J0 ∧ x0 ∈M.

(5)

If x0 6∈ J0, then, by (3), (4) and (5), we have
⋃
A =

⋂
B = C ∈ L. A contradic-

tion.
If x0 ∈ J0 and x0 6∈ M , then

⋃
A = Ax0 and

⋂
B = Ax0 ∪ {x0}. So, by (3)

and since C 6∈ L we have C =
⋂
B = Ax0 ∪ {x0}. Thus J0 ∩ (−∞, x0] ⊂ C

and, by Claim 3.4(a), C ⊂ (−∞, x0]. But by (iv) we have C 6∼= X(∼= A+
∞). A

contradiction.
If x0 ∈ J and x0 ∈ M , then

⋃
A = A+

x0 and
⋂
B = A+

x0 ∪ {x0}. Again, by
(3) and since C 6∈ L we have C =

⋂
B = A+

x0 ∪ {x0}. Thus J0 ∩ (−∞, x0] ⊂ C
and, by Claim 3.4(b), C ⊂ (−∞, x0]. Again, by (iv) we have C 6∼= X(∼= A+

∞), a
contradiction.

Subcase 2.2: x0 = minB′. Then, by (1), Ax0 ∈ Lx0 ⊂ B which, by (a), im-
plies

⋂
B = Ax0 . Since Ax ∈ Lx, for x ∈ (−∞,∞] and A =

⋃
x<x0

Lx we have⋃
A =

⋃
x<x0

⋃
Lx ⊃

⋃
x<x0

Ax =
⋃
x<x0

((−∞, x)∩J0)∪
⋃
x<x0

⋃
y∈M∩(−∞,x) Iy

= ((−∞, x0) ∩ J0) ∪
⋃
y∈M∩(−∞,x0) Iy = Ax0 so Ax0 ⊂

⋃
A ⊂

⋂
B = Ax0 ,

which implies C = Ax0 ∈ L. A contradiction. 2

Case II: ∞ 6∈ M . Then L∞ = {maxL} and the sum L + 1 belongs to Case
I. So, there exists a maximal chain L in 〈P(X) ∪ {∅},⊂〉 and an isomorphism
f : 〈L + 1, <〉 → 〈L,⊂〉. Then A = f(maxL) ∈ P(X) and L′ = f [L] ∼= L. By
the maximality of L, L′ is a maximal chain in 〈P(A)∪{∅},⊂〉 ∼= 〈P(X)∪{∅},⊂〉.

(B) Since (v) holds we assume that L is uncountable. If all initial segments of
L are uncountable, the statement is proved in (A). Otherwise, by Claim 3.3 we have
L =

∑
x∈[−∞,∞] Lx, (L1) and (L2) hold and

(L3′) L−∞ is a countable complete linear order with 0L−∞ non-isolated.

Clearly L = L−∞ + L+, where L+ =
∑

x∈(−∞,∞] Lx =
∑

y∈(0,∞] Lln y (here
ln∞ = ∞). Let L′y, y ∈ [−∞,∞], be disjoint linear orders such that L′y ∼= 1, for
y ∈ [−∞, 0], and L′y ∼= Lln y, for y ∈ (0,∞]. Now

∑
y∈[−∞,∞] L

′
y
∼= [−∞, 0] +
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L+ and by (A) we obtain a maximal chain L in P(X) ∪ {∅} and an isomorphism
f : 〈[−∞, 0] + L+, <〉 → 〈L,⊂〉. Clearly, for A0 = f(0) and L+ = f [L+] we
have A0 ∈ L and L+ ∼= L+.

By the assumption and (L3′), P(A0) ∪ {∅} contains a maximal chain L−∞ ∼=
L−∞. Clearly A0 ∈ L−∞ and L−∞ ∪ L+ ∼= L−∞ + L+ = L. Suppose that
B witnesses that L−∞ ∪ L+ is not a maximal chain in P(X) ∪ {∅}. Then either
A0  B, which is impossible since L is maximal in P(X)∪{∅}, orB  A0, which
is impossible since L−∞ is maximal in P(A0) ∪ {∅}. 2

The following theorem gives a sufficient condition for (v) of Theorem 3.2.

Theorem 3.6 Let X = 〈X, 〈σi : i ∈ I〉〉 be a countable relational structure. If
there is a positive family P in P (X) such that P ⊂ P(X) and

⋂
P = ∅, then

(a) For each R-embeddable Boolean linear order L with 0L non-isolated there
is a maximal chain in 〈P(X) ∪ {∅},⊂〉 isomorphic to L;

(b) For each countable complete linear order L with 0L non-isolated there is a
maximal chain in 〈P(X) ∪ {∅},⊂〉 isomorphic to L.

Proof. (a) By Fact 2.3 there is a maximal chain L in P ∪ {∅} isomorphic to L and
satisfying

⋂
(L \ {∅}) = ∅. Suppose that C ∈ P(X) ∪ {∅} witnesses that L is not

a maximal chain in 〈P(X) ∪ {∅},⊂〉. Since C 6= ∅ there is A ∈ L \ {∅} such that
A ⊂ C and, hence, C ∈ P . Thus L ∪ {C} is a chain in P ∪ {∅} bigger than L. A
contradiction.

(b) follows from (a) and Fact 2.2. 2

4 Maximal chains of copies of Hn

The graphsHn, n ≥ 3, were constructed by Henson in [2]. By [2],Hn is the unique
(up to isomorphism) countable ultrahomogeneous universal Kn-free graph.

In order to cite a characterization of Hn which is more convenient for our con-
struction, we introduce the following notation. If G = 〈G, ρ〉 is a graph and n ≥ 3
let Cn(G) denote the set of all pairs 〈H,K〉 of finite subsets of G such that:

(C1) K ⊂ H and
(C2) K does not contain a copy of Kn−1.

For 〈H,K〉 ∈ Cn(G), let GHK denote the set of all v ∈ G \H satisfying:
(S1) {v, k} ∈ ρ, for all k ∈ K and
(S2) {v, h} /∈ ρ, for all h ∈ H \K.

The graphs Hn can be characterized in the following way.

Fact 4.1 (Henson) A countable graph G = 〈G, ρ〉 is isomorphic to Hn iff it is
Kn-free and GHK 6= ∅, for each 〈H,K〉 ∈ Cn(G).

Now we prove (I) of Theorem 1.2 for the graphs Hn.
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Theorem 4.2 For each n ≥ 3 and each linear order L the following conditions are
equivalent:

(a) L is isomorphic to a maximal chain in the poset 〈P(Hn) ∪ {∅},⊂〉;
(b) L is an R-embeddable complete linear order with 0L non-isolated;
(c) L is isomorphic to a compact set K ⊂ R having the minimum non-isolated.

Proof. The equivalence (b) ⇔ (c) is proved in Theorem 6 of [6] and (a) ⇒ (b)
follows from Theorem 3.1.

(b)⇒ (a). We intend to use Theorem 3.2. Let {J ′n : n ∈ ω} be a partition of
the set [0, 1) ∩ Q into dense subsets of [0, 1) ∩ Q. Let Z denote the set of integers
and let Jn = {q +m : q ∈ J ′n ∧m ∈ Z}, for n ∈ ω. Clearly, {Jn : n ∈ ω} is a
partition of Q into dense subsets of Q and conditions (i) and (ii) are satisfied.

Now we construct a copy ofHn with the domainQ. Let P be the set ofKn-free
graphs p = 〈Gp, ρp〉 such that Gp ∈ [Q]<ω and for each a, b ∈ Q

(P1) {a, b} ∈ ρp ∧ {a+ 1, b} ∈ ρp ⇒ b > a+ 1,
(P2) {a, a− 1} /∈ ρp.

Let the relation ≤ on P be defined by

p ≤ q ⇔ Gp ⊃ Gq ∧ ρp ∩ [Gq]
2 = ρq. (6)

Claim 4.3 〈P,≤〉 is a partial order.

Proof. It is evident that the relation≤ is reflexive and antisymmetric. If p ≤ q ≤ r,
then Gr ⊂ Gq ⊂ Gp and ρr = ρq ∩ [Gr]

2 = ρp ∩ [Gq]
2 ∩ [Gr]

2 = ρp ∩ [Gr]
2. 2

Claim 4.4 The sets Dq = {p ∈ P : q ∈ Gp}, q ∈ Q, are dense in 〈P,≤〉.

Proof. If p = 〈Gp, ρp〉 ∈ P \ Dq, then q /∈ Gp and, since {q, x} 6∈ ρp, for all
x ∈ Gp, p1 = 〈Gp ∪ {q}, ρp〉 is a Kn-free graph and, clearly, satisfies (P1) and
(P2). Thus p1 ∈ Dq and p1 ≤ p. 2

For H ∈ [Q]<ω let mH = maxH .

Claim 4.5 For each K ⊂ H ∈ [Q]<ω and each m ∈ N, the set

DHK,m =
{
p ∈ P : H ⊂ Gp ∧

(
〈H,K〉 ∈ Cn(p)⇒ ∃q ∈ J0 ∩ (mH ,mH + 1

m)

∀k ∈ K ({q, k} ∈ ρp) ∧ ∀h ∈ H \K ({q, h} 6∈ ρp )
)}

is dense in P.

Proof. Let p0 ∈ P. By Claim 4.4 there is p ∈ P such that p ≤ p0 and H ⊂ Gp.
If 〈H,K〉 /∈ Cn(p) then p ∈ DHK,m and we are done.
If 〈H,K〉 ∈ Cn(p), we take q ∈ J0∩(mH ,mH+ 1

m)\
⋃
a∈Gp
{a, a−1, a+1},

define
p1 = 〈Gp ∪ {q}, ρp ∪ {{q, k} : k ∈ K}〉. (7)
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and first prove that p1 ∈ P. Clearly Gp1 ∈ [Q]<ω and we check that p1 is Kn-free.
Suppose that there is F ∈ [Gp1 ]

n such that [F ]2 ⊂ ρp1 . Since p is Kn-free we
have q ∈ F and there are different f1, . . . , fn−1 ∈ Gp ∩ F such that {q, fi} ∈ ρp1 ,
for i ≤ n − 1, which by (7) implies {f1, . . . , fn−1} ⊂ K. Since [F ]2 ⊂ ρp1 , we
have [{f1, . . . , fn−1}]2 ⊂ ρp. But 〈H,K〉 ∈ Cn(p) implies that K is Kn−1-free.
A contradiction.

(P1) Suppose that for some a, b ∈ Q

{a, b} ∈ ρp1 ∧ {a+ 1, b} ∈ ρp1 ∧ b ≤ a+ 1. (8)

Then, since p ∈ P, at least one of the two pairs does not belong to ρp and, hence,
q ∈ {a, a+ 1, b}. So we have the following three cases.

q = a. Then by (8) we have b 6= q and, by (7), {q + 1, b} ∈ ρp which implies
q + 1 ∈ Gp. A contradiction to the choice of q.

q = a + 1. Then by (8) we have b 6= q and, since a 6= q, by (7) we have
{a, b} ∈ ρp which implies a ∈ Gp. A contradiction to the choice of q.

q = b. Then by (8) and (7) we have {a, q}, {a+1, q} ∈ ρp1 \ ρp which implies
a, a+ 1 ∈ K. Since q > mH and K ⊂ H we have q > a+ 1 that is b > a+ 1. A
contradiction again.

(P2) holds because p ∈ P and q 6∈
⋃
a∈Gp
{a, a− 1, a+ 1}.

Thus p1 ∈ P. Since H ⊂ Gp ⊂ Gp1 and since, by (7) we have {q, k} ∈ ρp1 ,
for all k ∈ K, and {q, h} 6∈ ρp1 , for all h ∈ H \K, it follows that p1 ∈ DHK,m.

Since Gp1 ⊃ Gp and ρp1 ∩ [Gp]
2 = ρp, we have p1 ≤ p ≤ p0. 2

By Fact 2.1 there is a filter G in 〈P,≤〉 intersecting all sets Dq, q ∈ Q, and DHK,m,
for K ⊂ H ∈ [Q]<ω and m ∈ N.

Claim 4.6 (a)
⋃
p∈G Gp = Q;

(b) 〈Q, ρ〉 is a graph, where ρ =
⋃
p∈G ρp, also {a, a− 1} /∈ ρ, for all a ∈ Q;

(c) ρ ∩ [Gp]
2 = ρp, for each p ∈ G;

(d) If A ⊂ Q, ρA = ρ ∩ [A]2, p ∈ G, and H ⊂ A ∩ Gp, then ρA ∩ [H]2 =
ρp ∩ [H]2. Thus if, in addition, 〈H,K〉 ∈ Cn(A, ρA), then 〈H,K〉 ∈ Cn(p),

(e) 〈Q, ρ〉 is a Kn-free graph.

Proof. (a) For q ∈ Q let p0 ∈ G ∩ Dq. Then q ∈ Gp0 ⊂
⋃
p∈G Gp.

(b) By the definition of P we have {a, a− 1} /∈ ρp ⊂ [Q]2, for all p ∈ P.
(c) The inclusion “⊃” is evident. If {a, b} ∈ ρ ∩ [Gp]

2, then there is p1 ∈ G
such that {a, b} ∈ ρp1 and, since G is a filter, there is p2 ∈ G such that p2 ≤ p, p1.
By the definition of≤ we have ρp1 ⊂ ρp2 , which implies {a, b} ∈ ρp2 and {a, b} ∈
ρp2 ∩ [Gp]

2 = ρp.
(d) By (c) we have ρA∩[H]2 = ρ∩[A]2∩[H]2 = ρ∩[H]2 = ρ∩[Gp]2∩[H]2 =

ρp ∩ [H]2. If 〈H,K〉 ∈ Cn(A, ρA), then K is Kn−1-free in 〈A, ρA〉 and, since
ρA ∩ [K]2 = ρp ∩ [K]2, K is Kn−1-free in p as well. Thus 〈H,K〉 ∈ Cn(p).
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(e) Suppose that 〈A, ρA〉 is a copy of Kn and let pq ∈ G ∩ Dq, q ∈ A. Since G
is a filter there is p ∈ G such that p ≤ pq, for all q ∈ A, and, hence, A ⊂ Gp, which
by (d) implies ρA = ρp ∩ [A]2. But this is impossible since p is Kn-free. 2

Now we show that conditions (iii) and (iv) of Theorem 3.2 are satisfied.
(iii) Let x ∈ R ∪ {∞} and J0 ∩ (−∞, x) ⊂ A ⊂ Q ∩ (−∞, x). We show

that 〈A, ρA〉 ∼= Hn. By Claim 4.6(e) 〈A, ρA〉 isKn-free. Let 〈H,K〉 ∈ Cn(A, ρA).
SincemH ∈ H ⊂ Awe havemH < x and there ism ∈ N satisfyingmH+ 1

m < x.
Let p ∈ G ∩ DHK,m. Then K ⊂ H ⊂ Gp and, by Claim 4.6(d), 〈H,K〉 ∈ Cn(p).
Thus there is q ∈ J0∩(mH ,mH+

1
m) ⊂ J0∩(−∞, x) ⊂ A such that {q, k} ∈ ρp ⊂

ρ, which implies {q, k} ∈ ρA, for all k ∈ K, and that {q, h} 6∈ ρp, which implies
{q, h} 6∈ ρ, for all h ∈ H . Thus q ∈ AHK . By Fact 4.1 we have 〈A, ρA〉 ∼= Hn.

(iv) Let q ∈ J0 and J0 ∩ (−∞, q] ⊂ C ⊂ Q ∩ (−∞, q]. We prove that
〈C, ρC〉 6∼= Hn. Since q ∈ J0 by the construction of J0 we have q − 1 ∈ J0 and,
by the assumption, H = {q − 1, q} ⊂ C. By Claim 4.6(b) we have {q − 1, q} 6∈ ρ
which implies that H isKn−1-free and, hence, 〈H,H〉 ∈ Cn(C, ρC). Suppose that
b ∈ CHH . Then {q− 1, b}, {q, b} ∈ ρ and, since G is a filter, {q− 1, b}, {q, b} ∈ ρp,
for some p ∈ G. By (P1) we have b > q, which is impossible since q = maxC.
Thus CHH = ∅ and by Fact 4.1 we have 〈C, ρC〉 6∼= Hn.

Claim 4.7 The family P =
{
Q \

⋃
n∈Z Fn : ∀n ∈ Z Fn ∈

[
[n, n+ 1) ∩Q

]<ω}
is a positive family in P (Q) satisfying

⋂
P = ∅ and P ⊂ P(Q, ρ).

Proof. It is easy to check (P1)-(P4). Since Q \ {q} ∈ P , for each q ∈ Q, we have⋂
P = ∅. Let A = Q \

⋃
n∈Z Fn ∈ P , 〈H,K〉 ∈ Cn(A, ρA) and mH = maxH ∈

[n0, n0 + 1) ∩ Q. Since |Fn0 | < ω and mH ∈ A ⊂ Q \ Fn0 there is m ∈ N such
that (mH ,mH + 1

m) ∩ Q ⊂ A. Let p ∈ G ∩ DHK,m. Then H ⊂ Gp and, by Claim
4.6(d), 〈H,K〉 ∈ Cn(p). Hence there is q ∈ J0 ∩ (mH ,mH + 1

m) ⊂ A such that
- for each k ∈ K we have {q, k} ∈ ρp which, since {q, k} ⊂ A∩Gp, by Claim

4.6(d) implies {q, k} ∈ ρA;
- for each h ∈ H \ K we have {q, h} 6∈ ρp, which by Claim 4.6(c) implies

{q, h} 6∈ ρ and, hence, {q, h} 6∈ ρA.
Thus q ∈ AHK . By Fact 4.1 we have 〈A, ρA〉 ∼= Hn ∼= 〈Q, ρ〉 and, hence, A ∈
P(Q, ρ). 2

Now (b) ⇒ (a) of Theorem 4.2 for countable L follows from Claim 4.7 and
Theorem 3.6(b). Thus condition (v) of Theorem 3.2 is satisfied and, by (B) of
Theorem 3.2, (b)⇒ (a) of Theorem 4.2 is true for uncountable L. 2

5 Maximal chains of copies of Gµν

Theorem 5.1 If µ and ν are cardinals satisfying µν = ω, then for each linear order
L the following conditions are equivalent:

(a) L is isomorphic to a maximal chain in the poset 〈P(Gµν) ∪ {∅},⊂〉;
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(b) L is an R-embeddable Boolean linear order with 0L non-isolated;
(c) L is isomorphic to a compact nowhere dense set K ⊂ R having the mini-

mum non-isolated.

Proof. Clearly, concerning the values of µ and ν we have three cases.
I. Gωn =

⋃
i∈ω Gi, where n ∈ N and Gi = 〈Gi, [Gi]2〉, i ∈ ω, are dis-

joint copies of Kn. Then, clearly P(Gωn) = {
⋃
i∈AGi : A ∈ [ω]ω} and, hence,

〈P(Gωn) ∪ {∅},⊂〉 ∼= 〈[ω]ω ∪ {∅},⊂〉. Since [ω]ω is a positive family in P (ω) the
statement follows from Fact 2.3.

II. Gmω =
⋃
i<mGi, where m ∈ N and Gi = 〈Gi, [Gi]2〉, i < m, are disjoint

copies of Kω. Then, since each copy of Gmω must have m components of size ω,
we have P(Gmω) = {

⋃
i<mAi : ∀i < m Ai ∈ [Gi]

ω} and it is easy to see that
P(Gmω) is a positive family in P (G) so we apply Fact 2.3 again.

III. Gωω =
⋃
i<ω Gi, where Gi = 〈Gi, [Gi]2〉, i < ω, are disjoint copies of

Kω. The equivalence (b)⇔ (c) is a part of Fact 2.3
(a) ⇒ (b). If L is a maximal chain in 〈P(Gωω) ∪ {∅},⊂〉, then, by Theorem

3.1, it is anR-embeddable complete linear order with 0L non-isolated and we prove
that it has dense jumps. Let G =

⋃
i<ω Gi. Since each copy of Gωω must have ω

components of size ω, we have

P(Gωω) = {
⋃
i∈S Ai : S ∈ [ω]ω ∧ ∀i ∈ S Ai ∈ [Gi]

ω} (9)

and, for A =
⋃
i∈S Ai ∈ P(Gωω) we will write S = suppA.

Let A,B ∈ L \ {∅}, where A  B.

Claim 5.2 There is C ∈ L satisfyingA ⊂ C ⊂ B and such that C∩Gi  B∩Gi,
for some i ∈ suppC.

Proof. Suppose that for each C ∈ L ∩ [A,B] we have: C ∩ Gi = B ∩ Gi, for
all i ∈ suppC. Then, since A  B, we have suppA  suppB and we choose
i ∈ suppB \ suppA. Clearly, for the sets L− = {C ∈ L : i 6∈ suppC} and
L+ = {C ∈ L : i ∈ suppC} we have L = L− ∪ L+ and C1  C2, for each C1 ∈
L− and C2 ∈ L+. By Theorem 3.1 we have C− =

⋃
L− ∈ P(Gωω) and, since

L− C L+, by the maximality of L we have C− ∈ L. Clearly i 6∈ suppC−, which
implies C− = maxL−. Let C+ = C−∪(B∩Gi). By (9) we have C+ ∈ P(Gωω).
For C ∈ L+ we have i ∈ suppC and, by the assumption, C ∩ Gi = B ∩ Gi,
which implies C+ ⊂ C. Thus, by the maximality of L, C+ ∈ L, and, moreover,
C+ = minL+. Let a ∈ B ∩ Gi. Then C = C− ∪ (B ∩ Gi \ {a}) ∈ P(Gωω)
and C−  C  C+, which implies that L is not a maximal chain in P(Gωω). A
contradiction. 2

Let C0 ∈ L and i0 ∈ suppC0 be the objects provided by Claim 5.2. Let
a ∈ (B \ C0) ∩Gi0 , L− = {C ∈ L : a 6∈ C} and L+ = {C ∈ L : a ∈ C}. Then
we have L = L− ∪ L+, C0 ∈ L− and C1  C2, for each C1 ∈ L− and C2 ∈ L+.
By Theorem 3.1 we have C− =

⋃
L− ∈ P(Gωω) and, by the maximality of L,
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C− ∈ L. Since a 6∈ C− we have C− = maxL−, which implies C0 ⊂ C− and,
hence, i0 ∈ suppC−. Thus, by (9), C+ = C− ∪ {a} ∈ P(Gωω). For C ∈ L+
we have C+ ⊂ C and, by the maximality of L, C+ ∈ L, in fact C+ = minL+.
Clearly the pair 〈C−, C+〉 is a jump in L. Since A ⊂ C0 and B ∈ L+ we have
A ⊂ C− ⊂ C+ ⊂ B. Thus, L\{∅} has dense jumps and, since 0L is non-isolated,
the same holds for L.

(b)⇒ (a). Clearly, P = {
⋃
i∈ω Ai : ∀i ∈ ω Ai ∈ [Gi]

ω} is a positive family
contained in P(Gωω) and

⋂
P = ∅. Now the statement follows from Theorem

3.6(a). 2
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161–171.

[5] M. S. Kurilić, Maximal chains in positive subfamilies of P (ω), Order, 29,1 (2012) 119–129.
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