ON THE STRUCTURE OF RANDOM HYPERGRAPHS

BORISA KUZELJEVIC

ABSTRACT. Let \mathcal{H}_n be a countable random *n*-uniform hypergraph for n > 2 and let $\mathbb{P}(\mathcal{H}_n) = \{f[\mathcal{H}_n] : f : \mathcal{H}_n \to \mathcal{H}_n \text{ is an embedding}\}$. We prove that a linear order *L* is isomorphic to the maximal chain in the partial order $\langle \mathbb{P}(\mathcal{H}_n) \cup \{\emptyset\}, \subset \rangle$ if and only if *L* is isomorphic to the order type of a compact set of reals whose minimal element is non-isolated.

1. INTRODUCTION

1.1. Background and the statement of the result. The purpose of this note is to completely characterize chains of isomorphic substructures of the Fraissé limit of finite n-uniform hypergraphs for each n > 1, thus generalizing some results from [10] to higher dimensions. Fraïssé theory, the systematic study of ultrahomogeneous universal structures, was initiated in the mid 1950's by Roland Fraïssé [3]. Typical examples of Fraïssé limits are the rational line $\langle \mathbb{Q}, \langle \rangle$ and the countable random graph (i.e. Rado graph). A particularly active research area is the investigation of the automorphism groups of these structures (see [5] for the most notable example). Besides that, there has been great interest in considering the embeddings of an ultrahomogeneous structure into itself (for a relational structure X, denote $\text{Emb}(\mathbb{X}) = \{f : \mathbb{X} \to \mathbb{X} : f \text{ is an embedding}\}$. For example, see [2] for some results on the self-embeddings of ultrahomogeneous *n*-uniform hypergraphs or [13] for one of the most prominent result concerning selfembeddings of ultrahomogeneous structures. In this context, one usually investigates the set of isomorphic substructures of a structure X, denoted $\mathbb{P}(\mathbb{X}) = \{ f[\mathbb{X}] : f \in \text{Emb}(\mathbb{X}) \} = \{ A \subset \mathbb{X} : A \cong \mathbb{X} \}.$

The set $\mathbb{P}(\mathbb{X})$ is naturally ordered by inclusion, and we will be interested in order types of chains in these partial orders where \mathbb{X} is the countable random *n*-uniform hypergraph (for all $n \geq 2$). By a well-known Hausdorff maximal principle (also known as the Kuratowski lemma, one of the equivalents of the AC), each chain is contained in a maximal one, so the characterization of maximal chains will give a complete answer. Maximal chains in various partial orders were extensively investigated in the literature. The first result

Date: November 12, 2014.

²⁰¹⁰ Mathematics Subject Classification. 03C15, 05C65, 03C50, 06A05.

Key words and phrases. Fraïssé theory, k-uniform hypergraph, maximal chain, isomorphic substructure, ultrahomogeneous structure, positive family.

Supported by the Ministry of Education and Science of Serbia (grant ON174006).

related to ours is a theorem of Kuratowski [7] from 1921. which states that if κ is a regular cardinal, then a linear order L is isomorphic to a maximal chain in $P(\kappa)$ if and only if it is isomorphic to the order of all initial segments of some linear order of size κ . This result of Kuratowski was followed by results of Day [1], Koppelberg [6], Monk [12] and others. Besides in [10], some recent results related to the ones in this paper can be found in [9, 11]. The main result of this paper is the following.

Theorem 1.1. Let \mathcal{H}_n , n > 1, be a countable random n-uniform hypergraph. Then a linear order L is isomorphic to a maximal chain in the partial order $\langle \mathbb{P}(\mathcal{H}_n) \cup \{\emptyset\}, \subset \rangle$ if and only if it is isomorphic to the order type of a compact set of reals whose minimum is non-isolated.

Note that results in [10] claim that the same characterization of maximal chains of isomorphic substructures holds for Henson graphs, while for disjoint unions of complete graphs L must be isomorphic to a compact nowhere dense set of reals with minimum non-isolated. Also, we remark that we in fact investigate chains in the poset $\langle [\omega]^{\omega}, \subset \rangle$, and that already mentioned Kuratowski's result is the first result of this sort and that it claims that there are no 'continuous' maximal chains in $\langle [\omega]^{\omega}, \subset \rangle$. This precisely means that each maximal chain in $\langle [\omega]^{\omega}, \subset \rangle$ must have dense jumps while on the other hand, our result shows that when we add the structure of random *n*-uniform hypergraph to the countable set then there are 'continuous' maximal chains in $\langle \mathbb{P}(\mathcal{H}_n) \cup \{\emptyset\}, \subset \rangle$, for example there is a maximal chain of type [0, 1].

1.2. **Preliminaries.** In this paper n will be reserved for natural numbers and |X| denotes the cardinality of a set X, in particular ω is the cardinality of a countably infinite set. For a set X and $n \ge 1$, by $[X]^n$ we denote the set of all *n*-element subsets of X, i.e. $[X]^n = \{y \subset X : |y| = n\}$. Also, $[X]^{<\omega}$ denotes the set of all finite subsets of X. If f maps A into B, then $f[A] = \{f(x) : x \in A\}$. The power set of X is denoted by P(X)

A relational structure $\mathbb{X} = \langle X, \{\rho_i : i \in I\} \rangle$ consists of a set X and relations ρ_i $(i \in I)$. Often, when there can be no confusion, we do not make distinction between denoting the structure \mathbb{X} and the underlying set X. We say that a structure $\mathbb{Y} = \{Y, \{\sigma_i : i \in I\}\}$ is a substructure of \mathbb{X} if and only if $Y \subset X$ and for each $i \in I$ we have $\sigma_i = Y^{\operatorname{ar}(\rho_i)} \cap \rho_i$. A mapping $f : \mathbb{X} \to \mathbb{Y}$ is an embedding of a relational structure \mathbb{X} into relational structure \mathbb{Y} if and only if f is 1-1 and it holds $(k_i = \operatorname{ar}(\rho_i))$

$$\forall i \in I \; \forall \langle a_1, \dots, a_{k_i} \rangle \in X^{k_i} \quad \langle a_1, \dots, a_{k_i} \rangle \in \rho_i \Leftrightarrow \langle f(a_1), \dots, f(a_{k_i}) \rangle \in \sigma_i.$$

Notice that we make a distinction between embedding and a homomorphism for relational structures (in this article, we will only be concerned with embeddings).

We say that a relational structure \mathbb{X} is *ultrahomogeneous* if and only if any isomorphism ϕ between finite substructures of \mathbb{X} can be extended to an automorphism of \mathbb{X} . Further, we say that a relational structure \mathbb{X} is *universal* for a class of structures \mathcal{K} if and only if for each $\mathbb{K} \in \mathcal{K}$ there is an embedding $f : \mathbb{K} \to \mathbb{X}$. We use the following characterization of ultrahomogeneity (see [4, Theorem 12.1.2.]).

Lemma 1.2. Let X be a countable relational structure. Then X is ultrahomogenoeus if and only if for any finite substructure F of X and any embedding $f: F \to X$, and for any element $a \in X \setminus F$ there exists an embedding $g: F \cup \{a\} \to X$ which is an extension of f.

Now we mention a few notions related to order theory. We say that a linear order is *complete* if and only if it is Dedekind-complete and has minimum and maximum (the reader may find this definition of completeness non-standard, but we use it in order to shorten some statements). We say that a linear order L is *boolean* if and only if it is complete and has dense jumps, i.e. complete and for any $x, y \in L$ if x < y then there are $s, t \in L$ such that $x \leq s < t \leq y$ and $(s, t)_L = \emptyset$.

We will also need the notions of a filter and a set dense in a partial order. Let $\langle P, \leq \rangle$ be a partial order, a set $D \subset P$ is *dense* in P if for any $p \in P$ there is $q \in D$ such that $q \leq p$. A set $G \subset P$ is a *filter* in P if and only if for all $x, y \in G$ there is $q \in G$ such that $q \leq x, y$ (i.e. elements of G are pairwise compatible in G) and for any $x \in G$ if y > x, then also $y \in G$. The following is a well-known fact.

Lemma 1.3 (Rasiowa-Sikorski). Let $\langle P, \leq \rangle$ be a partially ordered set and $\mathcal{D} = \{D_n : n \in \mathbb{N}\}$ a countable family of sets dense in P. Then there is a filter G in P such that $G \cap D_n \neq \emptyset$ for all $n \in \mathbb{N}$.

1.3. Maximal chains. First note that the linear order L is isomorphic to the order type of a compact (nowhere dense compact) set of reals whose minimum is non-isolated if and only if it is complete (boolean), \mathbb{R} embeddable and has a non-isolated minimum. For a proof of this fact see [8].

Recall that a positive family on a countable set X is a family $\mathcal{P} \subset P(X)$ satisfying (see also [8]):

- (P1) $\emptyset \notin \mathcal{P};$
- (P2) $A \in \mathcal{P} \land B \in [A]^{<\omega} \Rightarrow A \setminus B \in \mathcal{P};$
- $(\mathbf{P3}) \ A \in \mathcal{P} \land A \subset B \subset X \Rightarrow B \in \mathcal{P};$
- $(P4) \ \exists A \in \mathcal{P} \ |X \setminus A| = \omega.$

For example, each non-principal ultrafilter on ω is a positive family on ω . Also, the family of all dense subsets of the rational line \mathbb{Q} is a positive family on \mathbb{Q} . Positive families play an important role in investigation of maximal chains in the posets of the form $\langle \mathbb{P}(\mathbb{X}) \cup \{\emptyset\}, \subset \rangle$. Namely, Theorem 2.2. in [11] states that if there is a positive family \mathcal{P} on \mathbb{X} such that $\mathcal{P} \subset \mathbb{P}(\mathbb{X})$ then for each countable, complete, \mathbb{R} -embeddable linear order L whose minimum is non-isolated, there is a maximal chain in $\langle \mathbb{P}(\mathbb{X}) \cup \{\emptyset\}, \subset \rangle$ isomorphic to L. This allows us to reformulate Theorem 3.2. from [10] in the following slightly weaker manner.

Theorem 1.4. Let X be a countable relational structure and $\langle \mathbb{Q}, < \rangle$ the rational line. If there exists a partition $\{J_m : m \in \omega\}$ of \mathbb{Q} and a structure with the domain \mathbb{Q} of the same signature as X such that:

- (i) J_0 is a dense subset of $\langle \mathbb{Q}, \langle \rangle$,
- (ii) $J_m \ (m \in \omega)$ are coinitial subsets of $\langle \mathbb{Q}, \langle \rangle$,
- (iii) $(-\infty, x)_{J_0} \subset A \subset (\infty, x)_{\mathbb{Q}}$ implies $A \cong \mathbb{X}$ for $x \in \mathbb{R} \cup \{\infty\}$,
- (iv) $(-\infty, q]_{J_0} \subset C \subset (\infty, q]_{\mathbb{Q}}$ implies $C \cong \mathbb{X}$ for $q \in J_0$,
- (v) there is a positive family \mathcal{P} on \mathbb{X} such that $\mathcal{P} \subset \mathbb{P}(\mathbb{X})$,

then for each \mathbb{R} -embeddable complete linear order L with min L non-isolated there is a maximal chain in $\langle \mathbb{P}(\mathbb{X}) \cup \{\emptyset\}, \subset \rangle$ isomorphic to L.

Next result, proved in [11], shows that ultrahomogeneous structures provide a nice framework for investigating maximal chains of their isomorphic substructures.

Theorem 1.5. Let X be a countable ultrahomogeneous structure of an at most countable relational language which contains at least one non-trivial isomorphic substructure, i.e. $\mathbb{P}(X) \neq \{X\}$. Then for each linear order L the implication $(1) \Rightarrow (2)$ is true, where

- (1) L is isomorphic to a maximal chain in the poset $\langle \mathbb{P}(\mathbb{X}) \cup \{\emptyset\}, \subset \rangle$;
- (2) L is a complete \mathbb{R} -embeddable linear order with min L non-isolated.

2. Random hypergraphs

For $n \geq 2$, a *n*-uniform hypergraph is a relational structure $\langle X, \rho \rangle$, satisfying $\operatorname{ar}(\rho) = n$ and such that $\langle x_0, \ldots, x_{n-1} \rangle \in \rho$ implies $x_i \neq x_j$ for all $i \neq j$ in *n* and $\langle x_{\pi(0)}, \ldots, x_{\pi(n-1)} \rangle \in \rho$ for all permutations π of *n* (see [4]). Note that this is equivalent to saying that *n*-uniform hypergraph is a pair $\langle X, \rho \rangle$ where X is a set and $\rho \subset [X]^n$, so we will sometimes refer to the first formulation, and sometimes, when it is more convenient, to the second.

Recall that the class of countably many (up to isomorphism) finite structures is a Fraïssé class (see [4]) if it is hereditary, satisfies joint embedding and amalgamation property and contains structures of arbitrary large finite cardinality. It is well known that the class \mathcal{K}_n of finite *n*-uniform hypergraphs ($n \geq 2$) is a Fraïssé class, hence the famous Fraïssé's theorem states there there is a unique up to isomorphism countable ultrahomogeneous relational structure whose age is exactly \mathcal{K}_n (the age of a relational structure is the class of all of its finitely generated substructures).

Definition 2.1. For $n \ge 2$, the countable ultrahomogeneous *n*-uniform hypergraph universal for all finite *n*-uniform hypergraphs is called the countable random *n*-uniform hypergraph.

The following lemma gives a useful reformulation of the definition of the countable random n-uniform hypergraphs. Note also that Fraïssé's theorem states that the countable random n-uniform hypergraph is universal even for the class of all countable n-uniform hypergraphs.

Lemma 2.2. Suppose that n > 1 and that a countable n-uniform hypergraph $\langle \mathcal{H}_n, \Gamma_n \rangle$ satisfies the following condition: for any $A \in [\mathcal{H}_n]^{<\omega} \setminus \bigcup_{i < n-1} [\mathcal{H}_n]^i$ and any $B \subset [A]^{n-1}$ there exists $a \in \mathcal{H}_n \setminus A$ such that for all $b \in B$ we have $\{a\} \cup b \in \Gamma_n$, while for all $b \in [A]^{n-1} \setminus B$ it holds $\{a\} \cup b \notin \Gamma_n$. Then \mathcal{H}_n is isomorphic to the countable random n-uniform hypergraph.

Proof. We have to prove that the *n*-uniform hypergraph $\langle \mathcal{H}_n, \Gamma_n \rangle$ satisfying the conditions of the lemma is ultrahomogeneous and universal for all finite *n*-uniform hypergraphs. So let *F* be a finite substructure of \mathcal{H}_n and $f: F \to \mathcal{H}_n$ an embedding. Pick an arbitrary $a \in \mathcal{H}_n \setminus F$. If |F| < n - 1 then any 1-1 map $g: F \cup \{a\} \to \mathcal{H}_n$ with $g \upharpoonright F = f$ is an embedding because in that case $\Gamma_n \cap [F \cup \{a\}]^n = \emptyset$ (hence the conclusion of Lemma 1.2 is fulfilled). If $|F| \ge n - 1$, consider the set f[F], and define $B \subset [f[F]]^{n-1}$ in the following way:

$$b \in B \iff \{a\} \cup f^{-1}[b] \in \Gamma_n.$$

$$(2.1)$$

Next, pick an element $x \in \mathcal{H}_n \setminus f[F]$ such that $\forall b \in B \{x\} \cup b \in \Gamma_n$ and that $\forall b \in [f[F]]^{n-1} \setminus B (\{x\} \cup b \notin \Gamma_n)$. Note that the existence of x follows from the assumption of the lemma. Finally, the mapping g : $F \cup \{a\} \to \mathcal{H}_n$ given by $g(y) = f(y) (y \in F)$ and g(a) = x is an embedding by construction (namely, the condition (2.1) ensures that g is an embedding) so the conclusion of Lemma 1.2 is fulfilled.

In order to finish the proof it will be enough to prove that \mathcal{H}_n is universal for all countable *n*-uniform hypergraphs. Let $\mathbb{A} = \langle \{a_1, a_2, \dots\}, \rho \rangle$ be an arbitrary countable *n*-uniform hypergraph. Hence, $\rho \subset [A]^n$. If |A| < nthen any 1-1 mapping $h : A \to \mathcal{H}_n$ is an embedding because in that case $[A]^n = \emptyset$, and that implies $\rho \cap [A]^n = \Gamma_n \cap [h[A]]^n = \emptyset$. If $|A| \ge n$, then we define the embedding f recursively. First, pick any elements $x_1, \dots, x_{n-1} \in$ \mathcal{H}_n and define $f_{n-1}(a_i) = x_i$ for $1 \le i \le n-1$ (f_{n-1} is an embedding according to the previous considerations in this paragraph). Assume that an embedding $f_l : \{a_1, \dots, a_l\} \to \mathcal{H}_n$ $(n-1 \le l)$ is given. Define the set $B \subset [f_l[\{a_1, \dots, a_l\}]]^{n-1}$ in the following way:

$$b \in B \iff \{a_{l+1}\} \cup f_l^{-1}[b] \in \rho.$$

$$(2.2)$$

Pick an element $x_{l+1} \in \mathcal{H}_n \setminus f_l[\{a_1, \ldots, a_l\}]$ such that $\forall b \in B \ \{x_{l+1}\} \cup b \in \Gamma_n$ and that $\forall b \in [f[\{a_1, \ldots, a_l\}]]^{n-1} \setminus B \ (\{x_{l+1}\} \cup b \notin \Gamma_n)$. Then, the mapping $f_{l+1} : \{a_1, \ldots, a_{l+1}\} \to \{x_1, \ldots, x_{l+1}\}$, given by $f_{l+1}(y) = f_l(y)$ $(y \in \{a_1, \ldots, a_l\})$ and $f_{l+1}(a_{l+1}) = x_{l+1}$, is clearly an embedding which is an extension of f_l (again, the condition (2.2) ensures that f_{l+1} is an embedding). If we proceed in the same way for all $l \ge n-1$, then $f = \bigcup_{l \ge n-1} f_l : A \to \mathcal{H}_n$ is an embedding and the lemma is proved.

For the rest of the paper, we will denote the countable random *n*-uniform hypergraph by \mathcal{H}_n .

3. Main theorem

In this section we prove the central result of this article by constructing the specific representation of \mathcal{H}_n in order to easily locate its isomorphic substructures. We essentially plan to use Theorem 1.4 so pick any partition $(0,1) \cap \mathbb{Q} = \bigcup_{m \in \omega} J'_m$ into countably many pairwise disjoint dense sets. Now define the sets $J_m = J'_m + \mathbb{Z}$ for every $m \in \mathbb{Z}$. It is clear that the family $\{J_m : m \in \mathbb{Z}\}$ is a partition of the rational line into pairwise disjoint dense sets such that if $x \in J_0$, then $x + k \in J_0$ for any $k \in \mathbb{Z}$.

Let \mathbb{P} be the partial order of all finite k-uniform hypergraphs $p = \langle H_p, \Gamma_p \rangle$ (i.e. H_p is a set and $\Gamma_p \subset [H_p]^n$) such that $H_p \subset \mathbb{Q}$ (\mathbb{Q} is the rational line) and that for all $a, a - 1, \ldots, a - n + 1, b \in \mathbb{Q}$ it holds:

$$\forall A \in [\{a, a-1, \dots, a-n+1\}]^{n-1} \quad \{b\} \cup A \in \Gamma_p \Rightarrow b > a.$$

$$(3.1)$$

For p, q in \mathbb{P} , we put

I

$$p \le q \iff H_p \supset H_q \land \Gamma_p \cap [H_q]^n = \Gamma_q.$$
 (3.2)

Hence, $p \leq q$ if and only if q is a substructure of p.

Lemma 3.1. The set \mathbb{P} with the relation \leq on \mathbb{P} is a partially ordered set.

Proof. The reflexivity is clear. For transitivity notice that if $p \leq q$ and $q \leq r$ we have $H_r \subset H_q \subset H_p$ and $\Gamma_p \cap [H_q]^n = \Gamma_q$ and $\Gamma_q \cap [H_r]^n = \Gamma_r$, and it is easy to see that $\Gamma_p \cap [H_r]^n = \Gamma_r$. To see that \leq is antisymmetric notice that if $p \leq q$ and $q \leq p$, then from $H_p \subset H_q \subset H_p$ follows $H_p = H_q$ and then $\Gamma_p = \Gamma_p \cap [H_p]^n = \Gamma_p \cap [H_q]^n = \Gamma_q$, or equivalently p = q.

Lemma 3.2. Let $m \in \mathbb{N}$, $A \in [\mathbb{Q}]^{<\omega} \setminus \bigcup_{i < n-1} [\mathbb{Q}]^i$ and $B \subset [A]^{n-1}$. Then

$$D_B^{A,m} = \{ p \in \mathbb{P} : \exists q \in (\max A, \max A + \frac{1}{m}) \cap J_0 \\ \forall b \in B \ (\{q\} \cup b \in \Gamma_p) \ \forall b \in ([A]^{n-1} \setminus B) \ (\{q\} \cup b \notin \Gamma_p) \}$$

is a set dense in \mathbb{P} .

Proof. Take any $p \in \mathbb{P}$ and assume that $A \subset H_p$ (if not, define $H_{p_2} = H_p \cup A$ and $\Gamma_{p_2} = \Gamma_p$ and continue with p_2 instead p). Because \mathbb{Q} is a dense linear ordering there is:

$$q \in \left(\left(\max A, \max A + \frac{1}{m} \right) \cap \mathbb{Q} \right) \setminus \bigcup_{a \in H_p} \bigcup_{k \in (-n,n) \cap \mathbb{Z}} \left\{ a + k \right\}.$$
(3.3)

Define p_1 in the following way:

-
$$H_{p_1} = H_p \cup \{q\};$$

- $\Gamma_{p_1} = \Gamma_p \cup \{\{q\} \cup b : b \in B\}.$

It is clear that if $p_1 \in \mathbb{P}$, then $p_1 \in D_B^{A,m}$ and $p_1 \leq p$. Now we prove that $p_1 \in \mathbb{P}$. Assume the contrary, i.e. that for some $a, a-1, \ldots, a-n+1, b \in H_{p_1}$ we have:

$$\exists A \in [\{a, a-1, \dots, a-n+1\}]^{n-1} \quad \{b\} \cup A \in \Gamma_p \land b \le a.$$
(3.4)

There are three possibilities (regarding the position of q with respect to b and A which exists by (3.4)):

- (1) q = a which is not possible because in that case q = (a 1) + 1 with $a 1 \in A \subset H_p$. Contradiction with the choice of q.
- (2) q = a k (0 < k < n) which is impossible because in this case q = (a (k 1)) 1 with $a (k 1) \in H_p$. Again contradiction with the choice of q.
- (3) q = b (so $q \le a$). In this case we have that $a \in A$, but $q > \max A$ which is a contradiction.

Hence, $p_1 \in \mathbb{P}$ and the lemma is proved.

Since there are only countably many positive integers and only countably many finite subsets of the rational line, there are countably many sets $D_B^{A,m}$, and according to Lemma 1.3 there is a filter G in \mathbb{P} such that $G \cap D_B^{A,m} \neq \emptyset$ for each $A \in [\mathbb{Q}]^{<\omega} \setminus \bigcup_{i < n-1} [\mathbb{Q}]^i, B \subset [A]^{n-1}, m \in \mathbb{N}$. Define $\Gamma = \bigcup_{p \in G} \Gamma_p$. Because $\Gamma_p \subset [\mathbb{Q}]^n$ for all $p \in G$, we have that $\Gamma \subset [\mathbb{Q}]^n$ so $\langle \mathbb{Q}, \Gamma \rangle$ is a countable *n*-uniform hypergraph. Notice also that for each $p \in G$ we have that:

$$\Gamma \cap [H_p]^n = \Gamma_p. \tag{3.5}$$

It is clear that $\Gamma_p \subset [H_p]^n \cap \Gamma$ (from the definition of Γ), so assume that for some $p \in G$ there is some $a = \{a_1, \ldots, a_n\} \in (\Gamma \cap [H]^n) \setminus \Gamma_p$. Because $a \in \Gamma$ there is some $r \in G$ such that $a \in \Gamma_r$. Since G is a filter, there is some $t \in G$ such that $t \leq p, r$, i.e. t is an extension of both p and r. Because $a \notin \Gamma_p$, from (3.2) we conclude that $a \notin \Gamma_t$. However, because $a \in \Gamma_r$, again from (3.2) we conclude that $a \in \Gamma_t$ which is a contradiction so (3.5) holds.

Now, using Lemma 2.2, we prove that $\langle \mathbb{Q}, \Gamma \rangle$ is isomorphic to the countable random *n*-uniform hypergraph \mathcal{H}_n . Take any finite $A \subset \mathbb{Q}$ such that $|A| \geq n-1$ and $B \subset [A]^{n-1}$. The set $D_B^{A,1}$ is dense in \mathbb{P} so there is some $p \in G \cap D_B^{A,1}$. According to the definition of Γ we have that $\Gamma_p \subset \Gamma$, hence there is some $q > \max A$ (which implies $q \notin A$) such that for all $b \in B$ we have $\{q\} \cup b \in \Gamma_p$ (which implies $\{q\} \cup b \in \Gamma$) and that for all $b \in [A]^{n-1} \setminus B$ we have $\{q\} \cup b \notin \Gamma_p$ (which, according to (3.5), implies $\{q\} \cup b \notin \Gamma$). So by Lemma 2.2 we have $\langle \mathbb{Q}, \Gamma \rangle \cong \mathcal{H}_n$.

Lemma 3.3. If \mathcal{H}_n , n > 1, is the countable random n-uniform hypergraph, then there exists a positive family \mathcal{P} on \mathcal{H}_n such that $\mathcal{P} \subset \mathbb{P}(\mathcal{H}_n)$.

Proof. We will prove that

$$\mathcal{P} = \left\{ \mathbb{Q} \setminus \bigcup_{m \in \mathbb{Z}} F_m : \forall m \in \mathbb{Z} \ F_m \in [[m, m+1)]^{<\omega} \right\}$$

is a positive family in $\mathbb{P}(\mathbb{Q}, \Gamma)$ (note that each element of \mathcal{P} is given by different choice of the collection $\{F_m : m \in \mathbb{Z}\}$). Take any $X \in \mathcal{P}$. We will show that X satisfies the conditions of Lemma 2.2. Take any finite $A \subset X$ such that $|A| \ge n-1$ and any $B \subset [A]^{n-1}$. First we find $m_0 \in \mathbb{Z}$ such that $\max A \in [m_0, m_0 + 1)_{\mathbb{Q}}$. This m_0 clearly exists because A is a finite set. Also, because F_{m_0} is a finite set and $A \cap F_{m_0} = \emptyset$, there is an $m \in \mathbb{N}$ such that $(\max A, \max A + \frac{1}{m}) \cap F_{m_0} = \emptyset$, i.e. $(\max A, \max A + \frac{1}{m}) \cap \mathbb{Q} \subset X$. Now,

because the set $D_B^{A,m}$ is dense in \mathbb{P} there is some $p \in G \cap D_B^{A,m}$. Lemma 3.2 states that there is some $q \in X$ such that $\forall b \in B \ \{q\} \cup b \in \Gamma_p \subset \Gamma$ and $\forall b \in ([A]^{n-1} \setminus B) \ \{q\} \cup b \notin \Gamma_p = \Gamma \cap [H_p]^n$. Hence for each $X \in \mathcal{P}$ we have that $X \cong \mathcal{H}_n$.

To conclude the proof we should still show that \mathcal{P} is a positive family on \mathbb{Q} . The condition (P1) is clearly satisfied because only finitely many points are removed from each bounded interval in \mathbb{Q} to obtain elements of \mathcal{P} . For the same reason (P2) and (P3) are also satisfied. The set $\mathbb{Q} \setminus \bigcup_{m_0 \in \mathbb{Z}} \{m_0\}$ is in \mathcal{P} and witnesses that the condition (P4) is true. \Box

In order to apply Theorem 1.4, we have to show that open intervals are copies of \mathcal{H}_n while closed intervals are not.

Lemma 3.4. It holds:

(1) $(-\infty, x)_{J_0} \subset A \subset (\infty, x)_{\mathbb{Q}}$ implies $\langle A, \Gamma \rangle \cong \langle \mathbb{Q}, \Gamma \rangle$ for $x \in \mathbb{R} \cup \{\infty\}$; (2) $(-\infty, q]_{J_0} \subset C \subset (\infty, q]_{\mathbb{Q}}$ implies $\langle C, \Gamma \rangle \ncong \langle \mathbb{Q}, \Gamma \rangle$ for $q \in J_0$.

Proof. To prove (1) take any finite $X \subset A$ such that $|X| \ge n-1$ and take $B \subset [X]^{n-1}$. There is some $m \in \mathbb{N}$ such that $\max X + \frac{1}{m} < \sup A = x$ (this can be done because of the choice of A and J_0). Now, because the set $D_B^{X,m}$ is dense in \mathbb{P} , there is some $p \in G \cap D_B^{X,m}$. In p there is some $q \in (\max X, \max X + \frac{1}{m}) \cap J_0 \subset A$ such that $\forall b \in B$ ($\{q\} \cup b \in \Gamma_p \subset \Gamma$) and that $\forall b \in [X]^{n-1} \setminus B$ ($\{q\} \cup b \notin \Gamma_p = \Gamma \cap [H_p]^n$). So according to Lemma 2.2, A is isomorphic to \mathcal{H}_n .

To prove (2) consider the set $Y = \{q, q-1, \ldots, q-n+1\} \subset C$ (we have that $Y \subset C$ because of the choice of the partition $\{J_m : m \in \omega\}$). Now, if $\langle C, \Gamma \rangle$ is isomorphic to \mathcal{H}_n , then there is an element $b \in C$ such that $\forall X \in [Y]^{n-1}$ ($\{b\} \cup X \in \Gamma$). According to the definition of Γ , for each $X \in [Y]^{n-1}$ there is some $p_X \in G$ such that $\{b\} \cup X \subset H_{p_X}$. Because Gis a filter there is some $p \leq p_X$ for all $X \in [Y]^{n-1}$. In this p we have that $\forall X \in [Y]^{n-1}$ ($\{b\} \cup X \in \Gamma$) yet $b \leq \max C = q$. But, this is a contradiction to the definition of \mathbb{P} (condition (3.1)). \Box

Now we can prove the main result of this article.

Theorem 3.5. For a linear order L, the following conditions are equivalent.

- (1) L is a complete, \mathbb{R} -embeddable linear order with min L non-isolated;
- (2) *L* is isomorphic to a maximal chain in the poset $\langle \mathbb{P}(\mathcal{H}_n) \cup \{\emptyset\}, \subset \rangle$;
- (3) L is isomorphic to a compact set K of reals such that $\min K \in K'$.

Proof. The equivalence of (1) and (3) was shown in [9], while the implication $(2) \Rightarrow (1)$ follows from Theorem 1.5.

To prove implication $(1) \Rightarrow (2)$ note that from the choice of partition $\{J_m : m \in \omega\}$ and according to Lemma 3.4, conditions (i)-(iv) of Theorem 1.4 are satisfied. Also, Lemma 3.3 proves that the condition (v) of Theorem 1.4 is satisfied. Hence, Theorem 1.4 implies that $(1) \Rightarrow (2)$ is proved. \Box

References

- G. W. Day. Maximal chains in atomic Boolean algebras. Fund. Math., 67:293–296, 1970.
- [2] M. El-Zahar and N. W. Sauer. The divisibility properties of homogeneous hypergraphs. *Combinatorica*, 14(2):159–165, 1994.
- [3] R. Fraissé. Sur l'extension aux relations de quelques proprietés des ordres. Ann. Sci. École Norm. Sup, 71:363–388, 1954.
- [4] R. Fraissé. Theory of Relations, volume 145 of Studies in Logic and the Foundations of Mathematics. North-Holland, 2000.
- [5] A. S. Kechris, V. Pestov, and S.Todorčević. Fraissé limits, Ramsey theory, and topological dynamics of automorphism groups. *Geom. Funct. Anal.*, 15:106–189, 2005.
- [6] S. Koppelberg. Maximal chains in interval algebras. Algebra Univers., 27(1):32–43, 1990.
- [7] K. Kuratowski. Sur la notion de l'ordre dans la théorie des ensembles. Fund. Math., 2:161–171, 1921.
- [8] M. S. Kurilić. Maximal chains in positive subfamilies of P(ω). Order, 29(1):119–129, 2012.
- [9] M. S. Kurilić. Maximal chains of copies of the rational line. Order, 30(3):737-748, 2013.
- [10] M. S. Kurilić and B. Kuzeljević. Maximal chains of isomorphic subgraphs of the countable ultrahomogenous graphs. Adv. Math., 264:762–775, 2014.
- [11] M. S. Kurilić and B. Kuzeljević. Maximal chains of isomorphic suborders of the countable ultrahomogeneous partial orders. Order, http://dx.doi.org/10.1007/s11083-014-9317-9.
- [12] J.D. Monk. Towers and maximal chains in Boolean algebras. Algebra Univers., 56(3-4):337-347, 2007.
- [13] L. Nguyen Van Thé and N. W. Sauer. The Urysohn sphere is oscillation stable. Geom. Funct. Anal., 19(3–4):311–327, 1968.

MATHEMATICAL INSTITUTE SANU, KNEZA MIHAILA 36, 11001 BELGRADE, SERBIA *E-mail address*: borisa@mi.sanu.ac.rs