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Abstract

We investigate the poset 〈P(X) ∪ {∅},⊂〉, where X is a countable ultraho-
mogeneous partial order and P(X) the set of suborders of X isomorphic to
X. For X different from (resp. equal to) a countable antichain the order types
of maximal chains in 〈P(X) ∪ {∅},⊂〉 are characterized as the order types
of compact (resp. compact and nowhere dense) sets of reals having the mini-
mum non-isolated.
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1 Introduction

The general concept - to explore the relationship between the properties of a re-
lational structure X and the properties of the poset P(X) of substructures of X
isomorphic to X - can be developed in several ways. For example, regarding the
forcing theoretic aspect, the poset of copies of each countable non-scattered linear
order is forcing equivalent to the two-step iteration of the Sacks forcing and a σ-
closed forcing [9], while the posets of copies of countable scattered linear orders
have σ-closed forcing equivalents (separative quotients) [10].

Regarding the order-theoretic aspect, one of the extensively investigated order
invariants of a poset is the class of order types of its maximal chains [2, 5, 6, 11]
and, for the poset of isomorphic suborders of the rational line, 〈Q, <Q〉, this class
is characterized in [8]. The main result of the present paper is the following gener-
alization of that result.

Theorem 1.1 If X is a countable ultrahomogeneous partial order different from
a countable antichain, then for each linear order L the following conditions are
equivalent:

(a) L is isomorphic to a maximal chain in the poset 〈P(X) ∪ {∅},⊂〉;
(b) L is an R-embeddable complete linear order with 0L non-isolated;
(c) L is isomorphic to a compact set K ⊂ R such that 0K ∈ K ′.

If X is a countable antichain, then the corresponding characterization is obtained
if we replace “complete” by “Boolean” in (b) and “compact” by “compact and
nowhere dense” in (c).
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So, for example, there are maximal chains of copies of the random poset isomorphic
to (0, 1], to the Cantor set without 0, and to α∗, for each countable limit ordinal α.
Although it is not a usual practice, we start with a proof in the introduction. The
equivalence of (b) and (c) is a known fact (see, for example, Theorem 6 of [8]) and
the implication (a)⇒ (b) for the ultrahomogeneous partial orders different from the
countable antichain follows from the general result on ultrahomogeneous structures
given in Theorem 2.2 of the present paper. Thus, only the implication (b) ⇒ (a)
in general, and the implication (a)⇒ (b) in case of the countable antichain remain
to be proved. Naturally, we will use the following, well known classification of
countable ultrahomogeneous partial orders - the Schmerl list [13]:

Theorem 1.2 (Schmerl) A countable strict partial order is ultrahomogeneous iff it
is isomorphic to one of the following partial orders:
Aω, a countable antichain (that is, the empty relation on ω);
Bn = n×Q, for 1 ≤ n ≤ ω, where 〈i1, q1〉 < 〈i2, q2〉 ⇔ i1 = i2 ∧ q1 <Q q2;
Cn = n×Q, for 1 ≤ n ≤ ω, where 〈i1, q1〉 < 〈i2, q2〉 ⇔ q1 <Q q2;
D, the unique countable homogeneous universal poset (the random poset).

For the antichain Aω the equivalence (b)⇔ (a) follows from Theorem 1.5 and the
fact that P(Aω) = [ω]ω is a positive family. The most difficult part of the proof of
(b) ⇒ (a) - for the random poset D - is given in Section 4. In Sections 5 and 6,
using the constructions from [8], we prove (b)⇒ (a) for the posets Bn and Cn.

The rest of this section contains three facts which will be used in the sequel.
Before that, we remind the reader that a partial order is a structure 〈P,≤〉 consist-
ing of a set P and a binary relation ≤ on P which is reflexive, antisymmetric and
transitive. A set D ⊂ P is dense in a partial order 〈P,≤〉 if for any p ∈ P there
is some d ∈ D such that d ≤ p. To each partial order we can adjoin a strict partial
order 〈P,<〉 which is a structure consisting of a set P and a binary relation< on P
which is irreflexive and transitive (note that it follows directly from definition that
the relation < in a strict partial order is asymmetric).

In a linear order 〈L,<〉, a maximum of L is denoted by 1L, and a minimum of
L is denoted by 0L. A minimum 0L is non-isolated if there is no x ∈ L such that
¬∃y ∈ L (0L < y < x). A set X ⊂ L is called dense in a linear order L iff for
any a, b ∈ L there is x ∈ X such that a < x < b. A pair 〈A,B〉 is a cut in a linear
order 〈L,<〉 iff L = A

.
∪ B,A,B 6= ∅ and a < b, for each a ∈ A and b ∈ B. A cut

〈A,B〉 is a gap iff neither maxA nor minB exist. A linear order 〈L,<〉 is called
Dedekind-complete iff there are no gaps in 〈L,<〉. Further, a linear order 〈L,<〉
is called Boolean iff it is complete (has 0,1 and has no gaps) and has dense jumps,
which means that for each x, y ∈ L satisfying x < y there are a, b ∈ L such that
x ≤ a < b ≤ y and (a, b)L = ∅.

For any function ϕ : X → Y we denote ranϕ := ϕ[X] = {ϕ(x) : x ∈ X}. If
K is a subset of the real line, then K ′ denotes the set of all accumulation points of
K, i.e. points x such that x is in the closure of the set K \ {x} with respect to the
natural topology on R.
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Fact 1.3 Each countable complete linear order is Boolean.

Lemma 1.4 Let L be an uncountable complete, R-embeddable linear order such
that 0L is non-isolated. Then L ∼=

∑
x∈[−∞,∞] Lx, where

(L1) Lx, x ∈ [−∞,∞], are at most countable complete linear orders,
(L2) The set M = {x ∈ [−∞,∞] : |Lx| > 1} is at most countable,
(L3) |L−∞| = 1 or 0L−∞ is non-isolated.

Proof. L =
∑

i∈I Li, where Li are the equivalence classes corresponding to the
condensation relation ∼ on L given by: x ∼ y ⇔ |[min{x, y},max{x, y}]| ≤ ω
(see [12]). Since the order L is complete and R-embeddable, I is too. Since the
cofinalities and coinitialities of the orders Li are countable, I is a dense linear
order. So I ∼= [0, 1] ∼= [−∞,∞]. Hence, the orders Li are complete and, since
minLi ∼ maxLi, countable. If |Li| > 1, Li has a jump (Fact 1.3) so, L ↪→ R
gives |M | ≤ ω. 2

We recall that a family P ⊂ P (ω) is called a positive family iff:
(P1) ∅ /∈ P;
(P2) P 3 A ⊂ B ⊂ ω ⇒ B ∈ P;
(P3) A ∈ P ∧ |F | < ω ⇒ A\F ∈ P;
(P4) ∃A ∈ P |ω\A| = ω.

Theorem 1.5 ([7]) If P ⊂ P (ω) is a positive family, then for each linear order L
the following conditions are equivalent:

(a) L is isomorphic to a maximal chain in the poset 〈P ∪ {∅},⊂〉;
(b) L is an R-embeddable Boolean linear order with 0L non-isolated;
(c) L is isomorphic to a compact nowhere dense setK ⊂ R such that 0K ∈ K ′.

In addition, (b) implies that there is a maximal chain L in 〈P ∪ {∅},⊂〉 satisfying⋂
(L \ {∅}) = ∅ and isomorphic to L.

2 Copies of countable ultrahomogeneous structures

Let L = {Ri : i ∈ I} be a relational language, where ar(Ri) = ni, i ∈ I . An
L-structure X = 〈X, {ρi : i ∈ I}〉 is called countable iff |X| = ω. If A ⊂ X , then
〈A, {(ρi)A : i ∈ I}〉 (shortly denoted by 〈A, {ρi : i ∈ I}〉, whenever this abuse
of notation does not produce a confusion) is a substructure of X, where (ρi)A =
ρi ∩ Ani , i ∈ I . If Y = 〈Y, {σi : i ∈ I}〉 is an L-structure too, a mapping
f : X → Y is an embedding (we write X ↪→f Y) iff it is an injection and

∀i ∈ I ∀〈x1, . . . xni〉 ∈ Xni (〈x1, . . . , xni〉 ∈ ρi ⇔ 〈f(x1), . . . , f(xni)〉 ∈ σi).

If X embeds in Y we write X ↪→ Y. Let Emb(X,Y) = {f : X ↪→f Y} and
Emb(X) = {f : X ↪→f X}. If, in addition, f is a surjection, it is an isomorphism
(we write X ∼=f Y) and the structures X and Y are isomorphic, in notation X ∼= Y.
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Each isomorphism between finite substructures of X is called a finite isomor-
phism of X. A structure X is ultrahomogeneous iff each finite isomorphism of X
can be extended to an automorphism of X. The age of X, AgeX, is the class of all
finite L-structures embeddable in X. We will use the following well known facts
from the Fraı̈ssé theory.

Theorem 2.1 (Fraı̈ssé) Let L be an at most countable relational language. Then
(a) A countable L-structure X is ultrahomogeneous iff for each finite isomor-

phism ϕ of X and each x ∈ X \ domϕ there is a finite isomorphism ψ of X
extending ϕ to x (see [3] p. 389 or [4] p. 326).

(b) If X and Y are countable ultrahomogeneous L-structures and AgeX =
AgeY, then X ∼= Y (see [3] p. 333 or [4] p. 326).

Concerning the order types of maximal chains in the posets of the form 〈P(X),⊂〉,
where X = 〈X, {ρi : i ∈ I}〉 is a relational structure and P(X) the set of the
domains of its isomorphic substructures, that is

P(X) = {A ⊂ X : 〈A, {(ρi)A : i ∈ I}〉 ∼= X} = {f [X] : f ∈ Emb(X)}

we have the following general statement.

Theorem 2.2 LetX be a countable ultrahomogeneous structure of an at most count-
able relational language and P(X) 6= {X}. If L is a maximal chain in the poset
〈P(X) ∪ {∅},⊂〉, then

(a) L is an R-embeddable complete linear order with 0L(= ∅) non-isolated;
(b) If there is a positive family P ⊂ P(X), then for each countable linear order

L satisfying (a), there is a maximal chain in 〈P(X) ∪ {∅},⊂〉 isomorphic to L.

Proof. (a) First we prove that⋃
A ∈ P(X), for each chain A in the poset 〈P(X),⊂〉. (1)

Let ϕ be a finite isomorphism of
⋃
A and x ∈

⋃
A. Since A is a chain there is

A ∈ A such that domϕ∪ranϕ∪{x} ⊂ A. SinceA ∼= X, by Theorem 2.1(a) there
is y ∈ A such that ψ = ϕ∪{〈x, y〉} is an isomorphism, so ψ is a finite isomorphism
of
⋃
A. Thus, by Theorem 2.1(a), the structure

⋃
A is ultrahomogeneous. Since

X ∼= A ⊂
⋃
A ⊂ X we have AgeX = AgeA ⊂ Age

⋃
A ⊂ AgeX, which, by

Theorem 2.1(b), implies
⋃
A ∼= X, that is

⋃
A ∈ P(X).

LetX = {xn : n ∈ ω} be an enumeration. Since L ⊂ [X]ω∪{∅}, the function
f : L → R defined by f(A) =

∑
n∈ω 2−n ·χA(xn) (where χA : X → {0, 1} is the

characteristic function of the set A ⊂ X) is an embedding of 〈L,⊂〉 into 〈R, <R〉.
Clearly, minL = ∅ and maxL = X . Let 〈A,B〉 be a cut in L. IfA = {∅} then

maxA = ∅. If A 6= {∅}, by (1) we have
⋃
A ∈ P(X) and, since A ⊂

⋃
A ⊂ B,

for each A ∈ A and B ∈ B, the maximality of L implies
⋃
A ∈ L. So, if⋃

A ∈ A then maxA =
⋃
A. Otherwise

⋃
A ∈ B and minB =

⋃
A. Thus

〈L,⊂〉 is complete.
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Suppose that A is the successor of ∅ in L. Since P(X) 6= {X} there is B ∈
P(X) \ {X} and, if f : X ↪→ A, then f [B] ∈ P(X), f [B]  A and, hence,
L ∪ {f [B]} is a chain in P(X). A contradiction to the maximality of L.

(b) By Fact 1.3, L is a Boolean order and, by Theorem 1.5, in the poset 〈P ∪
{∅},⊂〉 there is a maximal chain L isomorphic to L and such that

⋂
(L\{∅}) = ∅.

Now, L is a chain in 〈P(X) ∪ {∅},⊂〉 and we check its maximality. Suppose that
L ∪ {A} is a chain, where A ∈ P(X) \ L. Then A  S or S  A, for each
S ∈ L \ {∅} and, since

⋂
(L \ {∅}) = ∅, there is S ∈ L \ {∅} such that S ⊂ A,

which implies A ∈ P . But L \ {∅} is a maximal chain in P . A contradiction. 2

Remark 2.3 Concerning the assumption P(X) 6= {X} we note that there are
countable ultrahomogeneous structures satisfying P(X) = {X} (see [3], p. 399).

For 1 < n < ω the set P(Cn) does not contain a positive family, since (P3) is
not satisfied. Namely, if A ∈ P(Cn) and x ∈ A, then A \ {x} is not a copy of Cn

(one class of incompatible elements is of size n− 1).
For some ω-saturated, ω-homogeneous-universal relational structures the im-

plication (b) ⇒ (a) of Theorem 1.1 is not true. Let L be the language with one
binary relational symbol ρ and T the L-theory of empty relations (∀x, y ¬ x ρ y).
Then X = 〈ω, ∅〉 is the ω-saturated model of T . But P(X) = [ω]ω is a positive
family and, by Theorem 1.5, maximal chains in P(X)∪{∅} are Boolean. Thus, for
example, P(X) ∪ {∅} does not contain a maximal chain isomorphic to [0, 1]R.

3 Copies of the countable random poset

Let P = 〈P,<〉 be a partial order. ByC(P) we denote the set of all triples 〈L,G,U〉
of pairwise disjoint finite subsets of P such that:

(C1) ∀l ∈ L ∀g ∈ G l < g,
(C2) ∀u ∈ U ∀l ∈ L ¬u < l and
(C3) ∀u ∈ U ∀g ∈ G ¬g < u.

For 〈L,G,U〉 ∈ C(P), let P〈L,G,U〉 be the set of all p ∈ P \ (L∪G∪U) satisfying:
(S1) ∀l ∈ L p > l,
(S2) ∀g ∈ G p < g and
(S3) ∀u ∈ U p‖u (where p‖q denotes that p 6= q ∧ ¬p < q ∧ ¬q < p).

Fact 3.1 Let P = 〈P,<〉 be a partial order and ∅ 6= A ⊂ P . Then
(a) C(A,<) = {〈L,G,U〉 ∈ C(P) : L,G,U ⊂ A};
(b) A〈L,G,U〉 = P〈L,G,U〉 ∩A, for each 〈L,G,U〉 ∈ C(A,<).
(c) 〈∅, ∅, ∅〉 ∈ C(P) and P〈∅,∅,∅〉 = P .

Proof. For pairwise disjoint setsL,G,U ⊂ Awe have: L×G ⊂ < iffL×G ⊂ <A

and ((U × L) ∪ (G× U)) ∩ < = ∅ iff ((U × L) ∪ (G× U)) ∩ <A = ∅. 2

Fact 3.2 A countable strict partial order D = 〈D,<〉 is a countable random poset
iff D〈L,G,U〉 6= ∅, for each 〈L,G,U〉 ∈ C(D) (see [1]).
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Lemma 3.3 Let D = 〈D,<〉 be a countable random poset. Then
(a) D〈L,G,U〉 ∈ P(D) and, hence, |D〈L,G,U〉| = ω, for each 〈L,G,U〉 ∈ C(D);
(b) D \ F ∈ P(D), for each finite F ⊂ D;
(c) If C ⊂ D and A 6⊂ C for each A ∈ P(D), then D \ C ∈ P(D);
(d) If L ⊂ P(D) is a chain, then

⋃
L ∈ P(D);

(e) If D = A ∪̇ B, then either A or B contains an element of P(D).

Proof. (a) Let 〈L,G,U〉 ∈ C(D). Then L, G and U are disjoint subsets of D,

∀l ∈ L ∀g ∈ G ∀u ∈ U (u 6< l < g 6< u), (2)

and D〈L,G,U〉 ∩ (L ∪ G ∪ U) = ∅. Let 〈L1, G1, U1〉 ∈ C(D〈L,G,U〉). Then L1,
G1 and U1 are disjoint subsets of D〈L,G,U〉 and, by Fact 3.1, 〈L1, G1, U1〉 ∈ C(D)
which implies

∀l1 ∈ L1 ∀g1 ∈ G1 ∀u1 ∈ U1 (u1 6< l1 < g1 6< u1). (3)

Since L1 ∪G1 ∪ U1 ⊂ D〈L,G,U〉, by (S1)-(S3) we have

∀x ∈ L1∪G1∪U1 ∀l ∈ L ∀g ∈ G ∀u ∈ U (l < x < g∧x 6< u∧u 6< x). (4)

First we show that 〈L ∪ L1, G ∪ G1, U ∪ U1〉 ∈ C(D). (C1) Let l′ ∈ L ∪ L1 and
g′ ∈ G ∪G1. Then l′ < g′ follows from: (2), if l′ ∈ L and g′ ∈ G; (3), if l′ ∈ L1

and g′ ∈ G1; (4), if l′ ∈ L and g′ = x ∈ G1 or l′ = x ∈ L1 and g′ ∈ G. (C2)
Let l′ ∈ L ∪ L1 and u′ ∈ U ∪ U1. Then u′ 6< l′ follows from: (2), if l′ ∈ L and
u′ ∈ U ; (3), if l′ ∈ L1 and u′ ∈ U1; (4), if l′ ∈ L and u′ = x ∈ U1 (since l′ < u′)
or l′ = x ∈ L1 and u′ ∈ U . In the same way we prove (C3).

So there exists some x ∈ D〈L∪L1,G∪G1,U∪U1〉, which implies x ∈ D〈L,G,U〉 ∩
D〈L1,G1,U1〉 = (D〈L,G,U〉)〈L1,G1,U1〉 (Fact 3.1). Thus D〈L,G,U〉 is a random poset
and, hence a copy of D.

(b) Let 〈L,G,U〉 ∈ C(D \ F ). By Fact 3.1 we have 〈L,G,U〉 ∈ C(D) and,
by (a), ∅ 6= (D \ F ) ∩D〈L,G,U〉 = (D \ F )〈L,G,U〉. Thus D \ F is a copy of D.

(c) Let 〈L,G,U〉 ∈ C(D \ C). Then, by Fact 3.1, 〈L,G,U〉 ∈ C(D) and, by
(a), D〈L,G,U〉 ∈ P(D). By the assumption we have D〈L,G,U〉 ∩ (D \ C) 6= ∅ and,
by Fact 3.1, (D \ C)〈L,G,U〉 6= ∅ and D \ C is a random poset.

(d) See (1) in the proof of Theorem 2.2.
(e) Follows from (c). 2

Lemma 3.4 Let D = 〈D,<〉 be a countable random poset, C ∈ [D]ω and A 6⊂ C
for each A ∈ P(D) (for example, C can be an infinite antichain). Then

(a) P = {B ⊂ D : D \ C ⊂∗ B} ⊂ P(D) (X ⊂∗ Y denotes |X \ Y | < ω);
(b) P is a positive family on D.

Proof. (a) Suppose that A ⊂ D \ B, for some A ∈ P(D). Since D \ C ⊂∗ B we
have D \ B ⊂∗ C and, hence, A ⊂∗ C, that is |A \ C| < ω. By Lemma 3.3(b),
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A∩C = A \ (A \C) ∈ P(D), which is, by our assumption, impossible. So D \B
does not contain copies of D and, by Lemma 3.3(c), B ∈ P(D).

(b) Conditions (P1) and (P2) are evident. If D \ C ⊂∗ B and |F | < ω, then,
clearly, D \ C ⊂∗ B \ F and (P3) is true. Since the set D \ C is co-infinite, (P4)
holds. 2

Lemma 3.5 Let A ⊂ B ⊂ ω and let L be a complete linear ordering, such that
|B \A| = |L| − 1 (Notice that we are abusing notation here, namely whenever we
write |X| ± 1 in the paper, it will have the obvious meaning in the case |X| < ω,
whereas in the case |X| = ω we will assume |X| ± 1 = ω). Then there is a
chain L in [A,B]P (B) satisfying A,B ∈ L ∼= L and such that

⋃
A,
⋂
B ∈ L and

|
⋂
B \

⋃
A| ≤ 1, for each cut 〈A,B〉 in L.

Proof. If |B \ A| is a finite set, say B = A ∪ {a1, . . . an}, then |L| = n + 1 and
L = {A,A ∪ {a1}, A ∪ {a1, a2}, . . . , B} is a chain with the desired properties.

If |B\A| = ω, then L is a countable and, hence,R-embeddable complete linear
order. It is known that an infinite linear order is isomorphic to a maximal chain in
P (ω) iff it is R-embeddable and Boolean (see, for example, [7]). By Fact 1.3 L is
a Boolean order and, thus, there is a maximal chain L1 in P (B \A) isomorphic to
L. Let L = {A ∪ C : C ∈ L1}. Since ∅, B \ A ∈ L1 we have A,B ∈ L and the
function f : L1 → L, defined by f(C) = A ∪ C, witnesses that 〈L1, 〉 ∼= 〈L, 〉
so L is isomorphic to L. For each cut 〈A,B〉 in L1 we have

⋃
A ⊂

⋂
B and, by

the maximality of L1,
⋃
A,
⋂
B ∈ L1 and |

⋂
B \

⋃
A| ≤ 1. Clearly, the same is

true for each cut in L. 2

4 Maximal chains of copies of the random poset

In the following theorem we slightly change notation. We denote the linear order
by Λ, in order not to be confused with finite sets denoted by L, which appear in
triples 〈L,G,U〉 from the characterization of D in Fact 3.2.

Theorem 4.1 For eachR-embeddable complete linear order Λ with 0Λ non-isolated
there is a maximal chain in 〈P(D) ∪ {∅},⊂〉 isomorphic to Λ.

Proof. By Lemma 3.4 and Theorem 2.2 it remains to prove the statement for un-
countable Λ’s. So let Λ be an uncountable linear order with the given properties.
According to the Lemma 1.4, it has a representation Λ ∼=

∑
x∈[−∞,∞] Lx satis-

fying conditions (L1-L3) from Lemma 1.4. For the rest of the proof, we fix this
presentation.
Case I: −∞ 6∈M 3 ∞. First we take the rational line 〈Q, <Q〉 and construct a set
� ⊂ Q2 such that 〈Q,�〉 is a random poset with additional, convenient properties.
Let P be the set of pairs p = 〈Pp,Cp〉 satisfying

(i) Pp ∈ [Q]<ω,
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(ii) Cp⊂ Pp × Pp is a strict partial order on Pp,
(iii) <Q extends Cp, that is ∀q1, q2 ∈ Pp (q1 Cp q2 ⇒ q1 <Q q2),

and let the relation ≤ on P be defined by:

p ≤ q ⇔ Pp ⊃ Pq ∧ Cp ∩(Pq × Pq) =Cq . (5)

Claim 4.2 〈P,≤〉 is a partial order.

Proof. The reflexivity of ≤ is obvious. If p ≤ q ≤ p, then Pp = Pq and, hence,
�p = �p ∩ (Pp × Pp) = �p ∩ (Pq × Pq) = �q so p = q and ≤ is antisymmetric.

If p ≤ q ≤ r, then Pp ⊃ Pq ⊃ Pr and, consequently, �p ∩ (Pr × Pr) =
�p ∩ (Pq × Pq) ∩ (Pr × Pr) = �q ∩ (Pr × Pr) = �r. Thus p ≤ r. 2

Claim 4.3 The sets Dq = {p ∈ P : q ∈ Pp}, q ∈ Q, are dense in P.

Proof. If p ∈ P \ Dq, that is q /∈ Pp, then �p is an irreflexive and transitive
relation on the set Pp and on the set Pp ∪ {q} as well. Also �p ⊂<Q thus p1 =
〈Pp ∪ {q},�p〉 ∈ P. Thus p1 ∈ Dq and, clearly, p1 ≤ p. 2

Now let Q = J ∪
⋃

y∈M Jy be a partition of Q into |M | + 1 dense subsets of Q.
For 〈L,G,U〉 ∈ ([Q]<ω)3 \ {〈∅, ∅, ∅〉}, let m〈L,G,U〉 = max〈Q,<Q〉(L ∪G ∪ U).

Claim 4.4 For each 〈L,G,U〉 ∈ ([Q]<ω)3 \ {〈∅, ∅, ∅〉} and each m ∈ N the set
D〈L,G,U〉,m is dense in P, where

D〈L,G,U〉,m =
{
p ∈ P : L ∪G ∪ U ⊂ Pp ∧

(
〈L,G,U〉 6∈ C(p)

∨ (G 6= ∅ ∧ p〈L,G,U〉 ∩ J 6= ∅)

∨ (G = ∅ ∧ p〈L,G,U〉 ∩ (m〈L,G,U〉,m〈L,G,U〉 + 1
m) ∩ J 6= ∅)

)}
.

Proof. Let p′ ∈ P \ D〈L,G,U〉,m. By Claim 4.3 there is p ∈ P such that p ≤ p′ and
L ∪G ∪ U ⊂ Pp. If 〈L,G,U〉 6∈ C(p) then p ∈ D〈L,G,U〉,m and we are done. If

〈L,G,U〉 ∈ C(p), (6)

then we continue the proof distinguishing the following two cases.
Case 1: G 6= ∅. Let us define max〈Q,<Q〉 ∅ = −∞. By (6) and (C1) for

p, if L 6= ∅, then max〈Q,<Q〉 L �p min〈Q,<Q〉G and, by (iii), max〈Q,<Q〉 L <Q
min〈Q,<Q〉G. Now, since J is a dense set in 〈Q, <Q〉 we choose

q ∈ (max〈Q,<Q〉 L,min〈Q,<Q〉G) ∩ J \ Pp (7)

and define p1 = 〈Pp ∪ {q},�p1〉 where

�p1 = �p ∪ {〈x, q〉 : ∃l ∈ L x Ep l} ∪ {〈q, y〉 : ∃g ∈ G g Ep y}. (8)

First we prove that p1 ∈ P. Clearly, p1 satisfies condition (i).
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(ii) Since �p is an irreflexive relation and, by (7), q 6∈ Pp, by (8) the relation
�p1 is irreflexive as well.

Suppose that �p1 is not asymmetric. Then, since �p is asymmetric, there is
t ∈ Pp such that 〈t, q〉, 〈q, t〉 ∈ �p1 and by (8), g Ep t Ep l, for some l ∈ L and
g ∈ G which, by the transitivity of Ep implies g Ep l. But, by (6) and (C1) we
have l �p g. A contradiction.

Let 〈a, b〉, 〈b, c〉 ∈ �p1 . Then, since the relation �p1 is irreflexive and asym-
metric, we have a 6= b 6= c 6= a. If q 6∈ {a, b, c}, then 〈a, c〉 ∈ �p1 by the
transitivity of �p. Otherwise we have three possibilities:

a = q. Then 〈b, c〉 ∈ �p and there is a g ∈ G such that g Ep b. Hence g �p c
which, by (8), implies 〈q, c〉 ∈ �p1 , that is 〈a, c〉 ∈ �p1 .

b = q. Then there are l ∈ L and g ∈ G such that a Ep l and g Ep c. By (C1)
we have l �p g and, by the transitivity of �p, a�p c and, hence, 〈a, c〉 ∈ �p1 .

c = q. Then 〈a, b〉 ∈ �p and there is an l ∈ L such that b Ep l. Hence a �p l
which, by (8), implies 〈a, q〉 ∈ �p1 , that is 〈a, c〉 ∈ �p1 .

(iii) Since p ∈ P, we have �p ⊂<Q. If 〈x, q〉 ∈ �p1 and l ∈ L, where x Ep l,
then, since �p satisfies (iii), we have x ≤Q l. By (7) we have l <Q q and, thus,
x <Q q. In a similar way we show that 〈q, y〉 ∈ �p1 implies q <Q y.

Thus p1 ∈ P, Pp1 ⊃ Pp ⊃ L ∪ G ∪ U and, by (8), �p1 ∩ (Pp × Pp) = �p,
which implies that p1 ≤ p (≤ p′). So p is a suborder of p1 and, by (6) and Fact
3.1, 〈L,G,U〉 ∈ C(p1). Since G 6= ∅ and q ∈ J , for a proof that p1 ∈ D〈L,G,U〉,m
it remains to be shown that q ∈ (p1)〈L,G,U〉. By (8) l �p1 q �p1 g, for each l ∈ L
and g ∈ G, so (S1) and (S2) are true. For u ∈ U , 〈u, q〉 ∈ �p1 would give l ∈ L
satisfying u Ep l and, since U ∩ L = ∅, u �p l, which is impossible by (6) and
(C2). Similarly, 〈q, u〉 ∈ �p1 is not possible and, thus, q ‖p1 u and (S3) is satisfied.

Case 2: G = ∅. Again, since J is a dense set in the linear order 〈Q, <Q〉 we
choose

q ∈ (m〈L,G,U〉,m〈L,G,U〉 + 1
m) ∩ J \ Pp (9)

and define p1 = 〈Pp ∪ {q},�p1〉, where

�p1 = �p ∪ {〈x, q〉 : ∃l ∈ L x Ep l}. (10)

First we prove that p1 ∈ P. Clearly, p1 satisfies condition (i).
(ii) By (9) we have q 6∈ Pp so, by (10) the relation �p1 is irreflexive.
Let 〈a, b〉, 〈b, c〉 ∈ �p1 . If q 6∈ {a, b, c}, then 〈a, c〉 ∈ �p1 by (10) and the

transitivity of �p. Otherwise, by (10) again, a, b 6= q and, thus, c = q. Hence there
is an l ∈ L such that b Ep l. Since a, b 6= q, by (10) we have a �p b and, hence
a�p l, which implies 〈a, q〉 ∈ �p1 , that is 〈a, c〉 ∈ �p1 .

(iii) Since p ∈ P, we have �p ⊂<Q. If 〈x, q〉 ∈ �p1 and l ∈ L, where x Ep l,
then, since �p satisfies (iii), we have x ≤Q l. By (9) we have l ≤Q m〈L,G,U〉 <Q q
and, thus, x <Q q.

Thus p1 ∈ P. As in Case 1 we show that L ∪G ∪ U ⊂ Pp1 , p1 ≤ p (≤ p′) and
〈L,G,U〉 ∈ C(p1). By (9) and since G = ∅, for a proof that p1 ∈ D〈L,G,U〉,m it
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remains to be shown that q ∈ (p1)〈L,G,U〉. (S2) is trivial and, by (10), for l ∈ L we
have 〈l, q〉 ∈ �p1 thus (S1) holds as well. Suppose that ¬ q ‖p1 u, for some u ∈ U .
Then, by (9) and (10), 〈u, q〉 ∈ �p1 and, hence, there is an l ∈ L satisfying u�p l,
which is impossible by (6) and (C2) for p. So (S3) is true. 2

By the Rasiowa-Sikorski theorem there is a filter G in 〈P,≤〉 intersecting the sets
Dq, q ∈ Q, and D〈L,G,U〉,m, 〈L,G,U〉 ∈ ([Q]<ω)3, m ∈ N.

Claim 4.5 (a)
⋃

p∈G Pp = Q;
(b) C:=

⋃
p∈G Cp is a strict partial order on Q;

(c) � ∩ (Pp × Pp) = �p, for each p ∈ G;
(d) <Q extends C, that is ∀q1, q2 ∈ Q (q1 C q2 ⇒ q1 <Q q2).

Proof. (a) For q ∈ Q let p0 ∈ G ∩ Dq. Then q ∈ Pp0 ⊂
⋃

p∈G Pp.
(b) The relation � is irreflexive since all the relations �p are irreflexive.
Let 〈a, b〉, 〈b, c〉 ∈ �, 〈a, b〉 ∈ �p1 and 〈b, c〉 ∈ �p2 , where p1, p2 ∈ G. Since G

is a filter there is a p ∈ G such that p ≤ p1, p2, which by (5) implies �p1 ,�p2 ⊂ �p.
Thus 〈a, b〉, 〈b, c〉 ∈ �p and, by the transitivity of �p, 〈a, c〉 ∈ �p ⊂ �.

(c) The inclusion “⊃” follows from (ii) and the definition of �. If 〈a, b〉 ∈
�∩ (Pp×Pp), then there is a p1 ∈ G such that 〈a, b〉 ∈ �p1 and, since G is a filter,
there is a p2 ∈ G such that p2 ≤ p, p1. By (5) we have �p1 ⊂ �p2 , which implies
〈a, b〉 ∈ �p2 and, by (5) again, 〈a, b〉 ∈ �p2 ∩ (Pp × Pp) = �p.

(d) If 〈q1, q2〉 ∈ � and p ∈ G where 〈q1, q2〉 ∈ �p, then by (iii), q1 <Q q2. 2

Claim 4.6 (a) 〈A,C〉 is a random poset, for each x ∈ (−∞,∞] and each set A
satisfying

(−∞, x) ∩ J ⊂ A ⊂ (−∞, x) ∩Q (11)

(b) If J ⊂ A ⊂ Q then 〈A,�〉 (in particular, 〈Q,C〉) is a random poset.
(c) If C ⊂ Q and max〈Q,<Q〉C exists, then 〈C,�〉 is not a random poset.

Proof. (a) By Claim 4.5(b), 〈A,C〉 is a strict partial order. Let 〈L,G,U〉 ∈
C(A,�). Then

L ∪G ∪ U ⊂ A ∧ L ∩G = G ∩ U = U ∩A = ∅, (12)

∀l ∈ L ∀g ∈ G ∀u ∈ U (〈l, g〉 ∈ � ∧ 〈u, l〉 6∈ � ∧ 〈g, u〉 6∈ �). (13)

We show that 〈A,�〉〈L,G,U〉 6= ∅. For 〈L,G,U〉 6= 〈∅, ∅, ∅〉 we have two cases.
Case 1: G 6= ∅. Let p ∈ G ∩ D〈L,G,U〉,1. Then

L ∪G ∪ U ⊂ Pp. (14)

First we show that 〈L,G,U〉 ∈ C(p). Let l ∈ L, g ∈ G and u ∈ U . By (13), (14)
and Claim 4.5(c) we have 〈l, g〉 ∈ �p and (C1) is true. Since �p ⊂ � by (13) we
have 〈u, l〉 6∈ �p and 〈g, u〉 6∈ �p and (C2) and (C3) are true as well.
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Since p ∈ D〈L,G,U〉,1 there is a q ∈ p〈L,G,U〉∩J . We prove that q ∈ 〈A,�〉〈L,G,U〉.
For a g ∈ G we have q �p g and, by (iii), q <Q g. By (11) and (12) we have
g ∈ G ⊂ A ⊂ (−∞, x) and, hence, q <Q g <R x, thus q ∈ (−∞, x) ∩ J ⊂ A.
Let l ∈ L, g ∈ G and u ∈ U . Since q ∈ p〈L,G,U〉 we have l�p q �p g and �p ⊂ �

implies l � q � g. Thus (S1) and (S2) are true. Suppose that ¬ q ‖〈A,�〉 u. Since
q 6∈ U we have q 6= u and, hence, q � u or u � q. But then, since u, q ∈ Pp,
by Claim 4.5(c) we would have q �p u or u �p q, which is impossible because
q ∈ p〈L,G,U〉. So (S3) is true as well.

Case 2: G = ∅. By (11) and (12) we have L ∪ G ∪ U ⊂ (−∞, x), which
implies m〈L,G,U〉 < x and, hence, there is an m ∈ N such that

m〈L,G,U〉 + 1
m < x. (15)

Let p ∈ G ∩ D〈L,G,U〉,m. Then (14) holds again and exactly like in Case 1 we
show that 〈L,G,U〉 ∈ C(p). Thus, since p ∈ D〈L,G,U〉,m there is q ∈ p〈L,G,U〉 ∩
(m〈L,G,U〉,m〈L,G,U〉 + 1

m) ∩ J and, by (15), q ∈ J ∩ (−∞, x). Thus, by (11),
q ∈ A and exactly like in Case 1 we prove that q ∈ 〈A,�〉〈L,G,U〉.

(b) Follows from (a) for x =∞.
(c) Suppose that max〈Q,<Q〉C = q and that 〈C,�〉 is a random poset. Then

C〈{q},∅,∅〉 6= ∅ and, by (S1), there is a q1 ∈ C such that q � q1, which, by Claim
4.5(d) implies q <Q q1. A contradiction with the maximality of q. 2

For y ∈M let us take Iy ∈ [Jy ∩ (−∞, y)]|Ly |−1 and define A−∞ = ∅ and

Ax = (J ∩ (−∞, x)) ∪
⋃

y∈M∩(−∞,x)Iy, for x ∈ (−∞,∞];

A+
x = Ax ∪ Ix, for x ∈M.

Since J ⊂ A+
∞ ⊂ Q, by Claim 4.6(b) 〈A+

∞,�〉 is a random poset and we construct
a maximal chain L in 〈P(A+

∞,�),⊂〉, such that L ∼= Λ.

Claim 4.7 The sets Ax, x ∈ [−∞,∞] and A+
x , x ∈ M are subsets of the set A+

∞
and of Q. In addition, for each x, x1, x2 ∈ [−∞,∞] we have

(a) Ax ⊂ (−∞, x);
(b) A+

x ⊂ (−∞, x), if x ∈M ;
(c) x1 < x2 ⇒ Ax1  Ax2 ;
(d) M 3 x1 < x2 ⇒ A+

x1
 Ax2 ;

(e) |A+
x \Ax| = |Lx| − 1, if x ∈M ;

(f) Ax ∈ P(A+
∞), for each x ∈ (−∞,∞];

(g) A+
x ∈ P(A+

∞) and [Ax, A
+
x ]P(A+

∞) = [Ax, A
+
x ]P (A+

x ), for each x ∈M .

Proof. Statements (c) and (d) are true since J is a dense subset of Q; (a), (b) and
(e) follow from the definitions of Ax and A+

x and the choice of the sets Iy. Since
J ∩ (−∞, x) ⊂ Ax ⊂ A+

x ⊂ (−∞, x) ∩ Q, (f) and (g) follow from Claim 4.6(a).
2

Now, for x ∈ [−∞,∞] we define chains Lx ⊂ P(A+
∞)∪{∅} in the following way.
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For x 6∈M we define Lx = {Ax}. In particular, L−∞ = {∅}.
For x ∈M , using Claim 4.7 and Lemma 3.5 we obtain a setLx ⊂ [Ax, A

+
x ]P (A+

x )

such that 〈Lx, 〉 ∼= 〈Lx, <x〉 and

Ax, A
+
x ∈ Lx ⊂ [Ax, A

+
x ]P(A+

∞), (16)⋃
A,
⋂
B ∈ Lx and |

⋂
B \

⋃
A| ≤ 1, for each cut 〈A,B〉 in Lx. (17)

For A,B ⊂ P(A+
∞) we will write A ≺ B iff A  B, for each A ∈ A and B ∈ B.

Claim 4.8 Let L =
⋃

x∈[−∞,∞] Lx. Then
(a) If −∞ ≤ x1 < x2 ≤ ∞, then Lx1 ≺ Lx2 and

⋃
Lx1 ⊂ Ax2 ⊂

⋃
Lx2 .

(b) L is a chain in 〈P(A+
∞) ∪ {∅},⊂〉 isomorphic to Λ =

∑
x∈[−∞,∞] Lx.

(c) L is a maximal chain in 〈P(A+
∞) ∪ {∅},⊂〉.

Proof. (a) Let A ∈ Lx1 and B ∈ Lx2 . If x1 ∈ (−∞,∞] \M , then, by (16) and
Claim 4.7(c) we have A = Ax1  Ax2 ⊂ B. If x1 ∈ M , then, by (16) and Claim
4.7(d), A ⊂ A+

x1
 Ax2 ⊂ B. The second statement follows from Ax2 ∈ Lx2 .

(b) By (a), 〈[−∞,∞], <〉 ∼= 〈{Lx : x ∈ [−∞,∞]},≺〉. Since Lx ∼= Lx, for
x ∈ [−∞,∞], we have 〈L, 〉 ∼=

∑
x∈[−∞,∞]〈Lx, 〉 ∼=

∑
x∈[−∞,∞] Lx = Λ.

(c) Suppose that C ∈ P(A+
∞) ∪ {∅} witnesses that L is not maximal. Clearly

L = A∪̇B and A ≺ B, where A = {A ∈ L : A  C} and B = {B ∈ L :
C  B}. Now ∅ ∈ L−∞ and, since∞ ∈ M , by (16) we have A+

∞ ∈ L∞. Thus
∅, A+

∞ ∈ L, which implies A,B 6= ∅ and, hence, 〈A,B〉 is a cut in 〈L, 〉. By (16)
we have {Ax : x ∈ (−∞,∞]} ⊂ L \ {∅} and, by Claim 4.7(a),

⋂
(L \ {∅}) ⊂⋂

x∈(−∞,∞]Ax ⊂
⋂

x∈(−∞,∞](−∞, x) = ∅, which implies A 6= {∅}. Clearly,⋃
A ⊂ C ⊂

⋂
B. (18)

Case 1: A∩Lx0 6= ∅ and B ∩Lx0 6= ∅, for some x0 ∈ (−∞,∞]. Then |Lx0 | > 1,
x0 ∈ M and 〈A ∩ Lx0 ,B ∩ Lx0〉 is a cut in Lx0 satisfying (17). By (a), A =⋃

x<x0
Lx ∪ (A ∩ Lx0) and, consequently,

⋃
A =

⋃
(A ∩ Lx0) ∈ L. Similarly,⋂

B =
⋂

(B ∩ Lx0) ∈ L and, since |
⋂
B \

⋃
A| ≤ 1, by (18) we have C ∈ L. A

contradiction.

Case 2: ¬ Case 1. Then for each x ∈ (−∞,∞] we have Lx ⊂ A or Lx ⊂ B. Since
L = A

.
∪ B, A 6= {∅} and A,B 6= ∅, the sets A′ = {x ∈ (−∞,∞] : Lx ⊂ A}

and B′ = {x ∈ (−∞,∞] : Lx ⊂ B} are non-empty and (−∞,∞] = A′
.
∪ B′.

Since A ≺ B, for x1 ∈ A′ and x2 ∈ B′ we have Lx1 ≺ Lx2 so, by (a), x1 < x2.
Thus 〈A′,B′〉 is a cut in (−∞,∞] and, consequently, there is x0 ∈ (−∞,∞] such
that x0 = maxA′ or x0 = minB′.

Subcase 2.1: x0 = maxA′. Then x0 < ∞ because B 6= ∅ and A =
⋃

x≤x0
Lx

so, by (a),
⋃
A =

⋃
x≤x0

⋃
Lx =

⋃
x<x0

⋃
Lx ∪

⋃
Lx0 =

⋃
Lx0 which, together

with (16) implies ⋃
A =

{
Ax0 if x0 6∈M,
A+

x0
if x0 ∈M.

(19)
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Since B =
⋃

x∈(x0,∞] Lx, we have
⋂
B =

⋂
x∈(x0,∞]

⋂
Lx. By (16)

⋂
Lx = Ax,

so we have
⋂
B = (

⋂
x∈(x0,∞](−∞, x) ∩ J) ∪ (

⋂
x∈(x0,∞]

⋃
y∈M∩(−∞,x)Iy) =

((−∞, x0] ∩ J) ∪
⋃

y∈M∩(−∞,x0]Iy = Ax0 ∪ ({x0} ∩ J) ∪
⋃

y∈M∩{x0}Iy, so

⋂
B =


Ax0 if x0 /∈ J ∧ x0 /∈M,
Ax0 ∪ {x0} if x0 ∈ J ∧ x0 /∈M,
A+

x0
if x0 /∈ J ∧ x0 ∈M,

A+
x0
∪ {x0} if x0 ∈ J ∧ x0 ∈M.

(20)

If x0 6∈ J , then, by (18), (19) and (20), we have
⋃
A =

⋂
B = C ∈ L. A

contradiction.
If x0 ∈ J and x0 6∈ M , then

⋃
A = Ax0 and

⋂
B = Ax0 ∪ {x0}. So, by (18)

and since C 6∈ L we have C =
⋂
B. But, by Claim 4.7(a), x0 = max

⋂
B so, by

Claim 4.6(c), C 6∈ P(A+
∞). A contradiction.

If x0 ∈ J and x0 ∈ M , then
⋃
A = A+

x0
and

⋂
B = A+

x0
∪ {x0}. Again, by

(18) and since C 6∈ L we have C =
⋂
B. By Claim 4.7(b), x0 = max

⋂
B so, by

Claim 4.6(c), C 6∈ P(A+
∞). A contradiction.

Subcase 2.2: x0 = minB′. Then, by (16), Ax0 ∈ Lx0 ⊂ B which, by (a), im-
plies

⋂
B = Ax0 . Since Ax ∈ Lx, for x ∈ (−∞,∞] and A =

⋃
x<x0

Lx we have⋃
A =

⋃
x<x0

⋃
Lx ⊃

⋃
x<x0

Ax =
⋃

x<x0
((−∞, x)∩J)∪

⋃
x<x0

⋃
y∈M∩(−∞,x) Iy

= ((−∞, x0)∩J)∪
⋃

y∈M∩(−∞,x0) Iy = Ax0 soAx0 ⊂
⋃
A ⊂

⋂
B = Ax0 , which

implies C = Ax0 ∈ L. A contradiction. 2

Case II: −∞ 6∈ M 63 ∞. Then L∞ = {max Λ} and the sum Λ + 1 belongs to
Case I. So, there are a maximal chain L in 〈P(D) ∪ {∅},⊂〉 and an isomorphism
f : 〈Λ + 1, <〉 → 〈L,⊂〉. Then A = f(max Λ) ∈ P(D) and L′ = f [Λ] ∼= Λ. By
the maximality of L, L′ is a maximal chain in 〈P(A) ∪ {∅},⊂〉.

Case III: −∞ ∈M . Then Λ =
∑

x∈[−∞,∞] Lx, (L1) and (L2) of Lemma 1.4 hold
and

(L3′) L−∞ is a countable complete linear order with 0L−∞ non-isolated.
Clearly Λ = L−∞ + Λ+, where Λ+ =

∑
x∈(−∞,∞] Lx =

∑
y∈(0,∞] Lln y (here

ln∞ = ∞). Let L′y, y ∈ [−∞,∞], be disjoint linear orders such that L′y ∼= 1, for
y ∈ [−∞, 0], and L′y ∼= Lln y, for y ∈ (0,∞]. Now

∑
y∈[−∞,∞] L

′
y
∼= [−∞, 0] +

Λ+ belongs to Case I or Case II and we obtain a maximal chain L in P(D) ∪ {∅}
and an isomorphism f : 〈[−∞, 0]+Λ+, <〉 → 〈L,⊂〉. Clearly, for A0 = f(0) and
L+ = f [Λ+] we have A0 ∈ L and L+ ∼= Λ+.

By (L3′) and the fact that (b)⇒ (a) for countable Λ’s, P(A0) ∪ {∅} contains a
maximal chain L−∞ ∼= L−∞. Clearly,A0 ∈ L−∞ and L−∞∪L+ ∼= L−∞+Λ+ =
Λ. Suppose that B witnesses that L−∞∪L+ is not a maximal chain in P(D)∪{∅}.
Then either A0  B, which is impossible since L is maximal in P(D) ∪ {∅}, or
B  A0, which is impossible since L−∞ is maximal in P(A0) ∪ {∅}. 2
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5 Maximal chains in P(Bn)

Theorem 5.1 For n ∈ N and each R-embeddable complete linear order L with 0L
non-isolated there is a maximal chain in 〈P(Bn) ∪ {∅},⊂〉 isomorphic to L.

Proof. Let the order on Bn =
⋃

i<nQi =
⋃

i<n{i} ×Q be given by

〈i1, q1〉 < 〈i2, q2〉 ⇔ i1 = i2 ∧ q1 <Q q2.

Clearly, 〈Q, <Q〉 ∼=fi 〈Qi, <〉, where fi(q) = 〈i, q〉, for all q ∈ Q and, hence,
P(Qi) = {{i} × C : C ∈ P(Q)}. If f : Bn ↪→ Bn, then for each i < n the
restriction f |Qi is an isomorphism, thus there is a ji < n such that f [Qi] ⊂ Qji

and, moreover, f [Qi] ∈ P(Qji). Clearly, i1 6= i2 implies ji1 6= ji2 and, thus, we
have

P(Bn) = {
⋃

i<n{i} × Ci : ∀i < n Ci ∈ P(Q)}. (21)

Now, by Theorem 6 of [8], there is a maximal chain L in 〈P(Q) ∪ {∅},⊂〉 isomor-
phic to L. For A ∈ L \ {∅} let

A∗ = ({0} ×A) ∪
⋃

0<i<n{i} ×Q. (22)

By (21) we have L∗ = {A∗ : A ∈ L \ {∅}} ∪ {∅} ⊂ P(Bn) ∪ {∅} and, clearly,
〈L∗,⊂〉 is a chain in 〈P(Bn) ∪ {∅},⊂〉 isomorphic to 〈L,⊂〉 and, hence, to L.
Suppose that some C =

⋃
i<n{i}×Ci ∈ P(Bn) witnesses that L∗ is not a maximal

chain. By (21) and (22)C ⊂
⋂

A∈L\{∅}A
∗ would imply P(Q) 3 C0 ⊂

⋂
(L\{∅}),

which is impossible (L is a maximal chain in P(Q) ∪ {∅} and C0 \ F ∈ P(Q) for
each finite F ⊂ C0). Thus there is an A ∈ L \ {∅} such that A∗ ⊂ C and, by (22),

C = {0} × C0 ∪
⋃

0<i<n{i} ×Q. (23)

Since L∗ ∪ {C} is a chain, for each A ∈ L \ {∅} we have A∗ ( C ∨ C ( A∗

which together with (22) and (23) implies A ( C0 or C0 ( A. A contradiction to
the maximality of L. 2

Theorem 5.2 For eachR-embeddable complete linear orderLwith 0L non-isolated
there is a maximal chain in 〈P(Bω) ∪ {∅},⊂〉 isomorphic to L.

Proof. Let x0 =∞, let 〈xn : n ∈ N〉 be a descending sequence in R \Q without a
lower bound and let Bω = 〈Q, <ω〉 =

⋃
i∈ω〈(xi+1, xi) ∩Q, <i〉 where

q1 <ω q2 ⇔ ∃i ∈ ω (q1, q2 ∈ (xi+1, xi) ∧ q1 <Q q2).

Then for the sets Qi = (xi+1, xi) ∩Q, i ∈ ω, we have 〈Qi, <i〉 ∼= 〈Q, <Q〉, which
implies P(Qi, <i) ∼= P(Q, <Q). As in the proof of Theorem 5.1 we obtain

P(Bω) = {
⋃

i∈S Ci : S ∈ [ω]ω ∧ ∀i ∈ S Ci ∈ P(Qi)}. (24)
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Let L be a linear order with the given properties and, first, let |L| = ω. Clearly
the family Dense(Qi) of dense subsets of Qi is a subset of P(Qi) and by (24) we
have P = {

⋃
i∈ω Ci : ∀i ∈ ω Ci ∈ Dense(Qi)} ⊂ P(Bω). It is easy to check

that P is a positive family on Q so, by Theorem 2.2(b), there is a maximal chain in
〈P(Bω) ∪ {∅},⊂〉 isomorphic to L.

Now, let |L| > ω. Then, by Lemma 1.4, we can assume thatL =
∑

x∈[−∞,∞] Lx,
where conditions (L1-L3) from Lemma 1.4 are satisfied. We distinguish two cases.

Case 1: −∞ /∈ M . Then, by the construction from [8] (if (0, 1] is replaced by
(−∞,∞] and A+

1 by Q), there is a maximal chain L in 〈P(Q) ∪ {∅},⊂〉 such that

∀A ∈ L \ {∅} ∃x ∈ (−∞,∞] (A ⊂ (−∞, x) ∧ A is dense in (−∞, x)) (25)

and L ∼= L. Now we prove

L \ {∅} ⊂ P(Bω) ⊂ P(Q, <Q). (26)

Let A ∈ L \ {∅}, let x be the real corresponding to A in the sense of (25) and let
i0 = min{i ∈ ω : (−∞, x) ∩ (xi+1, xi) 6= ∅}. Then xi0+1 < x ≤ xi0 and, by
(25) the set Ci0 = A ∩ (xi0+1, x) is dense in (xi0+1, x) and, hence, Ci0 ∈ P(Qi0).
Similarly, Ci = A ∩ (xi+1, xi) ∈ P(Qi), for all i > i0. Since A ⊂ Q, we have
A =

⋃
i≥i0 Ci and, by (24), A ∈ P(Bω). So the first inclusion of (26) is proved.

Let C =
⋃

i∈S Ci ∈ P(Bω). By (24) for each i ∈ S we have Ci
∼= Qi

∼= Q
and, hence, C ∼=

∑
ω∗ Q ∼= Q. The second inclusion of (26) is proved as well.

By (26) we have L ⊂ P(Bω)∪{∅} ⊂ P(Q, <Q)∪{∅} and, clearly, L is a chain
in P(Bω)∪{∅}. Suppose that L∪{C} is a chain, for some C ∈ (P(Bω)∪{∅})\L.
Then, by (26), C ∈ P(Q, <Q) and L would not be a maximal chain in the poset
〈P(Q, <Q) ∪ {∅},⊂〉. So L is a maximal chain in 〈P(Bω) ∪ {∅},⊂〉 and L ∼= L.

Case 2: −∞ ∈M . Then we proceed as in (III) of the proof of Theorem 4.1. 2

6 Maximal chains in P(Cn)

Theorem 6.1 For all n ∈ N and each R-embeddable complete linear order L with
0L non-isolated there is a maximal chain in 〈P(Cn) ∪ {∅},⊂〉 isomorphic to L.

Proof. Let the order < on Cn = Q × n be given by 〈q1, i1〉 < 〈q2, i2〉 ⇔ q1 <Q
q2. Clearly, the incomparability relation a‖b ⇔ a ≮ b ∧ b ≮ a on Cn is an
equivalence relation with the equivalence classes {q} × n, q ∈ Q, of size n and
the corresponding quotient, Cn/‖, is isomorphic to 〈Q, <Q〉. Since each element
of P(Cn) has such classes we have P(Cn) = {A × n : A ∈ P(Q, <Q)}. It is
easy to see that the mapping f : P(Q, <Q) ∪ {∅} → P(Cn) ∪ {∅}, given by
f(A) = A×n, is an isomorphism between the partial orders 〈P(Q, <Q)∪{∅},⊂〉
and 〈P(Cn) ∪ {∅},⊂〉. Hence, the statement follows from Theorem 6 of [8]. 2

Theorem 6.2 For eachR-embeddable complete linear orderLwith 0L non-isolated
there is a maximal chain in 〈P(Cω) ∪ {∅},⊂〉 isomorphic to L.
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Proof. Let the strict order < on Cω = Q × ω =
⋃

q∈Q{q} × ω =
⋃

q∈Q ωq

be given by 〈q1, i1〉 < 〈q2, i2〉 ⇔ q1 <Q q2. For a set X ⊂ Cω let us define
suppX = {q ∈ Q : X ∩ ωq 6= ∅}. Now the incomparability classes ωq are infinite
and, again, the corresponding quotient, Cω/‖, is isomorphic to the rational line
〈Q, <Q〉. Since the same holds for the copies of Cω it is easy to check that

P(Cω) = {
⋃

q∈A{q} × Cq : A ∈ P(Q, <Q) ∧ ∀q ∈ A (Cq ∈ [ω]ω)}. (27)

X ⊂ Cω ∧ max suppX exists ⇒ X /∈ P(Cω). (28)

By (27), P = {
⋃

q∈Q{q} × Cq : ∀q ∈ Q (Cq ∈ [ω]ω)} ⊂ P(Cω) and, clearly, P is
a positive family, so for a countable L the statement follows from Theorem 2.2(b).

Now, letL be an uncountable linear order. Then, by Lemma 1.4, we can assume
that L =

∑
x∈[−∞,∞] Lx, where conditions (L1-L3) from Lemma 1.4 are satisfied.

Case I: −∞ 6∈ M 3 ∞. Let Q =
⋃

y∈M Jy be a partition of Q into |M | disjoint
dense sets and, for y ∈ M , let Iy ∈ [Jy ∩ (−∞, y)]|Ly |−1. Let (−∞, x)Q =
(−∞, x) ∩Q and ω+ = ω \ {0}. Let us define A−∞ = ∅ and, for x ∈ (−∞,∞],

Ax = ((−∞, x)Q × ω+) ∪
⋃

y∈M∩(−∞,x) Iy × {0},

A+
x = Ax ∪ (Ix × {0}), for x ∈M.

By (27), A+
∞
∼= Cω and we will construct a maximal chain L ∼= L in the poset

〈P(A+
∞)∪ {∅},⊂〉. By (27), for each x ∈ (−∞,∞] and each set A ⊂ Cω we have

(−∞, x)Q × ω+ ⊂ A ⊂ (−∞, x)Q × ω ⇒ A ∈ P(Cω). (29)

Claim 6.3 The sets Ax, x ∈ [−∞,∞] and A+
x , x ∈ M are subsets of the set A+

∞.
In addition, for each x, x1, x2 ∈ [−∞,∞] we have

(a) Ax ⊂ (−∞, x)Q × ω;
(b) A+

x ⊂ (−∞, x)Q × ω, if x ∈M ;
(c) x1 < x2 ⇒ Ax1  Ax2 ;
(d) M 3 x1 < x2 ⇒ A+

x1
 Ax2 ;

(e) |A+
x \Ax| = |Lx| − 1, if x ∈M ;

(f) Ax ∈ P(A+
∞), for each x ∈ (−∞,∞].

(g) A+
x ∈ P(A+

∞) and [Ax, A
+
x ]P(A+

∞) = [Ax, A
+
x ]P (A+

x ), for each x ∈M .

Proof. Statements (c) and (d) are true since Q is a dense subset of R; (a), (b) and
(e) follow from the definitions of Ax and A+

x and the choice of the sets Iy. Since
(−∞, x)Q × ω+ ⊂ Ax ⊂ A+

x ⊂ (−∞, x)Q × ω, (f) and (g) follow from (29). 2

Now, for x ∈ [−∞,∞] we define chains Lx ⊂ P(A+
∞)∪{∅} in the following way.

For x 6∈M we define Lx = {Ax}. In particular, L−∞ = {∅}.
For x ∈ M , by Claim 6.3 and Lemma 3.5 there is a set Lx ⊂ [Ax, A

+
x ]P (A+

x )

such that 〈Lx, 〉 ∼= 〈Lx, <x〉 and

Ax, A
+
x ∈ Lx ⊂ [Ax, A

+
x ]P(A+

∞), (30)
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⋃
A,
⋂
B ∈ Lx and |

⋂
B \

⋃
A| ≤ 1, for each cut 〈A,B〉 in Lx. (31)

For A,B ⊂ P(A+
∞) we will write A ≺ B iff A  B, for each A ∈ A and B ∈ B.

Claim 6.4 Let L =
⋃

x∈[−∞,∞] Lx. Then
(a) If −∞ ≤ x1 < x2 ≤ ∞, then Lx1 ≺ Lx2 and

⋃
Lx1 ⊂ Ax2 ⊂

⋃
Lx2 .

(b) L is a chain in 〈P(A+
∞) ∪ {∅},⊂〉 isomorphic to L =

∑
x∈[−∞,∞] Lx.

(c) L is a maximal chain in 〈P(A+
∞) ∪ {∅},⊂〉.

Proof. The proof of (a) and (b) is a copy of the proof of (a) and (b) of Claim 4.8, if
we replace (16) and Claim 4.7 by (30) and Claim 6.3.

(c) Suppose that C ∈ P(A+
∞) ∪ {∅} witnesses that L is not maximal. Using

(30) and Claim 6.3, as in the proof of Claim 4.8(c) for A = {A ∈ L : A  C} and
B = {B ∈ L : C  B} we show that 〈A,B〉 is a cut in 〈L, 〉, A 6= {∅} and⋃

A ⊂ C ⊂
⋂
B. (32)

Case 1: A ∩ Lx0 6= ∅ and B ∩ Lx0 6= ∅, for some x0 ∈ (−∞,∞]. Then we obtain
a contradiction exactly like in Claim 4.8.

Case 2: ¬ Case 1. Then like in Claim 4.8 forA′ = {x ∈ (−∞,∞] : Lx ⊂ A} and
B′ = {x ∈ (−∞,∞] : Lx ⊂ B} we show that 〈A′,B′〉 is a cut in (−∞,∞]. Thus,
there is x0 ∈ (−∞,∞] such that x0 = maxA′ or x0 = minB′.

Subcase 2.1: x0 = maxA′. Then like in Claim 4.8 we prove

⋃
A =

{
Ax0 if x0 6∈M,
A+

x0
if x0 ∈M.

(33)

Since B =
⋃

x∈(x0,∞] Lx, we have
⋂
B =

⋂
x∈(x0,∞]

⋂
Lx. By (30)

⋂
Lx = Ax,

so
⋂
B = (

⋂
x∈(x0,∞](−∞, x)Q × ω+) ∪ (

⋂
x∈(x0,∞]

⋃
y∈M∩(−∞,x)Iy × {0}) =

((−∞, x0]Q × ω+) ∪
⋃

y∈M∩(−∞,x0]Iy × {0} = Ax0 ∪ (({x0} ∩ Q) × ω+) ∪⋃
y∈M∩{x0}Iy × {0}, so

⋂
B =


Ax0 if x0 /∈ Q ∧ x0 /∈M,
Ax0 ∪ ({x0} × ω+) if x0 ∈ Q ∧ x0 /∈M,
A+

x0
if x0 /∈ Q ∧ x0 ∈M,

A+
x0
∪ ({x0} × ω+) if x0 ∈ Q ∧ x0 ∈M.

(34)

If x0 6∈ Q then by (32-34), we have
⋃
A =

⋂
B = C ∈ L, a contradiction.

If x0 ∈ Q and x0 6∈M , then
⋃
A = Ax0 and

⋂
B = Ax0 ∪ ({x0} × ω+). So,

by (32) and since C 6∈ L we have C = Ax0 ∪ S, where ∅ 6= S ⊂ {x0} × ω+. By
Claim 6.3(a), x0 = max suppC, so by (28), C 6∈ P(A+

∞). This is a contradiction.
If x0 ∈ Q and x0 ∈ M , then

⋃
A = A+

x0
and

⋂
B = A+

x0
∪ ({x0} × ω+).

Again, by (32) and sinceC 6∈ Lwe haveC = Ax0∪S, where ∅ 6= S ⊂ {x0}×ω+.
By Claim 6.3(b), x0 = max suppC so, by (28), C 6∈ P(A+

∞), a contradiction.
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Subcase 2.2: x0 = minB′. Then, by (30), Ax0 ∈ Lx0 ⊂ B which, by (a), implies⋂
B = Ax0 . Since Ax ∈ Lx, for all x ∈ (−∞,∞] and A =

⋃
x<x0

Lx we have⋃
A ⊃

⋃
x<x0

Ax =
⋃

x<x0
((−∞, x)Q×ω+)∪

⋃
x<x0

⋃
y∈M∩(−∞,x) Iy×{0} =

((−∞, x0)Q×ω+)∪
⋃

y∈M∩(−∞,x0) Iy×{0} = Ax0 soAx0 ⊂
⋃
A ⊂

⋂
B = Ax0 ,

which implies C = Ax0 ∈ L. This is a contradiction. 2

Case II: −∞ 6∈M 63 ∞ or −∞ ∈M . Then we proceed like in Cases II and III of
Theorem 4.1. 2
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