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Abstract

The partial order 〈E(R) ∪ {∅},⊂〉, where E(R) is the set of isomorphic
subgraphs of the Rado graph R, is investigated. The order types of maximal
chains in this poset are characterized as the order types of compact sets of
reals having the minimum non-isolated.
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1 Preliminaries

The countable random graph (the Rado graph) introduced by Erdös and Rényi [3]
(see also [1]) is, up to isomorphism, the unique countable graph 〈R, ρ〉 such that
for arbitrary finite disjoint subsets H and K of R the set

RH∪KH = {r ∈ R \ (H ∪K) : ∀h ∈ H {r, h} ∈ ρ ∧ ∀k ∈ K {r, k} 6∈ ρ}

is non-empty. By E(R, ρ), or E(R), we denote the collection of all sets A ⊂ R
such that the structure 〈A, ρ ∩ [A]2〉, shortly denoted by 〈A, ρ〉, is a random graph,
which, by the uniqueness of the Rado graph, means that 〈A, ρ〉 ∼= 〈R, ρ〉.

The object of our study is the partial order 〈E(R),⊂〉. It is easy to see that it is
a chain complete non-atomic suborder of the partial order 〈[R]ω,⊂〉 and the aim of
the paper is to find one of its order-invariants - the class of order types of maximal
chains in the poset 〈E(R),⊂〉. When, instead of the Rado graph, the rational line
is in question, the corresponding class is the class of order types of linear orders of
the form K \{minK}, where K is a compact set of reals with minK non-isolated
[7]. Our main result, Theorem 2, shows that the same holds for the Rado graph.

We note that analogous characterizations were obtained for: the interval algebra
Intalg[0, 1)R (dense σ-compact subsets of [0, 1]R containing 0 and 1; Koppelberg
[4]), the power set algebra P (κ) (the orders of initial segments 〈Init(L),⊂〉, for
linear orders L of size κ; Kuratowski [5]), <κ-complete atomic Boolean algebras
(<κ-complete linear orders having 0,1 and dense jumps; Day [2]). We will use the
following characterization provided by Kuratowski’s and Day’s results (see [6]).

Fact 1. An infinite linear order L is isomorphic to a maximal chain in P (ω) iff L
is R-embeddable and Boolean.
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We will also use the following characterization from [7]. We recall that a family
P ⊂ P (ω) is called a positive family iff: (P1) ∅ /∈ P; (P2) P 3 A ⊂ B ⊂ ω ⇒
B ∈ P; (P3) A ∈ P ∧ |F | < ω ⇒ A\F ∈ P; (P4) ∃A ∈ P |ω\A| = ω.

Theorem 1. Let P ⊂ P (ω) be a positive family. A linear order L is isomorphic to
a maximal chain L in the poset 〈P ∪ {∅},⊂〉 satisfying

⋂
(L \ {∅}) = ∅ iff L is an

R-embeddable Boolean linear order with 0L non-isolated.

A few words on notation and terminology. If 〈P,≤〉 is a partial order, then the
smallest and the largest element of P are denoted by 0P and 1P ; the intervals
(x, y)P , [x, y]P , (−∞, x)P etc. are defined in the usual way. A set D ⊂ P is dense
iff for each p ∈ P there is q ∈ D such that q ≤ p. G ⊂ P is a filter iff (F1) for
each p, q ∈ G there is r ∈ G such that r ≤ p, q and (F2) G 3 p ≤ q implies q ∈ G.

A pair 〈A,B〉 is a cut in a linear order 〈L,<〉 iff L = A
.
∪ B, A,B 6= ∅ and

a < b, for each a ∈ A and b ∈ B. A cut 〈A,B〉 is a gap iff neither maxA nor minB
exist. 〈L,<〉 is called: complete iff it has 0 and 1 and has no gaps; R-embeddable
iff it is isomorphic to a subset of R; Boolean iff it is complete and has dense jumps
(if x < y, then there are a, b such that x ≤ a < b ≤ y and (a, b)L = ∅). If
〈I,<I〉 and 〈Li, <i〉, i ∈ I , are linear orders and Li ∩Lj = ∅, whenever i 6= j, the
corresponding lexicographic sum

∑
i∈I Li is the linear order 〈

⋃
i∈I Li, <〉, where

x < y ⇔ ∃i ∈ I (x, y ∈ Li ∧ x <i y) ∨ ∃i, j ∈ I (i <I j ∧ x ∈ Li ∧ y ∈ Lj).
The following facts will be used in our construction as well.

Fact 2. If 〈L,<〉 is an at most countable complete linear order, it is Boolean.

Proof. Let x, y ∈ L and x < y. Suppose that for each a, b ∈ [x, y]L satisfying
a < b we have (a, b)L 6= ∅. Then [x, y]L would be a dense complete linear order,
which is impossible because L is countable. Thus L has dense jumps. 2

Fact 3. Let 〈R, ρ〉 be a countable random graph. Then:
(a) R \ F ∈ E(R), for each finite subset F of R;
(b) If R = X1 ∪X2 ∪ . . .∪Xk is a partition, then Xi ∈ E(R) for some i ≤ k;
(c) Each countable graph can be embedded in R;
(d) E(R) contains a positive subfamily of P (R);
(e) If L is a chain in E(R), then

⋃
L ∈ E(R).

Proof. Proofs of (a)-(c) can be found in [1].
(d) By (c) R contains a copy of the countable complete graph, Kℵ0 . Let P =

{A ⊂ R : R \ Kℵ0 ⊂∗ A} (where X ⊂∗ Y ⇔ |X \ Y | < ℵ0). If A ∈ P ,
then R \ A ⊂∗ Kℵ0 and, hence R \ A 6∈ E(R), which by (b) implies A ∈ E(R).
Thus P ⊂ E(R). P is a filter in P (R) containing all cofinite subsets of R and the
coinfinite set R \Kℵ0 so it is a positive family.

(e) If H and K are disjoint finite subsets of
⋃
L, then H,K ⊂ L, for some

L ∈ L and, hence, RH∪KH intersects L and
⋃
L as well. 2
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Lemma 1. Let L be an at most countable complete linear order, A,B ∈ E(R),
A ⊂ B, |B \ A| = |L| − 1 and [A,B]E(R) = [A,B]P (B). Then there is a chain
L in [A,B]E(R) satisfying A,B ∈ L ∼= L and such that

⋃
A,
⋂
B ∈ L and

|
⋂
B \

⋃
A| ≤ 1, for each cut 〈A,B〉 in L.

Proof. If |B \ A| is a finite set, say B = A ∪ {a1, . . . an}, then |L| + 1 and
L = {A,A ∪ {a1}, A ∪ {a1, a2}, . . . , B} is a chain with the desired properties.

If |B \ A| = ℵ0, then L is a countable and, hence, R-embeddable complete
linear order. By Fact 2 L is a Boolean order and, by Fact 1, there is a maximal chain
L1 in P (B \A) isomorphic to L. Let L = {A∪C : C ∈ L1}. Since ∅, B \A ∈ L1
we have A,B ∈ L and the function f : L1 → L, defined by f(C) = A ∪ C,
witnesses that 〈L1, 〉 ∼= 〈L, 〉 so L is isomorphic to L. For each cut 〈A,B〉
in L1 we have

⋃
A ⊂

⋂
B and, by the maximality of L1,

⋃
A,
⋂
B ∈ L1 and

|
⋂
B \

⋃
A| ≤ 1. Clearly, the same is true for each cut in L. 2

2 Maximal chains of copies of the Rado graph

Theorem 2. If R is a random graph, then for each linear order L the following
conditions are equivalent:

(a) L is isomorphic to a maximal chain in the poset 〈E(R) ∪ {∅},⊂〉;
(b) L is an R-embeddable complete linear order with 0L non-isolated;
(c) L is isomorphic to a compact set K ⊂ [0, 1]R such that 0 ∈ K ′ and 1 ∈ K.

Proof. The equivalence (b)⇔ (c) is proved in Theorem 6 of [7].
(a)⇒ (b) Let L be a maximal chain in 〈E(R)∪{∅},⊂〉 and R = {qn : n ∈ ω}

an enumeration. Since L ⊂ [R]ω ∪ {∅}, the function f : L → R defined by
f(A) =

∑
n∈ω 2

−n ·χA(qn) (where χA : R→ {0, 1} is the characteristic function
of the set A ⊂ R) is an embedding of L into R. Thus 〈L,⊂〉 is R-embeddable.

Clearly, minL = ∅ and maxL = R. Let 〈A,B〉 be a cut in L. If A = {∅}
then maxA = ∅. If A 6= {∅}, by Fact 3(e) we have

⋃
A ∈ E(R) and, since

A ⊂
⋃
A ⊂ B, for eachA ∈ A andB ∈ B, the maximality of L implies

⋃
A ∈ L.

So, if
⋃
A ∈ A then maxA =

⋃
A. Otherwise

⋃
A ∈ B and minB =

⋃
A. Thus

〈L,⊂〉 is complete. Suppose that A is the successor of ∅ in L. By Fact 3(b) there
is B ∈ E(R) such that B  A. A contradiction to the maximality of L.

(b)⇒ (a) First we prove this implication for countable L. Let P ⊂ E(R) be a
positive family in P (R) (see Fact 3(d)). Then, by Fact 2, L is a Boolean order and,
by Theorem 1, in the poset 〈P ∪ {∅},⊂〉 there is a maximal chain L isomorphic
to L and such that

⋂
(L \ {∅}) = ∅. Since P ⊂ E(R), L is a chain in the poset

〈E(R) ∪ {∅},⊂〉 and it remains to be proved that it is maximal. Suppose that
L ∪ {A} is a chain, where A ∈ E(R) \ L. Then A  S or S  A, for each
S ∈ L \ {∅} and, since

⋂
(L \ {∅}) = ∅, there is S ∈ L \ {∅} such that S ⊂ A,

which implies A ∈ P . But L \ {∅} is a maximal chain in P . A contradiction.
In the sequel we prove (b)⇒ (a) for uncountable L.
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Claim 1. L ∼=
∑

x∈[−∞,∞] Lx, where
(i) Lx, x ∈ [−∞,∞], are at most countable complete linear orders,
(ii) The set M = {x ∈ [−∞,∞] : |Lx| > 1} is at most countable,
(iii) |L−∞| = 1 or 0L−∞ is non-isolated.

Proof. L =
∑

i∈I Li, where Li are the equivalence classes corresponding to the
condensation relation ∼ on L given by: x ∼ y ⇔ |[min{x, y},max{x, y}]| ≤ ℵ0
(see [8]). Since L is complete and R-embeddable I is too and, since the cofinalities
and coinitialities of Li’s are countable, I is a dense linear order; so I ∼= [0, 1] ∼=
[−∞,∞]. Hence Li’s are complete and, since minLi ∼ maxLi, countable. If
|Li| > 1, then Li is not dense (otherwise we would have |Li| = c) and, hence, Li
contains a jump so, L ↪→ R implies |M | ≤ ℵ0. 2

(I): |L−∞| = 1. First we construct a set ρ ⊂ [Q]2 such that 〈Q, ρ〉 is a random
graph. Let (0, 1) ∩ Q = J ∪

⋃
y∈M Jy be a partition of the set (0, 1) ∩ Q into

|M | + 1 disjoint sets, dense in (0, 1) ∩ Q. (See e.g. [9], p. 216.) Let Z denote
the set of integers and let us define I = {q + m : q ∈ J ∧ m ∈ Z} ∪ Z and
JZy = {q +m : q ∈ Jy ∧m ∈ Z}, for y ∈M . Then, clearly, we have

Claim 2. {I}∪{JZy : y ∈M} is a partition ofQ consisting of dense subsets ofQ.

In our construction of ρ we will use the poset 〈P,⊃〉, where P is the set of finite
partial functions p from [Q]2 to 2 = {0, 1} such that for each a, b ∈ Q

〈{a, b}, 1〉, 〈{a+ 1, b}, 1〉 ∈ p ⇒ b > a+ 1. (1)

Claim 3. D{q,r} = {p ∈ P : {q, r} ∈ dom(p)}, {q, r} ∈ [Q]2, are dense sets in P.

Proof. If p ∈ P \ D{q,r}, then p1 = p ∪ {〈{q, r}, 0〉} ∈ Fn([Q]2, 2) and we check
(1). If 〈{a, b}, 1〉, 〈{a + 1, b}, 1〉 ∈ p1, then, clearly, both pairs belong to p and,
since p ∈ P, we have b > a+ 1. So p1 ∈ D{q,r} and p1 ⊃ p. 2

Let C = {〈K,L〉 : K,L ∈ [Q]<ω ∧ K ∩ L = ∅} and, for each 〈K,L〉 ∈ C, let
mK,L = max(K ∪ L).

Claim 4. For each 〈K,L〉 ∈ C and m ∈ ω the set DK,L,m is dense in P, where

DK,L,m = {p ∈ P : ∃q ∈ I ∩ (mK,L,mK,L + 1
m)

∀r ∈ K ∀s ∈ L 〈{q, r}, 1〉, 〈{q, s}, 0〉 ∈ p}.

Proof. Let 〈K,L〉 ∈ C, m ∈ ω and p = {〈{pi, qi}, ki〉 : i < n} ∈ P. Since
the set S = K ∪ L ∪

⋃
i<n{pi, qi, pi + 1, qi + 1, pi − 1, qi − 1} is finite and, by

Claim 2, I is a dense subset of Q, there is q ∈ I ∩ (mK,L,mK,L + 1
m)) \ S. We

show that p1 = p ∪ {〈{q, r}, 1〉 : r ∈ K} ∪ {〈{q, s}, 0〉 : s ∈ L} ∈ P. Since
q 6∈ K∪L we have p1 ⊂ [Q]2×2. Suppose that 〈{a, b}, 0〉, 〈{a, b}, 1〉 ∈ p1. Then,
since p is a function, either one of the pairs is new, which is impossible because
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q 6∈
⋃

dom(p), or both of them are new, and, hence, there are r ∈ K and s ∈ L
such that {q, r} = {q, s}, which implies r = s. But this is impossible, because
K ∩ L = ∅. Thus p1 is a function and we check that it satisfies (1). Suppose that

〈{a, b}, 1〉, 〈{a+ 1, b}, 1〉 ∈ p1 ∧ b ≤ a+ 1. (2)

Then, since p ∈ P, at least one of the two pairs does not belong to p and, hence
q ∈ {a, a+ 1, b} so we have the following three cases.

q = a. Then by (2) we have b 6= q and 〈{q + 1, b}, 1〉 ∈ p1, which implies
〈{q + 1, b}, 1〉 ∈ p and, hence, q = (q + 1)− 1 ∈ S, a contradiction.

q = a+ 1. Then by (2) we have b 6= q and 〈{q − 1, b}, 1〉 ∈ p1, which implies
〈{q − 1, b}, 1〉 ∈ p and, hence, q = (q − 1) + 1 ∈ S, a contradiction.

q = b. Then by (2) we have 〈{a, q}, 1〉, 〈{a+ 1, q}, 1〉 ∈ p1 \ p, which implies
that a, a + 1 ∈ K. Since q > mK,L we have q > a + 1, that is b > a + 1. A
contradiction again. 2

Since |[Q]2| = |C| = ℵ0, by the Rasiowa-Sikorski theorem there is a filter G in P
intersecting the sets D{q,r}, {q, r} ∈ [Q]2, and DK,L,m, 〈K,L〉 ∈ C, m ∈ ω.

Claim 5. (a) f =
⋃
p∈G p is a function from [Q]2 to 2.

(b) Let ρ = f−1[{1}]. If I ⊂ A ⊂ Q then 〈A, ρ ∩ [A]2〉 is a random graph. In
particular, 〈Q, ρ〉 is a random graph and A ∈ E(Q, ρ).

(c) If C ⊂ Q, maxC = a and a− 1 ∈ C, then C 6∈ E(Q, ρ).

Proof. (a) Clearly we have f ⊂ [Q]2 × 2 and, since G is a filter, its elements are
compatible thus f is a function. If {q, r} ∈ [Q]2, then there is p ∈ G ∩ D{q,r} and,
hence, {q, r} ∈ dom(p) ⊂ dom(f). So dom(f) = [Q]2.

(b) Let I ⊂ A ⊂ Q and let K and L be finite disjoint subsets of A. Then
〈K,L〉 ∈ C and, by the choice of G, there is p ∈ G ∩ DK,L,1. Hence there exists
q ∈ I ∩ (mK,L,mK,L + 1) ⊂ A such that 〈{q, r}, 1〉 ∈ p ⊂ f , that is {q, r} ∈ ρ,
for each r ∈ K and 〈{q, s}, 0〉 ∈ p ⊂ f , that is {q, s} 6∈ ρ, for each s ∈ L.

(c) Suppose that b ∈ C and {a − 1, b}, {a, b} ∈ ρ, that is 〈{a − 1, b}, 1〉,
〈{a, b}, 1〉 ∈ f . Then these pairs are in some p1, p2 ∈ G and, since G is a filter,
there is p ∈ G such that p1, p2 ⊂ p. Consequently, p contains these pairs, which,
by (1) implies b > a. But this is impossible, because a = maxC and b ∈ C. 2

For y ∈M let us take Iy ∈ [JZy ∩ (−∞, y)]|Ly |−1 and define A−∞ = ∅ and

Ax = (I ∩ (−∞, x)) ∪
⋃
y∈M∩(−∞,x)Iy, for x ∈ (−∞,∞];

A+
x = Ax ∪ Ix, for x ∈M.

We split the proof for the case (I) considering two subcases: ∞ ∈M and∞ 6∈M .

(I.I):∞ ∈M . Since I ⊂ A+
∞ ⊂ Q, by Claim 5(b) 〈A+

∞, ρ〉 is a random graph.
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Claim 6. The sets Ax, x ∈ [−∞,∞] and A+
x , x ∈ M are subsets of the set A+

∞
and of Q. In addition, for each x, x1, x2 ∈ [−∞,∞] we have

(a) Ax ⊂ (−∞, x);
(b) A+

x ⊂ (−∞, x), if x ∈M ;
(c) x1 < x2 ⇒ Ax1  Ax2 ;
(d) M 3 x1 < x2 ⇒ A+

x1  Ax2 ;
(e) |A+

x \Ax| = |Lx| − 1, if x ∈M .

Proof. (c) and (d) are true since I is a dense subset ofQ (Claim 2). The rest follows
from the definitions of Ax and A+

x and the choice of the sets Iy. 2

Claim 7. (a) Ax ∈ E(A+
∞, ρ), for each x ∈ (−∞,∞]. Moreover, A ∈ E(A+

∞, ρ),
whenever I ∩ (−∞, x) ⊂ A ⊂ Ax.

(b) A+
x ∈ E(A+

∞, ρ) and [Ax, A
+
x ]E(A+

∞,ρ)
= [Ax, A

+
x ]P (A+

x ), for each x ∈M .
Moreover, A ∈ E(A+

∞, ρ), whenever I ∩ (−∞, x) ⊂ A ⊂ A+
x .

Proof. (a) Let K and L be finite and disjoint subsets of A. By Claim 6(a) we have
K,L ⊂ Ax ⊂ (−∞, x), which implies mK,L < x and, clearly, there is m > 0
such that (mK,L,mK,L + 1

m) ⊂ (−∞, x) and, hence,

I ∩ (mK,L,mK,L + 1
m) ⊂ I ∩ (−∞, x) ⊂ A. (3)

Let p ∈ G ∩ DK,L,m. Then there is q ∈ I ∩ (mK,L,mK,L + 1
m) such that for each

r ∈ K we have 〈{q, r}, 1〉 ∈ p ⊂ f and, hence, {q, r} ∈ ρ and for each s ∈ L we
have 〈{q, s}, 0〉 ∈ p ⊂ f and, hence, {q, s} 6∈ ρ. By (3) we have q ∈ A.

(b) By Claim 6(b) A+
x ⊂ (−∞, x) and we proceed as in the proof of (a). 2

Now we define chains Lx ⊂ E(A+
∞, ρ) ∪ {∅}, x ∈ [−∞,∞] as follows.

For x ∈ [−∞,∞] \M we define Lx = {Ax}. In particular, L−∞ = {∅}.
For x ∈M , by (a) and (b) of Claim 7 we have Ax, A+

x ∈ E(A+
∞, ρ), by Claim

6(e), |A+
x \Ax| = |Lx|−1 and, by Claim 7(b), [Ax, A+

x ]E(A+
∞,ρ)

= [Ax, A
+
x ]P (A+

x ).
So, since Lx is a complete linear order, by Lemma 1, there is a set Lx ⊂ E(A+

∞, ρ)
such that 〈Lx, 〉 ∼= 〈Lx, <x〉 and

Ax, A
+
x ∈ Lx ⊂ [Ax, A

+
x ]E(A+

∞,ρ)
, (4)⋃

A,
⋂
B ∈ Lx and |

⋂
B \

⋃
A| ≤ 1, for each cut 〈A,B〉 in Lx. (5)

For A,B ⊂ E(A+
∞) we will write A C B iff A  B, for each A ∈ A and B ∈ B.

Claim 8. Let L =
⋃
x∈[−∞,∞] Lx. Then

(a) If −∞ ≤ x1 < x2 ≤ ∞, then Lx1 C Lx2 and
⋃
Lx1 ⊂ Ax2 ⊂

⋃
Lx2 .

(b) L is a chain in 〈E(A+
∞) ∪ {∅},⊂〉 isomorphic to L =

∑
x∈[−∞,∞] Lx.

Proof. (a) Let A ∈ Lx1 and B ∈ Lx2 . If x1 ∈ (−∞,∞] \M , then, by (4) and
Claim 6(c) we have A = Ax1  Ax2 ⊂ B. If x1 ∈ M , then, by (4) and Claim
6(d), A ⊂ A+

x1  Ax2 ⊂ B. The second statement follows from Ax2 ∈ Lx2 .
(b) By (a), 〈[−∞,∞], <〉 ∼= 〈{Lx : x ∈ [−∞,∞]},C〉. Since Lx ∼= Lx, for

x ∈ [−∞,∞], we have 〈L, 〉 ∼=
∑

x∈[−∞,∞]〈Lx, 〉 ∼=
∑

x∈[−∞,∞] Lx = L. 2
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Claim 9. L is a maximal chain in 〈E(A+
∞, ρ) ∪ {∅},⊂〉.

Proof. Suppose that C ∈ E(A+
∞, ρ)∪{∅} witnesses that L is not maximal. Clearly

L = A∪̇B and A C B, where A = {A ∈ L : A  C} and B = {B ∈ L : C  
B}. Now ∅ ∈ L−∞ and, since ∞ ∈ M , by (4) we have A+

∞ ∈ L∞. Thus
∅, A+

∞ ∈ L, which implies A,B 6= ∅ and, hence, 〈A,B〉 is a cut in 〈L, 〉. By
(4) we have {Ax : x ∈ (−∞,∞]} ⊂ L \ {∅} and, by Claim 6(a),

⋂
(L \ {∅}) ⊂⋂

x∈(−∞,∞]Ax ⊂
⋂
x∈(−∞,∞](−∞, x) = ∅, which implies A 6= {∅}. Clearly,⋃

A ⊂ C ⊂
⋂
B. (6)

Case 1: A∩Lx0 6= ∅ and B ∩Lx0 6= ∅, for some x0 ∈ (−∞,∞]. Then |Lx0 | > 1,
x0 ∈ M and 〈A ∩ Lx0 ,B ∩ Lx0〉 is a cut in Lx0 satisfying (5). By Claim 8(a),
A =

⋃
x<x0

Lx∪(A∩Lx0) and, consequently,
⋃
A =

⋃
(A∩Lx0) ∈ L. Similarly,⋂

B =
⋂
(B ∩ Lx0) ∈ L and, since |

⋂
B \

⋃
A| ≤ 1, by (6) we have C ∈ L. A

contradiction.

Case 2: ¬ Case 1. Then for each x ∈ (−∞,∞] we have Lx ⊂ A or Lx ⊂ B. Since
L = A

.
∪ B,A 6= {∅} andA,B 6= ∅, the setsA′ = {x ∈ (−∞,∞] : Lx ⊂ A} and

B′ = {x ∈ (−∞,∞] : Lx ⊂ B} are non-empty and (−∞,∞] = A′
.
∪ B′. Since

A C B, for x1 ∈ A′ and x2 ∈ B′ we have Lx1 C Lx2 so, by Claim 8(a), x1 < x2.
Thus 〈A′,B′〉 is a cut in (−∞,∞] and, consequently, there is x0 ∈ (−∞,∞] such
that x0 = maxA′ or x0 = minB′.

Subcase 2.1: x0 = maxA′. Then x0 < ∞ because B 6= ∅ and A =
⋃
x≤x0 Lx

so, by Claim 8(a),
⋃
A =

⋃
x≤x0

⋃
Lx =

⋃
x<x0

⋃
Lx ∪

⋃
Lx0 =

⋃
Lx0 which,

together with (4) implies

⋃
A =

{
Ax0 if x0 6∈M,
A+
x0 if x0 ∈M.

Since B =
⋃
x∈(x0,∞] Lx, we have

⋂
B =

⋂
x∈(x0,∞]

⋂
Lx. By (4)

⋂
Lx = Ax,

so we have
⋂
B = (

⋂
x∈(x0,∞](−∞, x) ∩ I) ∪ (

⋂
x∈(x0,∞]

⋃
y∈M∩(−∞,x)Iy) =

((−∞, x0] ∩ I) ∪
⋃
y∈M∩(−∞,x0]Iy = Ax0 ∪ ({x0} ∩ I) ∪

⋃
y∈M∩{x0}Iy, so

⋂
B =


Ax0 if x0 /∈ I ∧ x0 /∈M.
Ax0 ∪ {x0} if x0 ∈ I ∧ x0 /∈M,
A+
x0 if x0 /∈ I ∧ x0 ∈M,

A+
x0 ∪ {x0} if x0 ∈ I ∧ x0 ∈M.

If x0 6∈ I , then, by the formulas for
⋃
A and

⋂
B we have

⋃
A =

⋂
B ∈ L

and, by (6), C ∈ L. A contradiction.
If x0 ∈ I and x0 6∈ M , then

⋃
A = Ax0 and

⋂
B = Ax0 ∪ {x0}. So, by (6)

and since C 6∈ L we have C =
⋂
B. But, by Claim 6(a), x0 = max

⋂
B so, by

Claim 5(c),
⋂
B 6∈ E(A+

∞, ρ). A contradiction.
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If x0 ∈ I and x0 ∈M , then
⋃
A = A+

x0 and
⋂
B = A+

x0 ∪{x0}. Again, by (6)
and since C 6∈ L we have C =

⋂
B. By Claim 6(b), x0 = max

⋂
B so, by Claim

5(c),
⋂
B 6∈ E(A+

∞, ρ). A contradiction.

Subcase 2.2: x0 = minB′. Then, by (4), Ax0 ∈ Lx0 ⊂ B which, by Claim
8(a), implies

⋂
B = Ax0 . Since Ax ∈ Lx, for all x ∈ (−∞,∞] and A =⋃

x<x0
Lx we have

⋃
A =

⋃
x<x0

⋃
Lx ⊃

⋃
x<x0

Ax =
⋃
x<x0

((−∞, x) ∩
I) ∪

⋃
x<x0

⋃
y∈M∩(−∞,x) Iy = ((−∞, x0) ∩ I) ∪

⋃
y∈M∩(−∞,x0) Iy = Ax0 so

Ax0 ⊂
⋃
A ⊂

⋂
B ⊂ Ax0 , which implies C = Ax0 ∈ L. A contradiction. 2

(I.II): ∞ 6∈ M . Then L∞ = {maxL} and the sum L + 1 satisfies condition
(I.I). So, there are a maximal chain L in 〈E(R) ∪ {∅},⊂〉 and an isomorphism
f : 〈L + 1, <〉 → 〈L,⊂〉. Then A = f(maxL) ∈ E(R) and L′ = f [L] ∼= L. By
the maximality of L, L′ is a maximal chain in 〈E(A) ∪ {∅},⊂〉.

(II): |L−∞| > 1. Then L =
∑

x∈[−∞,∞] Lx, (i) and (ii) of Claim 1 hold and
(iii′) L−∞ is a countable complete linear order with 0L−∞ non-isolated.

Clearly L = L−∞ + L+, where L+ =
∑

x∈(−∞,∞] Lx =
∑

y∈(0,∞] Lln y (here
ln∞ = ∞). Let L′y, y ∈ [−∞,∞], be disjoint linear orders such that L′y ∼= 1, for
y ∈ [−∞, 0], and L′y ∼= Lln y, for y ∈ (0,∞]. Now

∑
y∈[−∞,∞] L

′
y
∼= [−∞, 0] +

L+ satisfies (I) and we obtain a maximal chainL inE(R)∪{∅} and an isomorphism
f : 〈[−∞, 0] + L+, <〉 → 〈L,⊂〉. Clearly, for A0 = f(0) and L+ = f [L+] we
have A0 ∈ L and L+ ∼= L+.

By (iii′) and the fact that (b)⇒ (a) for countable L’s, E(A0) ∪ {∅} contains a
maximal chain L−∞ ∼= L−∞. ClearlyA0 ∈ L−∞ and L−∞∪L+ ∼= L−∞+L+ =
L. Suppose that a setB witnesses that L−∞∪L+ is not a maximal chain inE(R)∪
{∅}. Then either A0  B, which is impossible since L is maximal in E(R) ∪ {∅},
or B  A0, which is impossible since L−∞ is maximal in E(A0) ∪ {∅}. 2
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[6] M. S. Kurilić, Maximal chains in positive subfamilies of P (ω), Order, 29,1 (2012) 119–129.
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