POSITIVE FAMILIES AND BOOLEAN CHAINS OF COPIES OF ULTRAHOMOGENEOUS STRUCTURES

Miloš S. Kurilić¹ and Boriša Kuzeljević²

Abstract

A family of infinite subsets of a countable set X is called *positive* iff it is closed under supersets and finite changes and contains a co-infinite set. We show that a countable ultrahomogeneous relational structure \mathbb{X} has the strong amalgamation property iff the set $\mathbb{P}(\mathbb{X}) = \{A \subset X : A \cong \mathbb{X}\}$ contains a positive family. In that case the family of large copies of \mathbb{X} (i.e. copies having infinite intersection with each orbit) is the largest positive family in $\mathbb{P}(\mathbb{X})$, and for each \mathbb{R} -embeddable Boolean linear order \mathbb{L} whose minimum is nonisolated there is a maximal chain isomorphic to $\mathbb{L} \setminus \{\min \mathbb{L}\}$ in $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$.

2010 MSC: 03C15, 03C50, 20M20, 06A06, 06A05.

Keywords: ultrahomogeneous structure, strong amalgamation, poset of copies, positive family, Boolean linear order.

1 Introduction

The purpose of this short note is twofold. One is to present some new results about positive families. The other one is to provide a natural context for the recent research from [11, 12, 13]. For a countably infinite set X, a family $\mathcal{P} \subset P(X)$ is called a *positive family on* X (see [10]) iff

 $\begin{array}{l} (\mathrm{P1}) \ \mathcal{P} \subset [X]^{\omega}, \\ (\mathrm{P2}) \ \mathcal{P} \ni A \subset B \subset X \Rightarrow B \in \mathcal{P}, \\ (\mathrm{P3}) \ A \in \mathcal{P} \land |F| < \omega \Rightarrow A \backslash F \in \mathcal{P}, \\ (\mathrm{P4}) \ \exists A \in \mathcal{P} \ |X \setminus A| = \omega. \end{array}$

We regard a positive family \mathcal{P} on X as a suborder of the partial order $\langle [X]^{\omega}, \subset \rangle$ (isomorphic to $\langle [\omega]^{\omega}, \subset \rangle$) and important examples of positive families are co-ideals: if $\mathcal{I} \subset P(\omega)$ is an ideal containing the ideal Fin of finite subsets of ω , then the set $\mathcal{I}^+ := P(\omega) \setminus \mathcal{I}$ of \mathcal{I} -positive sets is a positive family. Thus $[\omega]^{\omega}$ is the largest, while non-principal ultrafilters $\mathcal{U} \subset P(\omega)$ are the minimal positive families of this form. Also, $\mathcal{I}^+_{nwd} = \{A \subset \mathbb{Q} : \operatorname{Int} \overline{A} \neq \emptyset\}$ and $\mathcal{I}^+_{lmz} = \{A \subset \mathbb{Q} : \mu(\overline{A}) > 0\}$ are positive families on the set of rationals \mathbb{Q} , where \overline{S} , Int S and $\mu(S)$ denote the \mathbb{R} -closure, \mathbb{R} -interior and Lebesgue measure of a subset S of the real line \mathbb{R}

¹Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia. e-mail: milos@dmi.uns.ac.rs

²Department of Mathematics and Informatics, University of Novi Sad, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia. e-mail: borisha@dmi.uns.ac.rs

with the standard topology. Taking a non-maximal filter $\mathcal{F} \subset P(\omega)$ which extends the Fréchet filter we obtain a positive family which is not a co-ideal; another such example is the family Dense(\mathbb{Q}) from Example 2.5; see also Theorem 2.3.

In our notation $\mathbb{P}(\mathbb{X}) = \{A \subset X : A \cong \mathbb{X}\}\$ denotes the set of all copies of a structure \mathbb{X} contained in \mathbb{X} . The class of order types of maximal chains in the poset $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$ will be denoted by $\mathcal{M}_{\mathbb{X}}$. Let $\mathcal{C}_{\mathbb{R}}$ denote the class of order types of sets of the form $K \setminus \{\min K\}$, where $K \subset \mathbb{R}$ is a compact set such that $\min K$ is an accumulation point of K. Let $\mathcal{B}_{\mathbb{R}}$ be the subclass of order types from $\mathcal{C}_{\mathbb{R}}$ for which the corresponding compact set K is, in addition, nowhere dense. Main results from [12, 13] state that for a countable ultrahomogeneous partial order \mathbb{P}

$$\mathcal{M}_{\mathbb{P}} = \left\{ egin{array}{ll} \mathcal{B}_{\mathbb{R}}, & ext{if } \mathbb{P} ext{ is a countable antichain,} \\ \mathcal{C}_{\mathbb{R}}, & ext{otherwise,} \end{array}
ight.$$

while for a countable ultrahomogeneous graph G we have

$$\mathcal{M}_{\mathbb{G}} = \begin{cases} \mathcal{B}_{\mathbb{R}}, & \text{if } \mathbb{G} \text{ is a disjoint union of complete graphs,} \\ \mathcal{C}_{\mathbb{R}}, & \text{otherwise.} \end{cases}$$

These results suggest that there might be a general theorem describing the classes $\mathcal{M}_{\mathbb{X}}$. The reason for focusing on ultrahomogeneous structures is that $\mathcal{M}_{\mathbb{X}} \subset C_{\mathbb{R}}$ for an ultrahomogeneous \mathbb{X} (see [12] for example). Still, there are pathological structures even in the class of ultrahomogeneous ones. For example, there are ultrahomogeneous structures without non-trivial copies (see [8], p. 399). This kind of obstruction does not exist in the class of countable ultrahomogeneous relational structures whose age satisfies the strong amalgamation property (SAP). Recall the following equivalence (see [8] p. 399): a countable ultrahomogeneous relational structure \mathbb{X} satisfies SAP if and only if $X \setminus F \in \mathbb{P}(\mathbb{X})$, for each finite $F \subset X$.

Section 2 contains results about positive families. The central one is that for a countable ultrahomogeneous relational structure \mathbb{X} , there is a positive family \mathcal{P} on X such that $\mathcal{P} \subset \mathbb{P}(\mathbb{X})$ if and only if the age of \mathbb{X} satisfies SAP. From this result in Section 3 we deduce that the structures whose age satisfies SAP provide a natural context for investigating the phenomena we have described above.

Theorem 1.1 If \mathbb{X} is a countable ultrahomogeneous relational structure whose age satisfies SAP, then $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}_{\mathbb{X}} \subset \mathcal{C}_{\mathbb{R}}$.

Since the class $\mathcal{B}_{\mathbb{R}}$ is quite rich, the previous result shows that many linear orders can be realized as maximal chains in $\mathbb{P}(\mathbb{X})$ in that case. For example, the reverse of every countable limit ordinal, or the order type of the Cantor set without 0. Note also that the countable complete graph \mathbb{K}_{ω} satisfies SAP, and that $\mathcal{M}_{\mathbb{K}_{\omega}} = \mathcal{B}_{\mathbb{R}}$. On the other hand, the Rado graph \mathbb{G}_{Rado} also satisfies SAP, but $\mathcal{M}_{\mathbb{G}_{\text{Rado}}} = \mathcal{C}_{\mathbb{R}}$. This Positive families and Boolean chains of copies of ultrahomogeneous structures 3

implies that it is not possible to narrow the interval of possibilities in Theorem 1.1. However, we do not know an answer to the following question.

Question 1.2 *Is there a countable ultrahomogeneous relational structure* X *whose age satisfies SAP, but such that* $\mathcal{B}_{\mathbb{R}} \subsetneq \mathcal{M}_{X} \subsetneq \mathcal{C}_{\mathbb{R}}$ *?*

We assume that the reader is familiar with Fraïssé theory. The theory itself was started in [5], [6], and [7], while a detailed treatment is given in [8]. Besides the mentioned book, [12] is a good reference for all undefined notions. We will only comment on the notion of an orbit. Suppose that \mathbb{X} is a relational structure and $F \subset X$ finite. We say that $x \sim_F y$ iff there is $g \in \operatorname{Aut}(\mathbb{X})$ such that $g \upharpoonright F = \operatorname{id}_F$ and g(x) = y. Clearly, \sim_F is an equivalence relation, and $\operatorname{orb}_F(x)$ denotes the class of an element x. The sets $\operatorname{orb}_F(x)$ are called the *orbits of* \mathbb{X} . We call a copy $A \in \mathbb{P}(\mathbb{X})$ *large* iff it has infinite intersection with each orbit of \mathbb{X} . For sets A and B, let $A \subset^* B$ denote the inclusion modulo finite, i.e. $A \subset^* B \Leftrightarrow |A \setminus B| < \omega$.

2 SAP, large copies and positive families

Theorem 2.1 If X is a countable ultrahomogeneous structure X satisfying SAP, then a copy $A \in \mathbb{P}(X)$ is large iff it intersects each orbit of X.

Proof. Suppose that A is a copy of X intersecting all orbits of X and that the intersection $A \cap \operatorname{orb}_F(x) = F_1$ is finite, for some finite set $F \subset X$ and some $x \in X \setminus F$. Since X satisfies SAP we have $|\operatorname{orb}_F(x)| = \omega$ and, thus, we can assume that $x \notin F_1$. Now, $\operatorname{orb}_{F \cup F_1}(x) \subset \operatorname{orb}_F(x) \setminus F_1$ and, hence, $A \cap \operatorname{orb}_{F \cup F_1}(x) = \emptyset$, which is a contradiction.

Note that the assumption that X has SAP can not be removed from the previous theorem, since (trivially) X intersects all orbits of X.

Theorem 2.2 For a countable ultrahomogeneous relational structure X the following conditions are equivalent:

- (a) X satisfies the strong amalgamation property,
- (b) \mathbb{X} has a large copy,
- (c) There is a positive family \mathcal{P} on X such that $\mathcal{P} \subset \mathbb{P}(\mathbb{X})$,
- (d) There is a co-infinite $A \in \mathbb{P}(\mathbb{X})$ such that $B \in \mathbb{P}(\mathbb{X})$, whenever $A \subset B \subset X$.

Proof. (a) \Leftrightarrow (b). Recall that X satisfies SAP iff all the orbits of X are infinite ([2, Theorem 2.15, p. 37]). Then X is a large copy of X. Conversely, if A is a large copy of X, then A witnesses that all orbits of X are infinite; thus X satisfies SAP.

(a) \Rightarrow (c). If X satisfies SAP, then the orbits of X are infinite and by Bernstein's Lemma (see [9, Lemma 2, p. 514], with ω instead of c) there are two disjoint sets $A_0, A_1 \subset X$ intersecting all orbits of X, which implies that $A_0, A_1 \in \mathbb{P}(X)$ (see e.g. [14, Theorem 2.3]). By Theorem 2.1 A_0 and A_1 are large copies of X (alternatively, see [14, Theorem 3.2]). Now, $\mathcal{P} := \{A \in \mathbb{P}(X) : A_0 \subset^* A\} \subset [X]^{\omega}$ and, since $A_1 \subset X \setminus A_0$, (P4) is true. If $\mathcal{P} \ni A \subset B \subset X$, then $A_0 \subset^* B$. In addition, for each orbit O of X we have $|A_0 \cap O| = \omega$ and, hence, $|B \cap O| = \omega$, which gives $B \in \mathbb{P}(X)$ (by [14, Theorem 2.3] again). Thus $B \in \mathcal{P}$ and (P2) is true. If $A \in \mathbb{P}(X)$. Thus $A \setminus F \in \mathcal{P}$, (P3) is true and \mathcal{P} is a positive family indeed.

(c) \Rightarrow (d). If $\mathcal{P} \subset \mathbb{P}(\mathbb{X})$ is a positive family, then by (P4) there is a co-infinite set $A \in \mathcal{P}$ and, hence, $A \in \mathbb{P}(\mathbb{X})$. For $B \subset X$ such that $A \setminus B =: F$ is a finite set, by (P3) we have $\mathcal{P} \ni A \setminus F \subset B$ and, by (P2), $B \in \mathcal{P}$, thus $B \in \mathbb{P}(\mathbb{X})$.

(d) \Rightarrow (a). Suppose that $A \subset X$ is a copy given by (d). Then for each finite set $F \subset X$ we have $A \subset^* X \setminus F$. Thus, by (d), $X \setminus F \in \mathbb{P}(\mathbb{X})$. Now [4, Theorem 2] implies that the structure \mathbb{X} satisfies SAP. \Box

Now we turn to maximal positive families.

Theorem 2.3 Let \mathbb{X} be a countable ultrahomogeneous relational structure satisfying SAP. If $\mathcal{P}_{max} := \{A \in \mathbb{P}(\mathbb{X}) : \forall B \subset X \ (A \subset^* B \Rightarrow B \in \mathbb{P}(\mathbb{X}))\}$, then

- (a) \mathcal{P}_{max} is the largest positive family on X contained in $\mathbb{P}(\mathbb{X})$;
- (b) $\mathcal{P}_{max} = \{A \in \mathbb{P}(\mathbb{X}) : \forall B \subset X \ (A \subset B \Rightarrow B \in \mathbb{P}(\mathbb{X}))\};$
- (c) $\mathcal{P}_{max} = \{A \subset X : A \text{ intersects all the orbits of } \mathbb{X}\};$
- (d) $\mathcal{P}_{max} = \{A \subset X : A \text{ is a large copy of } \mathbb{X}\}.$

Proof. (a) \mathcal{P}_{max} satisfies condition (P1), because $\mathcal{P}_{max} \subset \mathbb{P}(\mathbb{X}) \subset [X]^{\omega}$.

(P2) Assuming that $\mathcal{P}_{max} \ni A \subset C \subset X$ we show that $C \in \mathcal{P}_{max}$. Let $C \subset^* B \subset X$. Then $A \subset^* B$ as well. Since $A \in \mathcal{P}_{max}$, both $C \in \mathbb{P}(\mathbb{X})$ and $B \in \mathbb{P}(\mathbb{X})$ hold. Thus $C \in \mathcal{P}_{max}$ indeed.

(P3) Let $A \in \mathcal{P}_{max}$ and $F \in [X]^{<\omega}$. Let $A \setminus F \subset^* B \subset X$. Since $A \in \mathbb{P}(\mathbb{X})$, by [4, Theorem 2], $A \setminus F \in \mathbb{P}(\mathbb{X})$. Note that $A \subset^* A \setminus F$ implies $A \subset^* B$. Now from $A \in \mathcal{P}_{max}$ follows $B \in \mathbb{P}(\mathbb{X})$. Thus $A \setminus F \in \mathcal{P}_{max}$.

(P4) By Theorem 2.2, there is a co-infinite set $A \in \mathcal{P}_{max}$.

Now we show that \mathcal{P}_{max} is the largest positive family. Let $\mathcal{P} \subset \mathbb{P}(\mathbb{X})$ be a positive family on X. We prove $\mathcal{P} \subset \mathcal{P}_{max}$, so let $A \in \mathcal{P}$ and $A \subset^* B \subset X$. Then $F := A \setminus B$ is a finite set. Since \mathcal{P} satisfies (P3), we have $A \cap B = A \setminus F \in \mathcal{P}$. By (P2) we have $B \in \mathcal{P}$. This implies $B \in \mathbb{P}(\mathbb{X})$ because $\mathcal{P} \subset \mathbb{P}(\mathbb{X})$. So $A \in \mathcal{P}_{max}$.

(b) Clearly, $\mathcal{P} := \{A \in \mathbb{P}(\mathbb{X}) : \forall B \subset X \ (A \subset B \Rightarrow B \in \mathbb{P}(\mathbb{X}))\} \supset \mathcal{P}_{max}$. To prove the reverse inclusion, take any $A \in \mathcal{P}$ and $B \subset X$ such that $A \subset^* B$. Then $F = A \setminus B \in [X]^{<\omega}$ and $A \subset B \cup F$. Definition of \mathcal{P} implies $B \cup F \in \mathbb{P}(\mathbb{X})$. Since F is finite, Theorem 2 in [4] implies that $B \in \mathbb{P}(\mathbb{X})$ is as required.

(c) Let $\mathcal{P}_1 := \{A \subset X : A \text{ intersects all the orbits of } \mathbb{X}\}$. We check if \mathcal{P}_1 is a positive family on X. By Theorem 2.3 in [14], $\mathcal{P}_1 \subset \mathbb{P}(\mathbb{X}) \subset [X]^{\omega}$, so (P1) holds.

(P2) If $\mathcal{P}_1 \ni A \subset B \subset X$, then B intersects all the orbits of X. So $B \in \mathcal{P}_1$.

(P3) Let $A \in \mathcal{P}_1, F \in [X]^{<\omega}$, and let O be an orbit of X. Since X satisfies SAP, Theorem 2.1 implies $|A \cap O| = \omega$. So $(A \setminus F) \cap O \neq \emptyset$, and $A \setminus F \in \mathcal{P}_1$.

(P4) follows from [14, Theorem 3.2].

By the maximality of \mathcal{P}_{max} , as proved in (a), we have $\mathcal{P}_1 \subset \mathcal{P}_{max}$. So we still have to prove $\mathcal{P}_{max} \subset \mathcal{P}_1$. Take any $A \in \mathcal{P}_{max}$, any $F \in [X]^{<\omega}$, and any $x \in X \setminus F$. We will find $y \in A \cap \operatorname{orb}_F(x)$, which proves that $A \in \mathcal{P}_1$. Definition of \mathcal{P}_{max} implies that $A_1 := A \cup F \cup \{x\} \in \mathbb{P}(\mathbb{X})$. Since \mathbb{X} satisfies SAP, by Theorem 2.15 on page 37 in [2] applied to the structure \mathbb{A}_1 we know that the orbit of x over F in \mathbb{A}_1 is infinite. Hence there is $y \in A_1 \setminus (F \cup \{x\})$, and $g \in Aut(\mathbb{A}_1)$ such that $g \upharpoonright F = \mathrm{id}_F$ and g(x) = y. Let $\varphi := g \upharpoonright (F \cup \{x\})$. Since X is ultrahomogeneous, there is $f \in Aut(\mathbb{X})$ such that $\varphi \subset f$. Hence, $f \upharpoonright F = id_F$ and f(x) = y. Thus $y \in \operatorname{orb}_F(x)$. Since $y \in A_1 \setminus (F \cup \{x\})$ we have $y \in A \cap \operatorname{orb}_F(x)$ as required. Π

(d) follows from (c) and Theorem 2.1.

Example 2.4 Following the terminology of Fraïssé, a relational structure X is called *constant* iff $Aut(\mathbb{X}) = Sym(X)$. Since each isomorphism between finite substructures of X can be extended to a bijection, X is ultrahomogeneous. In addition, for a finite $F \subset X$ and $x \in X \setminus F$ we have $\operatorname{orb}_F(x) = X \setminus F$. So each countable constant relational structure X is ultrahomogeneous and satisfies SAP. Moreover, since each injection from X to X is an embedding, X has the following extreme property: $\mathcal{P}_{max} = \mathbb{P}(\mathbb{X}) = [X]^{|X|}$. It is easy to see that \mathbb{X} is constant iff each of its relations is definable by a (quantifier-free) first order formula whose unique non-logical symbol is the equality. For example, there are four countable binary constant structures: $\langle \omega, \emptyset \rangle$, $\langle \omega, \omega^2 \rangle$, $\langle \omega, \Delta_\omega \rangle$ and $\langle \omega, \omega^2 \setminus \Delta_\omega \rangle$ and the last one is defined by the formula $\neg v_0 = v_1$. As another example, the formula $\varphi := v_0 = v_1 \lor v_1 = v_2 \lor \neg v_2 = v_3$ defines a quaternary constant relation.

Example 2.5 For the rational line, $\langle \mathbb{Q}, \langle \rangle$, the orbits are open intervals. Thus

$$\mathcal{P}_{max} = \text{Dense}(\mathbb{Q}) := \{ A \subset \mathbb{Q} : \forall p, q \in \mathbb{Q} \ (p < q \Rightarrow A \cap (p, q)_{\mathbb{Q}} \neq \emptyset) \}.$$

This means that the fact that the rational line can be split into countably many disjoint dense sets is a special case of Theorem 3.2 in [14], while the fact that there is a continuum-sized almost disjoint family of dense subsets of the rational line is a special case of Theorem 4.1 in [14].

3 Boolean maximal chains of copies

Here we prove Theorem 1.1 and present some applications. Let X be a countable ultrahomogeneous relational structure satisfying SAP. As already mentioned $\mathcal{M}_X \subset C_{\mathbb{R}}$ is known (for example, take a look at [12, Theorem 2.2]). The remaining part of the statement follows from the next proposition.

Theorem 3.1 If X is a countable ultrahomogeneous relational structure satisfying SAP, then $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}_{X}$.

Proof. Suppose that \mathbb{L} is such that $\operatorname{otp}(\mathbb{L}) \in \mathcal{B}_{\mathbb{R}}$. Let $\mathbb{L}' = \mathbb{L} \cup \{-\infty\}$ where $\{-\infty\}$ is the minimum of \mathbb{L}' . By Theorem 3 in [11], \mathbb{L}' is isomorphic to an \mathbb{R} -embeddable complete linear order whose minimum is non-isolated. Since \mathbb{X} satisfies SAP, by Theorem 2.3(d) $\mathcal{P} = \{A \subset X : A \text{ is a large copy of } X\}$ is a positive family contained in $\mathbb{P}(\mathbb{X})$. Theorem 3.2 in [14] guaranties that $\bigcap \mathcal{P} = \emptyset$. Hence, Theorem 3.6(a) in [13] implies that there is a maximal chain \mathcal{L} in $\langle \mathbb{P}(\mathbb{X}), \subset \rangle$ isomorphic to \mathbb{L} . Thus $\mathcal{B}_{\mathbb{R}} \subset \mathcal{M}_{\mathbb{X}}$.

Example 3.2 Countable ultrahomogeneous digraphs have been classified by Cherlin [3]. Referring to the list given in [1] and [15], we mention some structures satisfying SAP, i.e. structures to which Theorem 1.1 can be applied.

- All countable ultrahomogeneous partial orders except the posets $\langle C_n, \prec_n \rangle$, for $2 \leq n < \omega$, where $C_n = \mathbb{Q} \times n$ and $\langle q_1, k_1 \rangle \prec_n \langle q_2, k_2 \rangle \Leftrightarrow q_1 <_{\mathbb{Q}} q_2$ (thus, C_n is a \mathbb{Q} -chain of antichains of size n).

- All countable ultrahomogeneous tournaments: the rational line \mathbb{Q} ; the random tournament \mathbb{T}^{∞} ; and the local order $\langle S(2), \rightarrow \rangle$, where S(2) is a countable dense subset of the unit circle, such that no two of its points are antipodal, and $x \rightarrow y$ iff the counterclockwise angle between x and y is less than π .

- All Henson's digraphs with forbidden sets of tournaments;

- The digraphs Γ_n , for n > 1, where Γ_n is the Fraissé limit of the amalgamation class of all finite digraphs not embedding the empty digraph of size n.

- Two "sporadic" primitive digraphs S(3) and $\mathcal{P}(3)$. The digraph S(3) is defined as the local order S(2), but with angle $2\pi/3$. The digraph $\mathcal{P}(3)$ has a more complicated definition; it is precisely defined in [3, p. 76].

- The imprimitive digraphs $n * I_{\infty}$, for $2 \le n \le \omega$. The digraph $n * I_{\infty}$ is obtained from a countable complete *n*-partite graph by randomly orienting its edges.

- The digraph which is a semigeneric variant of $\omega * I_{\infty}$ with a parity constraint, i.e. it is a countable ultrahomogeneous digraph in which non-relatedness is an equivalence relation and for any two pairs A_1, A_2 taken from distinct equivalence classes, the number of edges from A_1 to A_2 is even. Acknowledgements The authors acknowledge financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 451-03-68/2020-14/200125).

The authors would like to thank the anonymous referee for helpful comments.

References

- [1] N. Ackerman, C. Freer, R. Patel, Invariant measures concentrated on countable structures, Forum Math. Sigma 4 (2016) e17, 59 pp.
- [2] P. J. Cameron, Oligomorphic permutation groups, London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge vol. 152, 1990.
- [3] G. Cherlin, The classification of countable homogeneous directed graphs and countable homogeneous *n*-tournaments, vol. 131, Mem. Amer. Math. Soc., 621, Amer. Math. Soc., (1998).
- [4] M. El-Zahar, N. W. Sauer, Ramsey-type properties of relational structures, Discrete Math. 115 (1991) 57–63.
- [5] R. Fraïssé, Sur l'extension aux relations de quelques propriétés connues des ordres, C. R. Acad. Sci. Paris 237 (1953) 508–510.
- [6] R. Fraïssé, Sur certaines relations qui généralisent l'ordre des nombres rationnels, C. R. Acad. Sci. Paris 237 (1953) 540–542.
- [7] R. Fraïssé, Sur l'extension aux relations de quelques propriétés des ordres, Ann. Sci. Ecole Norm. Sup. (3) 71 (1954) 363–388.
- [8] R. Fraïssé, Theory of relations, Revised edition, With an appendix by Norbert Sauer, Studies in Logic and the Foundations of Mathematics, 145, North-Holland, Amsterdam, 2000.
- [9] K. Kuratowski, Topology. Vol. I, Academic Press, 1966.
- [10] M. S. Kurilić, Maximal chains in positive subfamilies of $P(\omega)$, Order 29,1 (2012) 119–129.
- [11] M. S. Kurilić, Maximal chains of copies of the rational line, Order 30,3 (2013) 737-748.
- [12] M. S. Kurilić, B. Kuzeljević, Maximal chains of isomorphic suborders of countable ultrahomogeneous partial orders, Order, 32,1 (2015) 83-99.
- [13] M. S. Kurilić, B. Kuzeljević, Maximal chains of isomorphic subgraphs of countable ultrahomogeneous graphs, Advances in Mathematics 264 (2014) 762–775.
- [14] M. S. Kurilić, B. Kuzeljević, Antichains of copies of ultrahomogeneous structures, submitted, arXiv:1904.00656.
- [15] D. Macpherson, A survey of homogeneous structures, Discrete Math. 311,15 (2011) 1599– 1634.