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Abstract

A family of infinite subsets of a countable set X is called positive iff it is
closed under supersets and finite changes and contains a co-infinite set. We
show that a countable ultrahomogeneous relational structure X has the strong
amalgamation property iff the set P(X) = {A ⊂ X : A ∼= X} contains a
positive family. In that case the family of large copies of X (i.e. copies having
infinite intersection with each orbit) is the largest positive family in P(X),
and for each R-embeddable Boolean linear order L whose minimum is non-
isolated there is a maximal chain isomorphic to L \ {minL} in 〈P(X),⊂〉.
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1 Introduction

The purpose of this short note is twofold. One is to present some new results
about positive families. The other one is to provide a natural context for the recent
research from [11, 12, 13]. For a countably infinite set X , a family P ⊂ P (X) is
called a positive family on X (see [10]) iff

(P1) P ⊂ [X]ω,
(P2) P 3 A ⊂ B ⊂ X ⇒ B ∈ P ,
(P3) A ∈ P ∧ |F | < ω ⇒ A\F ∈ P ,
(P4) ∃A ∈ P |X \A| = ω.

We regard a positive family P on X as a suborder of the partial order 〈[X]ω,⊂〉
(isomorphic to 〈[ω]ω,⊂〉) and important examples of positive families are co-ideals:
if I ⊂ P (ω) is an ideal containing the ideal Fin of finite subsets of ω, then the set
I+ := P (ω) \ I of I-positive sets is a positive family. Thus [ω]ω is the largest,
while non-principal ultrafilters U ⊂ P (ω) are the minimal positive families of this
form. Also, I+nwd = {A ⊂ Q : IntA 6= ∅} and I+lmz = {A ⊂ Q : µ(A) > 0}
are positive families on the set of rationals Q, where S, Int S and µ(S) denote
the R-closure, R-interior and Lebesgue measure of a subset S of the real line R
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with the standard topology. Taking a non-maximal filter F ⊂ P (ω) which extends
the Fréchet filter we obtain a positive family which is not a co-ideal; another such
example is the family Dense(Q) from Example 2.5; see also Theorem 2.3.

In our notation P(X) = {A ⊂ X : A ∼= X} denotes the set of all copies of a
structure X contained in X. The class of order types of maximal chains in the poset
〈P(X),⊂〉 will be denoted byMX. Let CR denote the class of order types of sets
of the form K \ {minK}, where K ⊂ R is a compact set such that minK is an
accumulation point of K. Let BR be the subclass of order types from CR for which
the corresponding compact setK is, in addition, nowhere dense. Main results from
[12, 13] state that for a countable ultrahomogeneous partial order P

MP =

{
BR, if P is a countable antichain,
CR, otherwise,

while for a countable ultrahomogeneous graph G we have

MG =

{
BR, if G is a disjoint union of complete graphs,
CR, otherwise.

These results suggest that there might be a general theorem describing the classes
MX. The reason for focusing on ultrahomogeneous structures is thatMX ⊂ CR
for an ultrahomogeneous X (see [12] for example). Still, there are pathological
structures even in the class of ultrahomogeneous ones. For example, there are
ultrahomogeneous structures without non-trivial copies (see [8], p. 399). This kind
of obstruction does not exist in the class of countable ultrahomogeneous relational
structures whose age satisfies the strong amalgamation property (SAP). Recall the
following equivalence (see [8] p. 399): a countable ultrahomogeneous relational
structure X satisfies SAP if and only if X \ F ∈ P(X), for each finite F ⊂ X .

Section 2 contains results about positive families. The central one is that for a
countable ultrahomogeneous relational structure X, there is a positive family P on
X such that P ⊂ P(X) if and only if the age of X satisfies SAP. From this result in
Section 3 we deduce that the structures whose age satisfies SAP provide a natural
context for investigating the phenomena we have described above.

Theorem 1.1 If X is a countable ultrahomogeneous relational structure whose age
satisfies SAP, then BR ⊂MX ⊂ CR.

Since the class BR is quite rich, the previous result shows that many linear orders
can be realized as maximal chains in P(X) in that case. For example, the reverse
of every countable limit ordinal, or the order type of the Cantor set without 0. Note
also that the countable complete graph Kω satisfies SAP, and thatMKω = BR. On
the other hand, the Rado graph GRado also satisfies SAP, butMGRado

= CR. This
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implies that it is not possible to narrow the interval of possibilities in Theorem 1.1.
However, we do not know an answer to the following question.

Question 1.2 Is there a countable ultrahomogeneous relational structure X whose
age satisfies SAP, but such that BR (MX ( CR?

We assume that the reader is familiar with Fraı̈ssé theory. The theory itself was
started in [5], [6], and [7], while a detailed treatment is given in [8]. Besides the
mentioned book, [12] is a good reference for all undefined notions. We will only
comment on the notion of an orbit. Suppose that X is a relational structure and
F ⊂ X finite. We say that x ∼F y iff there is g ∈ Aut(X) such that g �F = idF
and g(x) = y. Clearly, ∼F is an equivalence relation, and orbF (x) denotes the
class of an element x. The sets orbF (x) are called the orbits of X. We call a copy
A ∈ P(X) large iff it has infinite intersection with each orbit of X. For sets A and
B, let A ⊂∗ B denote the inclusion modulo finite, i.e. A ⊂∗ B ⇔ |A \B| < ω.

2 SAP, large copies and positive families

Theorem 2.1 If X is a countable ultrahomogeneous structure X satisfying SAP,
then a copy A ∈ P(X) is large iff it intersects each orbit of X.

Proof. Suppose that A is a copy of X intersecting all orbits of X and that the
intersection A ∩ orbF (x) = F1 is finite, for some finite set F ⊂ X and some
x ∈ X\F . Since X satisfies SAP we have | orbF (x)| = ω and, thus, we can assume
that x 6∈ F1. Now, orbF∪F1(x) ⊂ orbF (x) \ F1 and, hence, A ∩ orbF∪F1(x) = ∅,
which is a contradiction. 2

Note that the assumption that X has SAP can not be removed from the previous
theorem, since (trivially) X intersects all orbits of X.

Theorem 2.2 For a countable ultrahomogeneous relational structure X the fol-
lowing conditions are equivalent:

(a) X satisfies the strong amalgamation property,
(b) X has a large copy,
(c) There is a positive family P on X such that P ⊂ P(X),
(d) There is a co-infinite A∈P(X) such that B∈P(X), whenever A⊂∗B⊂X .

Proof. (a)⇔ (b). Recall that X satisfies SAP iff all the orbits of X are infinite ([2,
Theorem 2.15, p. 37]). Then X is a large copy of X. Conversely, if A is a large
copy of X, then A witnesses that all orbits of X are infinite; thus X satisfies SAP.
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(a)⇒ (c). If X satisfies SAP, then the orbits of X are infinite and by Bernstein’s
Lemma (see [9, Lemma 2, p. 514], with ω instead of c) there are two disjoint
sets A0, A1 ⊂ X intersecting all orbits of X, which implies that A0, A1 ∈ P(X)
(see e.g. [14, Theorem 2.3]). By Theorem 2.1 A0 and A1 are large copies of X
(alternatively, see [14, Theorem 3.2]). Now,P := {A ∈ P(X) : A0 ⊂∗ A} ⊂ [X]ω

and, since A1 ⊂ X \ A0, (P4) is true. If P 3 A ⊂ B ⊂ X , then A0 ⊂∗ B. In
addition, for each orbit O of X we have |A0 ∩ O| = ω and, hence, |B ∩ O| = ω,
which gives B ∈ P(X) (by [14, Theorem 2.3] again). Thus B ∈ P and (P2) is
true. If A ∈ P and F ⊂ X is a finite set, then, clearly, A0 ⊂∗ A \F and, as above,
A \ F ∈ P(X). Thus A \ F ∈ P , (P3) is true and P is a positive family indeed.

(c)⇒ (d). If P ⊂ P(X) is a positive family, then by (P4) there is a co-infinite
set A ∈ P and, hence, A ∈ P(X). For B ⊂ X such that A \B =: F is a finite set,
by (P3) we have P 3 A \ F ⊂ B and, by (P2), B ∈ P , thus B ∈ P(X).

(d)⇒ (a). Suppose that A ⊂ X is a copy given by (d). Then for each finite set
F ⊂ X we have A ⊂∗ X \ F . Thus, by (d), X \ F ∈ P(X). Now [4, Theorem 2]
implies that the structure X satisfies SAP. 2

Now we turn to maximal positive families.

Theorem 2.3 Let X be a countable ultrahomogeneous relational structure satisfy-
ing SAP. If Pmax := {A ∈ P(X) : ∀B ⊂ X (A ⊂∗ B ⇒ B ∈ P(X))}, then

(a) Pmax is the largest positive family on X contained in P(X);
(b) Pmax = {A ∈ P(X) : ∀B ⊂ X (A ⊂ B ⇒ B ∈ P(X))};
(c) Pmax = {A ⊂ X : A intersects all the orbits of X};
(d) Pmax = {A ⊂ X : A is a large copy of X}.

Proof. (a) Pmax satisfies condition (P1), because Pmax ⊂ P(X) ⊂ [X]ω.
(P2) Assuming that Pmax 3 A ⊂ C ⊂ X we show that C ∈ Pmax. Let

C ⊂∗ B ⊂ X . Then A ⊂∗ B as well. Since A ∈ Pmax, both C ∈ P(X) and
B ∈ P(X) hold. Thus C ∈ Pmax indeed.

(P3) Let A ∈ Pmax and F ∈ [X]<ω. Let A \ F ⊂∗ B ⊂ X . Since A ∈ P(X),
by [4, Theorem 2], A \ F ∈ P(X). Note that A ⊂∗ A \ F implies A ⊂∗ B. Now
from A ∈ Pmax follows B ∈ P(X). Thus A \ F ∈ Pmax.

(P4) By Theorem 2.2, there is a co-infinite set A ∈ Pmax.
Now we show that Pmax is the largest positive family. Let P ⊂ P(X) be a

positive family onX . We prove P ⊂ Pmax, so letA ∈ P andA ⊂∗ B ⊂ X . Then
F := A\B is a finite set. Since P satisfies (P3), we have A∩B = A\F ∈ P . By
(P2) we have B ∈ P . This implies B ∈ P(X) because P ⊂ P(X). So A ∈ Pmax.

(b) Clearly, P := {A ∈ P(X) : ∀B ⊂ X (A ⊂ B ⇒ B ∈ P(X))} ⊃ Pmax.
To prove the reverse inclusion, take any A ∈ P and B ⊂ X such that A ⊂∗ B.
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Then F = A\B ∈ [X]<ω andA ⊂ B∪F . Definition of P impliesB∪F ∈ P(X).
Since F is finite, Theorem 2 in [4] implies that B ∈ P(X) is as required.

(c) Let P1 := {A ⊂ X : A intersects all the orbits of X}. We check if P1 is a
positive family on X . By Theorem 2.3 in [14], P1 ⊂ P(X) ⊂ [X]ω, so (P1) holds.

(P2) If P1 3 A ⊂ B ⊂ X , then B intersects all the orbits of X. So B ∈ P1.
(P3) Let A ∈ P1, F ∈ [X]<ω, and let O be an orbit of X. Since X satisfies

SAP, Theorem 2.1 implies |A ∩O| = ω. So (A \ F ) ∩O 6= ∅, and A \ F ∈ P1.
(P4) follows from [14, Theorem 3.2].
By the maximality of Pmax, as proved in (a), we have P1 ⊂ Pmax. So we

still have to prove Pmax ⊂ P1. Take any A ∈ Pmax, any F ∈ [X]<ω, and any
x ∈ X\F . We will find y ∈ A∩orbF (x), which proves thatA ∈ P1. Definition of
Pmax implies that A1 := A∪F ∪{x} ∈ P(X). Since X satisfies SAP, by Theorem
2.15 on page 37 in [2] applied to the structure A1 we know that the orbit of x over
F in A1 is infinite. Hence there is y ∈ A1 \ (F ∪{x}), and g ∈ Aut(A1) such that
g �F = idF and g(x) = y. Let ϕ := g � (F ∪ {x}). Since X is ultrahomogeneous,
there is f ∈ Aut(X) such that ϕ ⊂ f . Hence, f �F = idF and f(x) = y. Thus
y ∈ orbF (x). Since y ∈ A1 \ (F ∪ {x}) we have y ∈ A ∩ orbF (x) as required.

(d) follows from (c) and Theorem 2.1. 2

Example 2.4 Following the terminology of Fraı̈ssé, a relational structure X is
called constant iff Aut(X) = Sym(X). Since each isomorphism between finite
substructures of X can be extended to a bijection, X is ultrahomogeneous. In ad-
dition, for a finite F ⊂ X and x ∈ X \ F we have orbF (x) = X \ F . So
each countable constant relational structure X is ultrahomogeneous and satisfies
SAP. Moreover, since each injection from X to X is an embedding, X has the
following extreme property: Pmax = P(X) = [X]|X|. It is easy to see that X is
constant iff each of its relations is definable by a (quantifier-free) first order for-
mula whose unique non-logical symbol is the equality. For example, there are four
countable binary constant structures: 〈ω, ∅〉, 〈ω, ω2〉, 〈ω,∆ω〉 and 〈ω, ω2\∆ω〉 and
the last one is defined by the formula ¬v0 = v1. As another example, the formula
ϕ := v0 = v1 ∨ v1 = v2 ∨ ¬v2 = v3 defines a quaternary constant relation.

Example 2.5 For the rational line, 〈Q, <〉, the orbits are open intervals. Thus

Pmax = Dense(Q) := {A ⊂ Q : ∀p, q ∈ Q (p < q ⇒ A ∩ (p, q)Q 6= ∅)}.

This means that the fact that the rational line can be split into countably many
disjoint dense sets is a special case of Theorem 3.2 in [14], while the fact that there
is a continuum-sized almost disjoint family of dense subsets of the rational line is
a special case of Theorem 4.1 in [14].
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3 Boolean maximal chains of copies

Here we prove Theorem 1.1 and present some applications. Let X be a count-
able ultrahomogeneous relational structure satisfying SAP. As already mentioned
MX ⊂ CR is known (for example, take a look at [12, Theorem 2.2]). The remain-
ing part of the statement follows from the next proposition.

Theorem 3.1 If X is a countable ultrahomogeneous relational structure satisfying
SAP, then BR ⊂MX.

Proof. Suppose that L is such that otp(L) ∈ BR. Let L′ = L ∪ {−∞} where
{−∞} is the minimum of L′. By Theorem 3 in [11], L′ is isomorphic to an R-
embeddable complete linear order whose minimum is non-isolated. Since X satis-
fies SAP, by Theorem 2.3(d) P = {A ⊂ X : A is a large copy of X} is a positive
family contained in P(X). Theorem 3.2 in [14] guaranties that

⋂
P = ∅. Hence,

Theorem 3.6(a) in [13] implies that there is a maximal chain L in 〈P(X),⊂〉 iso-
morphic to L. Thus BR ⊂MX. 2

Example 3.2 Countable ultrahomogeneous digraphs have been classified by Cher-
lin [3]. Referring to the list given in [1] and [15], we mention some structures
satisfying SAP, i.e. structures to which Theorem 1.1 can be applied.

- All countable ultrahomogeneous partial orders except the posets 〈Cn,≺n〉,
for 2 ≤ n < ω, where Cn = Q × n and 〈q1, k1〉 ≺n 〈q2, k2〉 ⇔ q1 <Q q2 (thus,
Cn is a Q-chain of antichains of size n).

- All countable ultrahomogeneous tournaments: the rational line Q; the random
tournament T∞; and the local order 〈S(2),→〉, where S(2) is a countable dense
subset of the unit circle, such that no two of its points are antipodal, and x→ y iff
the counterclockwise angle between x and y is less than π.

- All Henson’s digraphs with forbidden sets of tournaments;
- The digraphs Γn, for n > 1, where Γn is the Fraı̈ssé limit of the amalgamation

class of all finite digraphs not embedding the empty digraph of size n.
- Two “sporadic” primitive digraphs S(3) and P(3). The digraph S(3) is de-

fined as the local order S(2), but with angle 2π/3. The digraph P(3) has a more
complicated definition; it is precisely defined in [3, p. 76].

- The imprimitive digraphs n ∗ I∞, for 2 ≤ n ≤ ω. The digraph n ∗ I∞
is obtained from a countable complete n-partite graph by randomly orienting its
edges.

- The digraph which is a semigeneric variant of ω ∗ I∞ with a parity con-
straint, i.e. it is a countable ultrahomogeneous digraph in which non-relatedness is
an equivalence relation and for any two pairs A1, A2 taken from distinct equiva-
lence classes, the number of edges from A1 to A2 is even.
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