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Abstract

We discuss some finite homogeneous structures, addressing the question of
universality of their automorphism groups. We also study the existence of so-
called Katětov functors in finite categories of embeddings or homomorphisms.
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1 Introduction

By a structure we mean a model of a fixed first-order language, possibly involving
algebraic operations. The notions of a substructure, embedding, homomorphisms,
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etc. are defined in the obvious way. A structure M is homogeneous if every iso-
morphism between finitely generated substructures of M extends to an automor-
phism of M . Some authors call it ultra-homogeneity in order to distinguish it from
point-homogeneity, where points are one-element substructures. In the presence of
algebraic operations or unary predicates, either points may generate infinite sub-
structures or there may be several types of points, therefore point-homogeneity does
not say that the automorphism group acts transitively.

We are interested in finite homogeneous structures. Perhaps the simplest ones
are just sets, namely, where the language is empty. Automorphisms are bijections,
while embeddings are one-to-one mappings. Purely algebraic examples are finite
cyclic groups. Note that the infinite cyclic group Z is not homogeneous, as there is
no automorphism mapping kZ onto `Z whenever k, ` > 0 are distinct.

We are interested in the following natural question: Given a (possibly finite)
homogeneous structure M , is its automorphism group Aut(M) universal in the
sense that it embeds all the groups of the form Aut(X) with X a substructure of
M? Positive results are usually achieved with the help of a functor from the category
of all isomorphisms between substructures of M into the group of automorphisms of
M (recall that each monoid G is a category with the single object G, whose arrows
are the elements of G).

Let us call a structure M uniformly homogeneous if there is a functor K from
the category of all isomorphisms between finitely generated substructures of M into
the group Aut(M) such that K(f) is an extension of f for each f . In other words,
K is an extension operator on isomorphisms of finitely generated substructures of
M satisfying

(1) K(idA) = idM ,

(2) K(f) ∈ Aut(M) and K(f) extends f ,

(3) K(f ◦ g) = K(f) ◦K(g),

for every isomorphisms f : A → B, g : C → A with A,B,C finitely generated sub-
structures of M . Clearly, every uniformly homogeneous structure is homogeneous.
Most of the well known infinite homogeneous structures are uniformly homogeneous,
as it is argued in [3]. Proposition 1.1 below gives a useful criterion for uniform ho-
mogeneity.

We are particularly interested in countable homogeneous structures whose age
(that is, the class of all finitely generated substructures) is finite. Of course, finite
homogeneous structures have this property, however there exist also infinite ones.

1.1 Notation

We shall use standard notation concerning model theory and set theory. In partic-
ular, n = {0, 1, . . . , n − 1} for every positive integer n. The set of natural numbers
is ω = {0, 1, · · · }. If f : X → Y is a function from X to Y , and Z ⊆ X, then
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f [Z] denotes the image of Z under f , i.e. f [Z] = {f(x) : x ∈ Z}. The greatest
common divisor of two numbers n,m will be denoted, as usual, by gcd(n,m). As
we said before, a structure is a model of a countable first-order language. The age
of a structure M will be denoted by age(M). Recall that age(M) is the class of all
finitely generated models embeddable into M . By an embedding we mean a one-
to-one mapping that is an isomorphism onto its image. A substructure of M is a
subset closed under all operations of M (in particular containing all constants) with
induced relations. Namely, given an n-ary relation R in M , the induced relation in
X ⊆ M is RX defined by RX(a0, . . . , an−1) if and only if M |= R(a0, . . . , an−1) for
every a0, . . . , an−1 ∈ X. We shall write X ≤M to say that X is a substructure of M .
Recall that a structure M is homogeneous if every isomorphism f : X → Y between
finitely generated substructures of M extends to an automorphism of M . In case M
is countable (as we will always assume), this is equivalent to the extension property
of M saying that for every embeddings e : A→M , f : A→ B, with A,B ∈ age(M),
there exists an embedding g : B → M satisfying e = g ◦ f . For details on Fräıssé
theory we refer to Chapter 7 of Hodges’ monograph [2] (see also the original pa-
per of Fräıssé [1]). Another relevant notion is of set-homogeneity. A structure M is
set-homogeneous if for every two isomorphic finitely generated substructures A and
B of M , there is an automorphism f of M such that f [A] = B. Note that every
homogeneous structure is also set-homogeneous.

1.2 A characterization of uniform homogeneity

Proposition 1.1. Let M be a set-homogeneous structure. Then M is uniformly
homogeneous if and only if for every finitely generated substructure A of M there
exists a homomorphism EA : Aut(A)→ Aut(M) such that EA(h) is an extension of
h for every h ∈ Aut(A).

Proof. Clearly, the condition is necessary, as we may set EA = K � Aut(A).
In order to show sufficiency, note that it is enough to define K satisfying (1),

(2) and (3) for each isomorphism class separately. Fix a finitely generated A ≤ M .
Let A be the family of all substructures of M isomorphic to A. For each X ∈ A
choose ϕX ∈ Aut(M) such that ϕX � A is an isomorphism onto X. Here we used
the set-homogeneity of M . Now, given an isomorphism f : X → Y with X, Y ∈ A ,
define

K(f) = ϕY ◦ EA(ϕ−1Y ◦ f ◦ ϕX � A) ◦ ϕ−1X .

Note that ϕ−1Y ◦ f ◦ ϕX � A ∈ Aut(A), therefore K is well defined. Given x ∈ X, we
have

K(f)(x) = ϕY ◦ EA(ϕ−1Y ◦ f ◦ ϕX � A) ◦ ϕ−1X (x)

= ϕY ◦ ϕ−1Y ◦ f ◦ ϕX ◦ ϕ
−1
X (x) = f(x),

3



therefore K(f) extends f . Clearly, K(f) ∈ Aut(M). It is also clear that K(idX) =
idM . Finally, given an isomorphism g : Y → Z, we have

K(g) ◦K(f) = (ϕZ ◦ EA(ϕ−1Z ◦ g ◦ ϕY � A) ◦ ϕ−1Y )

◦ (ϕY ◦ EA(ϕ−1Y ◦ f ◦ ϕX � A) ◦ ϕ−1X )

= ϕZ ◦ EA(ϕ−1Z ◦ g ◦ ϕY � A ◦ ϕ−1Y ◦ f ◦ ϕX � A) ◦ ϕ−1X
= ϕZ ◦ EA(ϕ−1Z ◦ g ◦ f ◦ ϕX � A) ◦ ϕ−1X = K(g ◦ f).

This completes the proof.

1.3 Katětov functors

Let F be a Fräıssé class in a countable signature. We denote by embF the category of
all embeddings between structures from F . Let σF denote the class of all countable
structures whose age is contained in F . Following [3], a Katětov functor on F is
a functor K : embF → embσF for which there exists a natural transformation η
from the identity to K, such that for every X ∈ F , for every one-point extension
e : X → X ′ there exists an embedding f : X ′ → K(X) satisfying η = f ◦ e. Note
that this is automatically satisfied whenever K(X) is the Fräıssé limit of F . A
Katětov functor K will be called ultimate if K(X) is (isomorphic to) the Fräıssé
limit of F for every X ∈ F . One of the basic results in [3] says that every Katětov
functor extends to σF and its ωth iteration is an ultimate Katětov functor. Thus,
we may assume that every Katětov functor takes values in the monoid embU of all
embeddings from U to U , where U is the Fräıssé limit of F . Clearly, if F admits
a Katětov functor then its Fräıssé limit is uniformly homogeneous. The converse
totally fails, at least for finite Fräıssé classes.

Proposition 1.2. Let F be a Fräıssé class whose Fräıssé limit U is finite. Assume
A is a substructure of U such that there exists h ∈ Aut(U) with h 6= idU and
h � A = idA. Then F admits no Katětov functor.

Proof. Suppose K is a Katětov functor on F . By the remarks above, we may assume
K(A) = U = K(U). Let η be the associated natural transformation. Let i : A→ U
be the inclusion. Then h ◦ i = i, therefore K(h) ◦K(i) = K(h ◦ i) = K(i). On the
other hand, K(i) is an embedding of U into itself, therefore it is an isomorphism,
because U is finite. Hence K(h) = idU . Now, using the fact that η is a natural
transformation from the identity functor to K, we obtain

ηU ◦ h = K(h) ◦ ηU = idU ◦ ηU = ηU ,

therefore h = idU , because ηU is an embedding.

Corollary 1.3. Let F be the class of all sets of cardinality ≤ n, where n ≥ 3. Then
F is a Fräıssé class with no Katětov functor.
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Given n ∈ ω, let S(n) denote the class of all sets of cardinality ≤ n. Without loss
of generality, we may assume that S(n) consists of subsets of n = {0, 1, . . . , n− 1}.

Given a bijection f : A→ B, define K(A) = K(B) = n and K(f) : n→ n in such
a way that the set n \A is mapped in a strictly increasing way onto the set n \B. It
is rather clear that K(g ◦ f) = K(g) ◦K(f), because we deal with bijections. Also,
K(idA) = idn. Thus, K is a functor. This shows that every finite set is uniformly
homogeneous.

It is well known and very easy to verify that the group of permutations Sn =
Aut(n) is universal for the class {Sk : k ≤ n}. The embedding of Sk into Sn is given
by h 7→ h ∪ idn\k.

2 A simple digraph with six vertices

A simple digraph is a structure of the form 〈X,E〉, where E is a binary relation on
X. The elements of X are usually called vertices, while the elements of E are called
arrows (some authors call them edges).

Our goal is to describe a homogeneous simple digraph with 6 vertices, with no
Katětov functor on the category of isomorphisms between its substructures. Our
graph is actually described in the following picture.

a0 b0

a b

b1 a1

Let us denote this digraph by M . Formally, the universe of M is {a, b, a0, b0, a1, b1}
and the relation is

E ={〈a, a〉, 〈a, b〉, 〈b, a〉, 〈b, b〉, 〈a0, b0〉, 〈b0, a1〉, 〈a1, b1〉, 〈b1, a0〉,
〈a, a0〉, 〈a, a1〉, 〈b, b0〉, 〈b, b1〉}.

Note that a, b are the only vertices with loops. Hence, every automorphism of M
preserves each of the cycles {a, b} and {a0, b0, a1, b1}. Furthermore, every automor-
phism of M “rotates” the cycle {a0, b0, a1, b1}. Namely, let η ∈ Aut(M) be such
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that η(a0) = b0. Then η(a) = b, η(b0) = a1, η(a1) = b1, and η(b1) = a0. The same
argument shows that every automorphism of M is determined by its value on a0. It
follows that η generates Aut(M) and consequently Aut(M) ≈ Z4.

Theorem 2.1. M is homogeneous but not uniformly homogeneous.

Proof. We first show that M is not uniformly homogeneous. Let h0 ∈ Aut({a, b})
be the non-trivial involution and let h ∈ Aut(M) be its extension. If h(a0) = b0 then
h2(a0) = h(b0) = a1, therefore h2 6= idM . If h(a0) = b1 then h2(a0) = h(b1) = a1,
thus again h2 6= idM . Hence there is no involution of M extending h0.

It remains to check that M is homogeneous. Let η be the automorphism intro-
duced in the previous paragraph generating Aut(M) ≈ Z4. Thus, η(a0) = b0. Denote
also C = {a0, b0, a1, b1}. First we prove a short claim.

Claim 2.2. Suppose that ψ ∈ Aut(M � C). Then there is i < 4 so that ηi � C = ψ.

Proof. It is clear that M � C is isomorphic to the 4-cycle
−→
C4, so Aut(M � C) ≈ Z4,

and ψ is completely determined by ψ(a0). If ψ(a0) = a0, then ψ = idC , so i = 0
satisfies the conclusion of the claim. If ψ(a0) = b0, then i = 1 works, and all the
other cases are handled similarly.

Take arbitrary non-empty substructures A and B of M , and let ϕ : A → B
be an isomorphism. Notice that for every choice of A, B, and ϕ, it must be that
ϕ[A ∩ C] = B ∩ C and ϕ[A \ C] = B \ C. We distinguish two cases, depending on
the cardinality of the set A \ {a, b}.

Case 1: |A \ {a, b}| = 0. In this case there are two possibilities, either |A| = 1, or
|A| = 2. If |A| = 1, then either ϕ[A] = A, in which case ϕ is the identity, and it can
be extended to η0, or ϕ[A]∩A = ∅, so that ϕ can be extended to η1. If |A| = 2 (i.e.
ϕ[A] = A and A = {a, b}), then either ϕ(a) = a in which case ϕ(b) = b and ϕ can
be extended to η0, or ϕ(a) = b in which case ϕ(b) = a and ϕ can be extended to η1.

Case 2: |A \ {a, b}| > 0. Note that in this case A ∩ C = A \ {a, b}. Denote
θ = ϕ � (A ∩ C). Note that θ is well defined because A ∩ C is non empty. Since the

4-cycle
−→
C4 is homogeneous [4], M � C is also homogeneous being isomorphic to it.

So there is some ψ ∈ Aut(M � C) extending θ. By Claim 2.2, there is i < 4 such
that ηi � C = ψ � C. This means that ηi � (A \ {a, b}) = ϕ � (A \ {a, b}). To finish
the proof we have to show that ηi � A = ϕ. Suppose that this is not the case. This
means that there is a point x ∈ A such that ηi(x) 6= ϕ(x). Point x cannot be in
C by the choice of i, so it must be in {a, b}. Take any point y ∈ A ∩ C, and let
z = ϕ(y) = ηi(y). Note that z ∈ C, while the assumption ϕ(x) 6= ηi(x) implies that
{ϕ(x), ηi(x)} = {a, b}. So since ϕ and ηi are isomorphisms, and by the definition of
E, it must be that

〈x, y〉 ∈ E ⇐⇒ 〈ϕ(x), z〉 ∈ E ⇐⇒ 〈ηi(x), z〉 /∈ E ⇐⇒ 〈x, y〉 /∈ E,

which is clearly impossible.
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Question 2.3. Does there exist a finite homogeneous structure whose domain has
less than six points, and which is not uniformly homogeneous?

3 Finite cyclic groups

Most of the results of this section should be well known, however we look at cyclic
groups from the perspective of Fräıssé theory. As it happens, every finite cyclic group
is uniformly homogeneous. In fact, homogeneity follows directly from the following
easy fact. Uniform homogeneity will follow from the existence of a Katětov functor
on the Fräıssé class of all finite cyclic groups, whose limit is Q/Z.

Every homomorphism of cyclic groups f : Zm → Zn is determined by f(1), where
1 is the generator of Zm. Specifically, f(i) = f(1) · i modulo n for i < m. We will
write f = â, where a = f(1).

Lemma 3.1. Let e, f : Zk → Zn be two embeddings. Then there exists an automor-
phism h : Zn → Zn such that f = h ◦ e.

Proof. Obviously, n = k` for some integer ` > 0. We may assume that e = ˆ̀, which
is the canonical embedding. Then f = â, where gcd(a, k`) = `. In other words,
a = `b, where b and k` are coprime. Thus h = b̂ is an automorphism of Zk` and
h ◦ e = f .

It follows that Zn has the extension property. Its age consists of the trivial group
plus all groups of the form Zk, where k is a divisor of n. Thus, finite cyclic groups
are homogeneous. They turn out to be uniformly homogeneous. We shall prove it via
a Katětov functor on the class of all finite cyclic groups C . Let us remark that C is
hereditary (since subgroups of a cyclic group are cyclic) and has the amalgamation
property. Indeed, given embeddings f : Zk → Zm, g : Zk → Zn, we may replace
them by f ′ ◦ f : Zk → Zmn, g′ ◦ g : Zk → Zmn and then use Lemma 3.1 to get an
automorphism h : Zmn → Zmn satisfying ϕ ◦ f ′ ◦ f = g′ ◦ g. It is not hard to see that
the Fräıssé limit of C is Q/Z which is isomorphic to the group of all roots of unity
in the complex plane.

Theorem 3.2. The class of all finite cyclic groups admits a Katětov functor.

Proof. First let us introduce some notation. To shorten the statements we denote
U = Q/Z, while the set of all prime numbers is denoted P. If n is an integer, and p
is a prime, then [n]p denotes the number n

pα
, where α is a non-negative integer such

that pα | n and pα+1 - n. By Theorem I.8.1 in [5]

U ∼=
⊕
p∈P

U(p),

where for a prime p, the group U(p) is the subgroup of all elements from U which
can be represented by a rational number a

pα
with a ∈ Z and α some positive integer.
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So in this proof, whenever we write x ∈ U we will assume that x = 〈xp : p ∈ P〉 and
that xp ∈ U(p) for each p ∈ P. Notice that if e : Zm → Zmk is an embedding, then
there is a number n such that n = k · t for some t satisfying gcd(t,mk) = 1, and that
for each x ∈ Zm, e(x) = n · x (modmk). Whenever we are given such an embedding
e, we will assume that we are also given a number n with the mentioned properties,
and denote e by n̂. For a finite cyclic group Zm, let ηm : Zm → U be defined as
follows. For l < m let ηm(l) = 〈 l·[m]p

m
: p ∈ P〉. Finally, if n̂ is an embedding between

Zm and Zmk define K(n̂) : U → U so that for x ∈ U , K(n̂)(x) = 〈[n]p · xp : p ∈ P〉.
This is well defined because gcd([n]p, p) = 1. To prove that K is a Katětov functor,
it is enough to prove that:

1. if n̂ : Zm → Zmk is an embedding, then K(n̂) : U → U is also an embedding;

2. if n̂1 : Zm → Zmk and n̂2 : Zmk → Zmkl are embeddings, then K(n̂1 · n2) =
K(n̂2) ◦K(n̂1);

3. if n̂ : Zm → Zmk is an embedding, then ηmk(n̂(x)) = K(n̂)(ηm(x)), for each
x ∈ Zm.

We first prove 1. So we have to prove that for x, y ∈ U , K(n̂)(x+y) = K(n̂)(x)+
K(n̂)(y), and that K(n̂)(x) = 0 only if x = 0. Take any x, y ∈ U . Then

K(n̂)(x+ y) = 〈[n]p(xp + yp) : p ∈ P〉
= 〈[n]pxp + [n]pyp : p ∈ P〉
= 〈[n]pxp : p ∈ P〉+ 〈[n]pyp : p ∈ P〉
= K(n̂)(x) +K(n̂)(y).

Now suppose that K(n̂)(x) = 0 and that x 6= 0. Since x 6= 0, there is a prime p such
that xp /∈ Z. Hence xp = a

pα
, where a ∈ Z, α is a positive integer, and moreover

gcd(a, p) = 1. Since K(n̂)(x) = 0, it must be that [n]pxp = [n]pa

pα
∈ Z. But this is not

possible because gcd([n]pa, p) = 1. Hence K(n̂) is an injective homomorphism and
1 is proved.

Next, we prove 2. Take arbitrary x ∈ U . Then

K(n̂1 · n2)(x) = 〈[n1n2]pxp : p ∈ P〉
= 〈[n1]p[n2]pxp : p ∈ P〉
= K(n̂2)(〈[n1]pxp : p ∈ P〉)
= K(n̂2)(K(n̂1)(x)),

so 2 is proved as well.
Finally we check condition 3. Take any x ∈ Zm. Since n = k · t for t such that

gcd(t,mk) = 1, it must be that [n]p = [kt]p = t · [k]p whenever p | mk. On the other
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hand, if p - mk, it must be that [m]p
m

= 1. Hence in this case both t·[k]p·x·[m]p
m

and
[n]p·x·[m]p

m
belong to Z, so t·[k]p·x·[m]p

m
≡U(p)

[n]p·x·[m]p
m

. So we have

ηmk(n̂(x)) = ηmk(nx)

= 〈nx·[mk]p
mk

: p ∈ P〉
= 〈k·t·x·[mk]p

mk
: p ∈ P〉

= 〈 t·[k]p·x·[m]p
m

: p ∈ P〉
= 〈 [n]p·x·[m]p

m
: p ∈ P〉

= K(n̂)(〈x·[m]p
m

: p ∈ P〉)
= K(n̂)(ηm(x)).

This proves 3, and finishes the proof of the theorem.

Corollary 3.3. Every finite cyclic group is uniformly homogeneous.

Proof. Let K : C → embU be an ultimate Katětov functor, where U = Q/Z is
the Fräıssé limit of C . Let e : Zk → Zn be an embedding. We may think of Zn
as the unique subgroup of U of size n. Finally, E(f) = K(f) � Zn provides an
extension operator from Aut(Zk) to Aut(Zn). By Proposition 1.1, Zn is uniformly
homogeneous.
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[1] R. Fräıssé, Sur l’extension aux relations de quelques propriétés des ordres,
Ann. Sci. Ecole Norm. Sup. (3) 71 (1954) 363–388. 1.1

[2] W. Hodges, Model Theory, Encyclopedia of Mathematics and its Applications
42, Cambridge University Press 1993. 1.1
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