Facets of the Finite Basis Problem for Finite Involution Semigroups

Igor Dolinka

dockie@dmi.uns.ac.rs

Department of Mathematics and Informatics, University of Novi Sad

Będlewo, June 2010
Glossary of terms

The equational theory $Eq(A)$ of an algebra A

$=$ the set of all identities (over some fixed countably infinite set X of variables, or letters) satisfied by A.
The **equational theory** $Eq(A)$ of an algebra A

$= \text{the set of all identities (over some fixed countably infinite set}\
\text{of variables, or letters) satisfied by } A.$

Let Σ be a set of identities. An identity $p \approx q$ is a **consequence** of

Σ, written $\Sigma \models p \approx q$,

$= \text{every algebra that satisfies all identities from } \Sigma \text{ also satisfies}\
p \approx q.$
Glossary of terms

The **equational theory** $Eq(A)$ of an algebra A

$= \text{the set of all identities (over some fixed countably infinite set } X \text{ of variables, or letters) satisfied by } A.$

Let Σ be a set of identities. An identity $p \approx q$ is a **consequence** of Σ, written $\Sigma \models p \approx q$,

$= \text{every algebra that satisfies all identities from } \Sigma \text{ also satisfies } p \approx q.$

If $\Sigma \subseteq Eq(A)$ is such that every identity from $Eq(A)$ is a consequence of Σ, then Σ is called an **(equational) basis** of A.
The equational theory $Eq(A)$ of an algebra A

$=$ the set of all identities (over some fixed countably infinite set X of variables, or letters) satisfied by A.

Let Σ be a set of identities. An identity $p \approx q$ is a consequence of Σ, written $\Sigma \models p \approx q$, if every algebra that satisfies all identities from Σ also satisfies $p \approx q$.

If $\Sigma \subseteq Eq(A)$ is such that every identity from $Eq(A)$ is a consequence of Σ, then Σ is called an (equational) basis of A.

A fundamental property that an algebra A may or may not have is that of having a finite basis.
Glossary of terms

The equational theory $Eq(A)$ of an algebra A
\[=\] the set of all identities (over some fixed countably infinite set X of variables, or letters) satisfied by A.

Let Σ be a set of identities. An identity $p \approx q$ is a consequence of Σ, written $\Sigma \models p \approx q$,
\[=\] every algebra that satisfies all identities from Σ also satisfies $p \approx q$.

If $\Sigma \subseteq Eq(A)$ is such that every identity from $Eq(A)$ is a consequence of Σ, then Σ is called an (equational) basis of A.

A fundamental property that an algebra A may or may not have is that of having a finite basis. If there is a finite basis for identities of A, then A is said to be finitely based (FB).
The **equational theory** $Eq(A)$ of an algebra A

= the set of all identities (over some fixed countably infinite set X of variables, or letters) satisfied by A.

Let Σ be a set of identities. An identity $p \approx q$ is a **consequence** of Σ, written $\Sigma \models p \approx q$,

= every algebra that satisfies all identities from Σ also satisfies $p \approx q$.

If $\Sigma \subseteq Eq(A)$ is such that every identity from $Eq(A)$ is a consequence of Σ, then Σ is called an **(equational) basis** of A.

A fundamental property that an algebra A may or may not have is that of having a finite basis. If there is a finite basis for identities of A, then A is said to be finitely based (FB). Otherwise, it is nonfinitely based (NFB).
Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates & Powell, 1964)
- commutative semigroups (Perkins, 1968)
- finite lattices and lattice-based algebras (McKenzie, 1970)
- finite (associative) rings (L'vov; Kruse, 1973)
- algebras generating congruence distributive varieties with a finite residual bound (Baker, 1977)
- algebras generating congruence modular varieties with a finite residual bound (McKenzie, 1987)
- algebras generating congruence ∧-semidistributive varieties (Willard, 2000)
Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates & Powell, 1964)
Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates & Powell, 1964)
- commutative semigroups (Perkins, 1968)
Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates & Powell, 1964)
- commutative semigroups (Perkins, 1968)
- finite lattices and lattice-based algebras (McKenzie, 1970)
Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates & Powell, 1964)
- commutative semigroups (Perkins, 1968)
- finite lattices and lattice-based algebras (McKenzie, 1970)
- finite (associative) rings (L’vov; Kruse, 1973)
- algebras generating congruence distributive varieties with a finite residual bound (Baker, 1977)
- algebras generating congruence modular varieties with a finite residual bound (McKenzie, 1987)
- algebras generating congruence \wedge-semidistributive varieties with a finite residual bound (Willard, 2000)
Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates & Powell, 1964)
- commutative semigroups (Perkins, 1968)
- finite lattices and lattice-based algebras (McKenzie, 1970)
- finite (associative) rings (L’vov; Kruse, 1973)
- algebras generating congruence distributive varieties with a finite residual bound (Baker, 1977)
Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates & Powell, 1964)
- commutative semigroups (Perkins, 1968)
- finite lattices and lattice-based algebras (McKenzie, 1970)
- finite (associative) rings (L’vov; Kruse, 1973)
- algebras generating congruence distributive varieties with a finite residual bound (Baker, 1977)
- algebras generating congruence modular varieties with a finite residual bound (McKenzie, 1987)
Some classical positive results

Each of the following algebras is FB:

- finite groups (Oates & Powell, 1964)
- commutative semigroups (Perkins, 1968)
- finite lattices and lattice-based algebras (McKenzie, 1970)
- finite (associative) rings (L’vov; Kruse, 1973)
- algebras generating congruence distributive varieties with a finite residual bound (Baker, 1977)
- algebras generating congruence modular varieties with a finite residual bound (McKenzie, 1987)
- algebras generating congruence \wedge-semidistributive varieties with a finite residual bound (Willard, 2000)
Negative results

Examples of finite NFB algebras:

\[
\begin{array}{ccc}
0 & 1 & 2 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
2 & 0 & 2 & 2 \\
\end{array}
\]

(Murskiĭ, 1965)
Negative results

Examples of finite NFB algebras:

\[
\begin{array}{c|ccc}
 & 0 & 1 & 2 \\
\hline
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
2 & 0 & 2 & 2 \\
\end{array}
\]

(Murskiĭ, 1965)

▶ a certain 6-element semigroup of matrices (Perkins, 1968)
Negative results

Examples of finite NFB algebras:

- a certain finite pointed group (Bryant, 1982)
- the full transformation semigroup T_n for $n \geq 3$ and the full semigroup of binary relations R_n for $n \geq 2$
- a certain 7-element semiring of binary relations (ID, 2007)
- a certain 6-element semigroup of matrices (Perkins, 1968)

(Murskiĭ, 1965)

\[
\begin{array}{c|ccc}
 & 0 & 1 & 2 \\
\hline
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
2 & 0 & 2 & 2 \\
\end{array}
\]
Negative results

Examples of finite NFB algebras:

\[
\begin{array}{c|ccc}
 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
2 & 0 & 2 & 2 \\
\end{array}
\]

(Murskiǐ, 1965)

- a certain 6-element semigroup of matrices (Perkins, 1968)
- a certain finite *pointed* group (Bryant, 1982)
- the full transformation semigroup T_n for $n \geq 3$ and the full semigroup of binary relations R_n for $n \geq 2$
Negative results

Examples of finite NFB algebras:

▶

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

(Murskiǐ, 1965)

▶ a certain 6-element semigroup of matrices (Perkins, 1968)
▶ a certain finite pointed group (Bryant, 1982)
▶ the full transformation semigroup \mathcal{T}_n for $n \geq 3$ and the full semigroup of binary relations \mathcal{R}_n for $n \geq 2$
▶ a certain 7-element semiring of binary relations (ID, 2007)
Negative results

Examples of finite NFB algebras:

▶

\[
\begin{array}{ccc}
0 & 1 & 2 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 \\
2 & 0 & 2 & 2 \\
\end{array}
\]

(Murskii, 1965)
▶ a certain 6-element semigroup of matrices (Perkins, 1968)
▶ a certain finite \textit{pointed} group (Bryant, 1982)
▶ the full transformation semigroup T_n for $n \geq 3$ and the full semigroup of binary relations R_n for $n \geq 2$
▶ a certain 7-element semiring of binary relations (ID, 2007)

\textbf{Tarski's Finite Basis Problem: } Is there any algorithmic way to distinguish between finite FB and NFB algebras?
McKenzie’s solution of the Tarski problem

No!

Theorem (McKenzie, 1996)
There is no algorithm to decide whether a finite algebra is FB.
This is exactly why it is so interesting to study the (N)FB property, especially for finite algebras.

The Tarski-Sapir problem: Is there an algorithm to decide whether a finite semigroup is FB?
This problem is still open.

AAA80, Będlewo, June 2010
Igor Dolinka: FBP for Finite Involution Semigroups
McKenzie’s solution of the Tarski problem

No!

Theorem (McKenzie, 1996)

There is no algorithm to decide whether a finite algebra is FB.
McKenzie’s solution of the Tarski problem

No!

Theorem (McKenzie, 1996)

There is no algorithm to decide whether a finite algebra is FB.

This is exactly why it is so interesting to study the (N)FB property, especially for finite algebras.
McKenzie’s solution of the Tarski problem

No!

Theorem (McKenzie, 1996)

There is no algorithm to decide whether a finite algebra is FB.

This is exactly why it is so interesting to study the (N)FB property, especially for finite algebras.

The Tarski-Sapir problem: Is there an algorithm to decide whether a finite semigroup is FB?
McKenzie’s solution of the Tarski problem

No!

Theorem (McKenzie, 1996)

There is no algorithm to decide whether a finite algebra is FB.

This is exactly why it is so interesting to study the (N)FB property, especially for finite algebras.

The Tarski-Sapir problem: Is there an algorithm to decide whether a finite semigroup is FB? This problem is still open.
McKenzie’s solution of the Tarski problem

No!

Theorem (McKenzie, 1996)

There is no algorithm to decide whether a finite algebra is FB.

This is exactly why it is so interesting to study the (N)FB property, especially for finite algebras.

The Tarski-Sapir problem: Is there an algorithm to decide whether a finite semigroup is FB? This problem is still open.

Volkov’s NFB criterion (1989)

Let A_2 be the 5-element semigroup given by the presentation

$$\langle a, b : a^2 = a = aba, \ b^2 = 0, \ bab = b \rangle.$$
Volkov’s NFB criterion (1989)

Let A_2 be the 5-element semigroup given by the presentation

$$\langle a, b : a^2 = a = aba, b^2 = 0, bab = b \rangle.$$

This is just the Rees matrix semigroup over a trivial group $E = \{e\}$ with the sandwich matrix

$$\begin{pmatrix}
 e & e \\
 0 & e
\end{pmatrix}$$
Volkov’s NFB criterion (1989)

Let A_2 be the 5-element semigroup given by the presentation

$$\langle a, b : a^2 = a = aba, b^2 = 0, bab = b \rangle.$$

This is just the Rees matrix semigroup over a trivial group $E = \{e\}$ with the sandwich matrix

$$\begin{pmatrix}
 e & e \\
 0 & e
\end{pmatrix}$$

Fact

Of all varieties generated by Rees matrix semigroups with trivial subgroups, A_2 generates the largest one.
Volkov’s NFB criterion (1989)

Let A_2 be the 5-element semigroup given by the presentation

$$\langle a, b : a^2 = a = aba, b^2 = 0, bab = b \rangle.$$

This is just the Rees matrix semigroup over a trivial group $E = \{e\}$ with the sandwich matrix

$$
\begin{pmatrix}
e & e \\
0 & e
\end{pmatrix}
$$

Fact

Of all varieties generated by Rees matrix semigroups with trivial subgroups, A_2 generates the largest one.

Fact

A_2 is representable by matrices (over any field).
Volkov’s NFB criterion (1989)

Theorem (M. V. Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^d \approx e$ such that

If $A^2 \in \text{var } S$, then S is NFB.

Corollary

The following semigroups are NFB:

- the full transformation semigroup T_n ($n \geq 3$)
- the full semigroup of binary relations B_n ($n \geq 2$)
- the semigroup of partial transformations PT_n ($n \geq 2$)
- matrix semigroups $M_n(F)$ for any $n \geq 2$ and any finite field F
Volkov’s NFB criterion (1989)

Theorem (M. V. Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^d \approx e$ such that

- $a^d \in T$ for all $a \in S$, and

If $A_2 \in \text{var} S$, then S is NFB.

Corollary

The following semigroups are NFB:

- the full transformation semigroup T_n ($n \geq 3$)
- the full semigroup of binary relations B_n ($n \geq 2$)
- the semigroup of partial transformations PT_n ($n \geq 2$)
- matrix semigroups $M_n(F)$ for any $n \geq 2$ and any finite field F
Volkov’s NFB criterion (1989)

Theorem (M. V. Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^d \approx e$ such that

- $a^d \in T$ for all $a \in S$, and
- $G \in \text{var } S$, but $G \notin \text{var } T$.

If $A_2 \in \text{var } S$, then S is NFB.

Corollary

The following semigroups are NFB:

- the full transformation semigroup T_n ($n \geq 3$)
- the full semigroup of binary relations B_n ($n \geq 2$)
- the semigroup of partial transformations PT_n ($n \geq 2$)
- matrix semigroups $M_n(F)$ for any $n \geq 2$ and any finite field F.
Volkov’s NFB criterion (1989)

Theorem (M. V. Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^d \approx e$ such that

- $a^d \in T$ for all $a \in S$, and
- $G \in \var S$, but $G \notin \var T$.

If $A_2 \in \var S$, then S is NFB.
Volkov’s NFB criterion (1989)

Theorem (M. V. Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^d \approx e$ such that

- $a^d \in T$ for all $a \in S$, and
- $G \in \text{var } S$, but $G \notin \text{var } T$.

If $A_2 \in \text{var } S$, then S is NFB.

Corollary

The following semigroups are NFB:

- the full transformation semigroup T_n ($n \geq 3$)
- the full semigroup of binary relations B_n ($n \geq 2$)
- the semigroup of partial transformations PT_n ($n \geq 2$)
- matrix semigroups $M_{n \times n}(F)$ for any $n \geq 2$ and any finite field F.
Volkov’s NFB criterion (1989)

Theorem (M. V. Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^d \approx e$ such that

- $a^d \in T$ for all $a \in S$, and
- $G \in \text{var } S$, but $G \not\in \text{var } T$.

If $A_2 \in \text{var } S$, then S is NFB.

Corollary

The following semigroups are NFB:

- the full transformation semigroup \mathcal{T}_n ($n \geq 3$)
Volkov’s NFB criterion (1989)

Theorem (M. V. Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^d \approx e$ such that

- $a^d \in T$ for all $a \in S$, and
- $G \in \text{var } S$, but $G \notin \text{var } T$.

If $A_2 \in \text{var } S$, then S is NFB.

Corollary

The following semigroups are NFB:

- the full transformation semigroup T_n ($n \geq 3$)
- the full semigroup of binary relations B_n ($n \geq 2$)
Theorem (M. V. Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^d \approx e$ such that

- $a^d \in T$ for all $a \in S$, and
- $G \in \var S$, but $G \not\in \var T$.

If $A_2 \in \var S$, then S is NFB.

Corollary

The following semigroups are NFB:

- the full transformation semigroup \mathcal{T}_n ($n \geq 3$)
- the full semigroup of binary relations \mathcal{B}_n ($n \geq 2$)
- the semigroup of partial transformations \mathcal{PT}_n ($n \geq 2$)
Volkov’s NFB criterion (1989)

Theorem (M. V. Volkov, 1989)

Let S be a semigroup and T a subsemigroup of S. Assume that there exist a positive integer d and a group G satisfying $x^d \approx e$ such that

- $a^d \in T$ for all $a \in S$, and
- $G \in \text{var } S$, but $G \notin \text{var } T$.

If $A_2 \in \text{var } S$, then S is NFB.

Corollary

The following semigroups are NFB:

- the full transformation semigroup \mathcal{T}_n ($n \geq 3$)
- the full semigroup of binary relations \mathcal{B}_n ($n \geq 2$)
- the semigroup of partial transformations $\mathcal{P}\mathcal{T}_n$ ($n \geq 2$)
- matrix semigroups $\mathcal{M}_n(\mathbb{F})$ for any $n \geq 2$ and any finite field \mathbb{F}
Unary semigroups

Unary semigroup

$= \text{a structure } (S, \cdot, *) \text{ such that } (S, \cdot) \text{ is a semigroup and } * \text{ is a unary operation on } S$
Unary semigroups

Unary semigroup

= a structure $(S, \cdot, *)$ such that (S, \cdot) is a semigroup and * is a unary operation on S

Involution semigroup

= a unary semigroup satisfying $(xy)^* \approx y^*x^*$ and $(x^*)^* \approx x$
Unary semigroup

\[= \text{a structure } (S, \cdot, *) \text{ such that } (S, \cdot) \text{ is a semigroup and } * \text{ is a unary operation on } S \]

Involution semigroup

\[= \text{a unary semigroup satisfying } (xy)^* \approx y^* x^* \text{ and } (x^*)^* \approx x \]

Examples

- groups
- inverse semigroups
- regular \(^\ast\)-semigroups \((xx^* x \approx x)\)
- matrix semigroups with transposition \(M_n(F) = (M_n(F), \cdot, ^T)\)
‘Unary version’ of Volkov’s Theorem

For a unary semigroup S, let $H(S)$ denote the **Hermitian subsemigroup** of S, generated by aa^* for all $a \in S$.
For a unary semigroup S, let $H(S)$ denote the Hermitian subsemigroup of S, generated by aa^* for all $a \in S$.

For a variety \mathbf{V} of unary semigroups, let $H(\mathbf{V})$ be the subvariety of \mathbf{V} generated by all $H(S)$, $S \in \mathbf{V}$.
For a unary semigroup S, let $H(S)$ denote the Hermitian subsemigroup of S, generated by aa^* for all $a \in S$.

For a variety V of unary semigroups, let $H(V)$ be the subvariety of V generated by all $H(S)$, $S \in V$.

Furthermore, let K_3 be the 10-element unary Rees matrix semigroup over a trivial group $E = \{e\}$ with the sandwich matrix

$$
\begin{pmatrix}
e & e & e \\
e & e & 0 \\
e & 0 & e
\end{pmatrix},
$$

while $(i, e, j)^* = (j, e, i)$ and $0^* = 0$.
`Unary version’ of Volkov’s Theorem

For a unary semigroup S, let $H(S)$ denote the Hermitian subsemigroup of S, generated by aa^* for all $a \in S$.

For a variety V of unary semigroups, let $H(V)$ be the subvariety of V generated by all $H(S)$, $S \in V$.

Furthermore, let K_3 be the 10-element unary Rees matrix semigroup over a trivial group $E = \{e\}$ with the sandwich matrix

$$
\begin{pmatrix}
 e & e & e \\
 e & e & 0 \\
 e & 0 & e
\end{pmatrix},
$$

while $(i, e, j)^* = (j, e, i)$ and $0^* = 0$.

Fact

K_3 generates the variety of all strict combinatorial regular *-semigroups (studied by K. Auinger in 1992).
‘Unary version’ of Volkov’s Theorem

Theorem (K. Auinger, M. V. Volkov, cca. 1991/92)

Let S be a unary semigroup such that $\mathcal{V} = \text{var } S$ contains K_3. If there exist a group G which belongs to \mathcal{V} but not to $H(\mathcal{V})$, then S is NFB.
‘Unary version’ of Volkov’s Theorem

Theorem (K. Auinger, M. V. Volkov, cca. 1991/92)

Let S be a unary semigroup such that $\mathbf{V} = \text{var } S$ contains K_3. If there exist a group G which belongs to \mathbf{V} but not to $H(\mathbf{V})$, then S is NFB.

Corollary

The following unary semigroups are NFB:

- the full involution semigroup of binary relations $R \lor n$ ($n \geq 2$), endowed with relational converse
- matrix semigroups with transposition $M_n(F)$, where F is a finite field, $|F| \geq 3$
- matrix semigroups $(M_2(F), \cdot, \dagger)$, where F is either a finite field such that $|F| \equiv 3 \pmod{4}$, or a subfield of \mathbb{C} closed under complex conjugation, and \dagger is the unary operation of taking the Moore-Penrose inverse.
Theorem (K. Auinger, M. V. Volkov, cca. 1991/92)

Let S be a unary semigroup such that $\mathcal{V} = \text{var } S$ contains K_3. If there exist a group G which belongs to \mathcal{V} but not to $H(\mathcal{V})$, then S is NFB.

Corollary

The following unary semigroups are NFB:

- the full involution semigroup of binary relations \mathcal{R}_n^\vee ($n \geq 2$), endowed with relational converse
Theorem (K. Auinger, M. V. Volkov, cca. 1991/92)

Let S be a unary semigroup such that $\mathcal{V} = \text{var } S$ contains K_3. If there exist a group G which belongs to \mathcal{V} but not to $H(\mathcal{V})$, then S is NFB.

Corollary

The following unary semigroups are NFB:

- the full involution semigroup of binary relations $\mathcal{R}_n^\triangledown$ ($n \geq 2$), endowed with relational converse

- matrix semigroups with transposition $\mathcal{M}_n(\mathbb{F})$, where \mathbb{F} is a finite field, $|\mathbb{F}| \geq 3$
‘Unary version’ of Volkov’s Theorem

Theorem (K. Auinger, M. V. Volkov, cca. 1991/92)

Let S be a unary semigroup such that $\mathbf{V} = \text{var } S$ contains K_3. If there exist a group G which belongs to \mathbf{V} but not to $H(\mathbf{V})$, then S is NFB.

Corollary

The following unary semigroups are NFB:

- the full involution semigroup of binary relations \mathcal{R}_n^\vee ($n \geq 2$), endowed with relational converse
- matrix semigroups with transposition $\mathcal{M}_n(\mathbb{F})$, where \mathbb{F} is a finite field, $|\mathbb{F}| \geq 3$
- matrix semigroups $(\mathcal{M}_2(\mathbb{F}), \cdot, \dagger)$, where \mathbb{F} is either a finite field such that $|\mathbb{F}| \equiv 3 \pmod{4}$, or a subfield of \mathbb{C} closed under complex conjugation, and \dagger is the unary operation of taking the Moore-Penrose inverse.
However...

The Auinger-Volkov paper remained unpublished for >15 (that is, almost 20) years, because the following question remained unsettled.
However...

The Auinger-Volkov paper remained unpublished for >15 (that is, almost 20) years, because the following question remained unsettled.

Problem

Exactly which of the involution semigroups $M_n(F)$ are NFB, $n \geq 2$, F is a finite field?
However...

The Auinger-Volkov paper remained unpublished for >15 (that is, almost 20) years, because the following question remained unsettled.

Problem
Exactly which of the involution semigroups $\mathcal{M}_n(\mathbb{F})$ are NFB, $n \geq 2$, \mathbb{F} is a finite field?

Also, the following open problem was both intriguing and inviting.

Problem
Do finite INFB involution semigroups exist at all?
An algebra A is inherently nonfinitely based (INFB) if:

- A generates a locally finite variety, and
- any locally finite variety \mathbf{V} containing A is NFB.

Said otherwise, for any finite set of identities Σ satisfied by A, the variety defined by Σ is not locally finite. Therefore, problems concerning INFB algebras are in fact Burnside-type problems.

INFB algebras are a powerful tool for proving the NFB property; namely, the INFB property is “contagious”: if $\text{var} A$ is locally finite and contains an INFB algebra B, then A is NFB. In particular, B is NFB.
INFB...(?)

An algebra A is inherently nonfinitely based (INFB) if:

- A generates a locally finite variety, and
- any locally finite variety V containing A is NFB.

Said otherwise, for any finite set of identities Σ satisfied by A, the variety defined by Σ is not locally finite.
An algebra A is inherently nonfinitely based (INFB) if:

- A generates a locally finite variety, and
- any locally finite variety V containing A is NFB.

Said otherwise, for any finite set of identities Σ satisfied by A, the variety defined by Σ is not locally finite.

Therefore, problems concerning INFB algebras are in fact Burnside-type problems.
An algebra A is inherently nonfinitely based (INFB) if:

- A generates a locally finite variety, and
- any locally finite variety V containing A is NFB.

Said otherwise, for any finite set of identities Σ satisfied by A, the variety defined by Σ is not locally finite.

Therefore, problems concerning INFB algebras are in fact Burnside-type problems.

INFB algebras are a powerful tool for proving the NFB property; namely, the INFB property is “contagious”:

if $\text{var } A$ is locally finite and contains an INFB algebra B, then A is NFB.
An algebra A is inherently nonfinitely based (INFB) if:

- A generates a locally finite variety, and
- any locally finite variety V containing A is NFB.

Said otherwise, for any finite set of identities Σ satisfied by A, the variety defined by Σ is not locally finite.

Therefore, problems concerning INFB algebras are in fact Burnside-type problems.

INFB algebras are a powerful tool for proving the NFB property; namely, the INFB property is “contagious”:

- if $\text{var} \ A$ is locally finite and contains an INFB algebra B,
 then A is NFB.

In particular, B is NFB.
Finite INFB semigroups: a success story

Finite INFB semigroups: a success story

Zimin words: \(Z_1 = x_1 \) and \(Z_{n+1} = Z_n x_{n+1} Z_n \) for \(n \geq 1 \).
Finite INFB semigroups: a success story

Zimin words: $Z_1 = x_1$ and $Z_{n+1} = Z_n x_{n+1} Z_n$ for $n \geq 1$.

Theorem (Sapir, 1987)

Let S be a finite semigroup. Then

$$S \text{ is INFB } \iff S \not\cong Z_n \approx W$$

for all $n \geq 1$ and all words $W \neq Z_n$.
Finite INFB semigroups: a success story

Zimin words: $Z_1 = x_1$ and $Z_{n+1} = Z_n x_{n+1} Z_n$ for $n \geq 1$.

Theorem (Sapir, 1987)
Let S be a finite semigroup. Then

$$S \text{ is INFB } \iff S \not\models Z_n \approx W$$

for all $n \geq 1$ and all words $W \neq Z_n$.

Sapir also found an effective structural description of finite INFB semigroups, thus proving

Theorem (Sapir, 1987)

It is decidable whether a finite semigroup is INFB or not.
Examples of finite INFB semigroups

The example: the 6-element Brandt inverse monoid

\[B^1_2 = \langle a, b : a^2 = b^2 = 0, \ aba = a, \ bab = b \rangle \cup \{1\}. \]
Examples of finite INFB semigroups

The example: the 6-element Brandt inverse monoid

\[B_2^1 = \langle a, b : a^2 = b^2 = 0, aba = a, bab = b \rangle \cup \{1\}. \]

\[B_2^1 \] is representable by matrices (over any field):

\[
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix},
\begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix},
\begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix},
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}.
\]
Examples of finite INFB semigroups

The example: the 6-element Brandt inverse monoid

\[B_2^1 = \langle a, b : a^2 = b^2 = 0, \ aba = a, \ bab = b \rangle \cup \{1\}. \]

\(B_2^1 \) is representable by matrices (over any field):

\[
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix}, \quad \begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}, \quad \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}.
\]

\(B_2^1 \) is obtained by adjoining an identity element to the Rees matrix semigroup over the trivial group \(E = \{e\} \) with the sandwich matrix

\[
\begin{pmatrix}
e & 0 \\
0 & e
\end{pmatrix}
\]
Examples of finite INFB semigroups

Proposition

B^1_2 fails to satisfy a nontrivial identity of the form $Z_n \approx W$. Hence, it is INFB.
Examples of finite INFB semigroups

Proposition

B_2^1 fails to satisfy a nontrivial identity of the form $Z_n \approx W$. Hence, it is INFB.

Corollary

For any $n \geq 2$ and any (semi)ring R, the matrix semigroup $M_n(R)$ is (I)NFB.
Examples of finite INFB semigroups

Proposition

B_2^1 fails to satisfy a nontrivial identity of the form $Z_n \approx W$. Hence, it is INFB.

Corollary

For any $n \geq 2$ and any (semi)ring R, the matrix semigroup $M_n(R)$ is (I)NFB.

Since $B_2^1 \in \text{var } A_2^1$, where A_2 is the 5-element semigroup from Volkov’s theorem, we have that A_2^1 is (I)NFB as well.
Examples of finite INFB semigroups

Proposition

\(B_2^1 \) fails to satisfy a nontrivial identity of the form \(Z_n \approx W \). Hence, it is INFB.

Corollary

For any \(n \geq 2 \) and any (semi)ring \(R \), the matrix semigroup \(M_n(R) \) is (I)NFB.

Since \(B_2^1 \in \text{var } A_2^1 \), where \(A_2 \) is the 5-element semigroup from Volkov’s theorem, we have that \(A_2^1 \) is (I)NFB as well.

The same argument applies to \(T_n \ (n \geq 3),\ R_n \ (n \geq 2),\ PT_n \ (n \geq 2)\,...\)
What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?
What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?

For example, an involution $*$ can be defined on B_2^1 by $a^* = b$, $b^* = a$, the remaining 4 elements (which are idempotents: 0, 1, ab, ba) being fixed.
What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?

For example, an involution \(* \) can be defined on \(B_2^1 \) by \(a^* = b, \)
\(b^* = a, \) the remaining 4 elements (which are idempotents:
0, 1, \(ab, \) \(ba) \) being fixed. This turns \(B_2^1 \) into an inverse semigroup.
What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?

For example, an involution * can be defined on B_2^1 by $a^* = b$, $b^* = a$, the remaining 4 elements (which are idempotents: 0, 1, ab, ba) being fixed. This turns B_2^1 into an inverse semigroup.

Surprise...!!!
What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?

For example, an involution \ast can be defined on B_2^1 by $a^* = b$, $b^* = a$, the remaining 4 elements (which are idempotents: $0, 1, ab, ba$) being fixed. This turns B_2^1 into an inverse semigroup.

Surprise...!!!

Theorem (Sapir, 1993)

B_2^1 is not INFB as an inverse semigroup.
What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?

For example, an involution $*$ can be defined on B_2^1 by $a^* = b$, $b^* = a$, the remaining 4 elements (which are idempotents: $0, 1, ab, ba$) being fixed. This turns B_2^1 into an inverse semigroup.

Surprise...!!!

Theorem (Sapir, 1993)

B_2^1 is not INFB as an inverse semigroup. In fact, there is no finite INFB inverse semigroup at all!
What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?

For example, an involution $*$ can be defined on B_2^1 by $a^* = b$, $b^* = a$, the remaining 4 elements (which are idempotents: $0, 1, ab, ba$) being fixed. This turns B_2^1 into an inverse semigroup.

Surprise...!!!

Theorem (Sapir, 1993)

B_2^1 is not INFB as an inverse semigroup. In fact, there is no finite INFB inverse semigroup at all!

Still, the inverse semigroup B_2^1 is NFB (Kleiman, 1979).
What a difference an involution makes? Well...

How on Earth is the case of unary semigroups different?

For example, an involution $*$ can be defined on B^1_2 by $a^* = b$, $b^* = a$, the remaining 4 elements (which are idempotents: $0, 1, ab, ba$) being fixed. This turns B^1_2 into an inverse semigroup.

Surprise...!!!

Theorem (Sapir, 1993)

B^1_2 is not INFB as an inverse semigroup. In fact, there is no finite INFB inverse semigroup at all!

Still, the inverse semigroup B^1_2 is NFB (Kleiman, 1979).

So, once again:

Problem

> Do finite INFB involution semigroups exist at all?
An INFB criterion for involution semigroups

Yes!
Yes!

Theorem (ID, cca. 2007/08)

Let S be an involution semigroup such that $\text{var } S$ is locally finite. If S fails to satisfy any nontrivial identity of the form

$$Z_n \approx W,$$

where W is an involutorial word (a word over the ‘doubled’ alphabet $X \cup X^*$), then S is INFB.
Yes!

Theorem (ID, cca. 2007/08)
Let S be an involution semigroup such that $\text{var } S$ is locally finite. If S fails to satisfy any nontrivial identity of the form

$$Z_n \approx W,$$

where W is an involutorial word (a word over the ‘doubled’ alphabet $X \cup X^*$), then S is INFB.

How about a (finite) example?
‘C’mon baby, let’s do the twist…!’

Rescue: Luckily, B_2^1 admits one more involution aside from the inverse one: define the nilpotents a, b (and, of course, 0, 1) to be fixed by *, which results in $(ab)^* = ba$ and $(ba)^* = ab$.
‘C’mon baby, let’s do the twist…!’

Rescue: Luckily, B_2^1 admits one more involution aside from the inverse one: define the nilpotents a, b (and, of course, 0, 1) to be fixed by \ast, which results in $(ab)^\ast = ba$ and $(ba)^\ast = ab$.

In this way we obtain the **twisted Brandt monoid** TB_2^1.

Rescue: Luckily, B_2^1 admits one more involution aside from the inverse one: define the nilpotents a, b (and, of course, 0, 1) to be fixed by \ast, which results in $(ab)^\ast = ba$ and $(ba)^\ast = ab$.

In this way we obtain the **twisted Brandt monoid** TB_2^1.

‘C’mon baby, let’s do the twist…!’

Rescue: Luckily, B_2^1 admits one more involution aside from the inverse one: define the nilpotents a, b (and, of course, $0, 1$) to be fixed by \ast, which results in $(ab)^\ast = ba$ and $(ba)^\ast = ab$.

In this way we obtain the twisted Brandt monoid TB_2^1.

Proposition

TB_2^1 fails to satisfy a nontrivial identity of the form $Z_n \approx W$. Hence, it is INFB.
‘C’mon baby, let’s do the twist…!’

Rescue: Luckily, B_2^1 admits one more involution aside from the inverse one: define the nilpotents a, b (and, of course, $0, 1$) to be fixed by \ast, which results in $(ab)^\ast = ba$ and $(ba)^\ast = ab$.

In this way we obtain the twisted Brandt monoid TB_2^1.

Proposition

TB_2^1 fails to satisfy a nontrivial identity of the form $Z_n \cong W$. Hence, it is INFB.

Similarly to B_2^1, this little guy is quite powerful.
‘C’mon baby, let’s do the twist…!’

Rescue: Luckily, B_2^1 admits one more involution aside from the inverse one: define the nilpotents a, b (and, of course, $0, 1$) to be fixed by \ast, which results in $(ab)^\ast = ba$ and $(ba)^\ast = ab$.

In this way we obtain the twisted Brandt monoid TB_2^1.

Proposition

TB_2^1 fails to satisfy a nontrivial identity of the form $Z_n \approx W$. Hence, it is INFB.

Similarly to B_2^1, this little guy is quite powerful.

Remark

Analogously, one can also define TA_2^1, the “involutorial version” of A_2^1, which is also INFB.
Examples of finite INFB involution semigroups

- R_n^\vee, the involution semigroup of binary relations, is (I)NFB for all $n \geq 2$,

Reason: TB_{12} embeds into R_{2}.

Reason: This is precisely the case when -1 has a square root in F, which is sufficient and necessary for TB_{12} to embed into $M_2(F)$.

Reason: TB_{12} embeds into $M_n(F)$ as a consequence of the Chevalley-Warning theorem from algebraic number theory.

So, what about $M_2(F)$ if $|F| \equiv 3 \pmod{4}$? (We already know it is NFB.)
Examples of finite INFB involution semigroups

- \mathcal{R}_n^\vee, the involution semigroup of binary relations, is (I)NFB for all $n \geq 2$,
 - Reason: TB_2^1 embeds into \mathcal{R}_2^\vee.

- $\mathcal{M}_n(F)$ for all $n \geq 3$ and all finite fields F.
 - Reason: TB_2^1 embeds into $\mathcal{M}_n(F)$ as a consequence of the Chevalley-Warning theorem from algebraic number theory.

So, what about $\mathcal{M}_2(F)$ if $|F| \equiv 3 \pmod{4}$?
(We already know it is NFB.)
Examples of finite INFB involution semigroups

- \mathcal{R}_n^\vee, the involution semigroup of binary relations, is (I)NFB for all $n \geq 2$,
 - Reason: TB_2^1 embeds into \mathcal{R}_2^\vee.

- $\mathcal{M}_2(\mathbb{F})$, provided $|\mathbb{F}| \not\equiv 3 \pmod{4}$,
Examples of finite INFB involution semigroups

- R_n^\triangledown, the involution semigroup of binary relations, is (I)NFB for all $n \geq 2$,
 - Reason: TB_2^1 embeds into R_2^\triangledown.

- $M_2(F)$, provided $|F| \not\equiv 3 \pmod{4}$,
 - Reason: This is precisely the case when -1 has a square root in F, which is sufficient and necessary for TB_2^1 to embed into $M_2(F)$.

- $M_n(F)$ for all $n \geq 3$ and all finite fields F.
 - Reason: TB_2^1 embeds into $M_n(F)$ as a consequence of the Chevalley-Warning theorem from algebraic number theory.
Examples of finite INFB involution semigroups

- \mathcal{R}_n^\vee, the involution semigroup of binary relations, is (I)NFB for all $n \geq 2$,
 - Reason: TB_2^1 embeds into \mathcal{R}_2^\vee.

- $\mathcal{M}_2(\mathbb{F})$, provided $|\mathbb{F}| \not\equiv 3 \pmod{4}$,
 - Reason: This is precisely the case when -1 has a square root in \mathbb{F}, which is sufficient and necessary for TB_2^1 to embed into $\mathcal{M}_2(\mathbb{F})$.

- $\mathcal{M}_n(\mathbb{F})$ for all $n \geq 3$ and all finite fields \mathbb{F}.
Examples of finite INFB involution semigroups

- $\mathcal{R}_n^\triangledown$, the involution semigroup of binary relations, is (I)NFB for all $n \geq 2$,
 - Reason: TB_2^1 embeds into $\mathcal{R}_2^\triangledown$.

- $\mathcal{M}_2(\mathbb{F})$, provided $|\mathbb{F}| \not\equiv 3 (\text{mod } 4)$,
 - Reason: This is precisely the case when -1 has a square root in \mathbb{F}, which is sufficient and necessary for TB_2^1 to embed into $\mathcal{M}_2(\mathbb{F})$.

- $\mathcal{M}_n(\mathbb{F})$ for all $n \geq 3$ and all finite fields \mathbb{F}.
 - Reason: TB_2^1 embeds into $\mathcal{M}_n(\mathbb{F})$ as a consequence of the Chevalley-Warning theorem from algebraic number theory (!!!).
Examples of finite INFB involution semigroups

- \mathcal{R}_n^\vee, the involution semigroup of binary relations, is (I)NFB for all $n \geq 2$,
 - Reason: TB_2^1 embeds into \mathcal{R}_2^\vee.

- $\mathcal{M}_2(\mathbb{F})$, provided $|\mathbb{F}| \not\equiv 3$ (mod 4),
 - Reason: This is precisely the case when -1 has a square root in \mathbb{F}, which is sufficient and necessary for TB_2^1 to embed into $\mathcal{M}_2(\mathbb{F})$.

- $\mathcal{M}_n(\mathbb{F})$ for all $n \geq 3$ and all finite fields \mathbb{F}.
 - Reason: TB_2^1 embeds into $\mathcal{M}_n(\mathbb{F})$ as a consequence of the Chevalley-Warning theorem from algebraic number theory (!!!).

So, what about $\mathcal{M}_2(\mathbb{F})$ if $|\mathbb{F}| \equiv 3$ (mod 4)?
(We already know it is NFB.)
Non-INFB results

Theorem (ID, 2010)

Let S be a finite involution semigroup satisfying a nontrivial identity of the form $Z_n \approx W$ such that $B_2^1 \not\in \var S$. Then S is not INFB.

Proof idea: Either W is an ordinary semigroup word, or for any $*$-fixed idempotent e of S, $\var eS$ consists of involution semilattices of Archimedean semigroups.
Non-INFB results

Theorem (ID, 2010)

Let S be a finite involution semigroup satisfying a nontrivial identity of the form $Z_n \approx W$ such that $B_2^1 \notin \text{var } S$. Then S is not INFB.

Proof idea: Either W is an ordinary semigroup word, or for any $*$-fixed idempotent e of S, var eSe consists of involution semilattices of Archimedean semigroups.
Non-INFB results

Theorem (ID, 2010)

Let S be a finite involution semigroup satisfying a nontrivial identity of the form $Z_n \approx W$ such that $B_2^1 \not\in \text{var } S$. Then S is not INFB.

Proof idea: Either W is an ordinary semigroup word, or for any *-fixed idempotent e of S, $\text{var } eSe$ consists of involution semilattices of Archimedean semigroups.

Theorem (ID, 2010)

Let S be a finite semigroup satisfying an identity of the form $Z_n \approx Z_n W$. Then S is not INFB.
Non-INFB results

Theorem (ID, 2010)

Let S be a finite involution semigroup satisfying a nontrivial identity of the form $Z_n \approx W$ such that $B_2^1 \not\in \text{var } S$. Then S is not INFB.

Proof idea: Either W is an ordinary semigroup word, or for any *-fixed idempotent e of S, $\text{var } eSe$ consists of involution semilattices of Archimedean semigroups.

Theorem (ID, 2010)

Let S be a finite semigroup satisfying an identity of the form $Z_n \approx Z_n W$. Then S is not INFB.

Proof idea: Stretching the approach of Margolis & Sapir (1995) developed for finitely generated quasivarieties of semigroups to what seems to be the final limits of that method: certain semigroup quasiidentities can be “encoded” into unary semigroup identities.
Non-INFB results

Corollary

No finite regular \(* \)-semigroup is INFB.
(Namely, \(x \approx x(x^*x) \) holds.)
Non-INFB results

Corollary

No finite regular \(*\)-semigroup is INFB.

(Namely, \(x \approx x(x^*x)\) holds.)

Corollary (ID, 2010)

For any finite group \(G\), the involution semigroup of subsets \(\mathcal{P}_G^* = (\mathcal{P}(G), \cdot, *)\) is not INFB.
Non-INFB results

Corollary

No finite regular \(*\)-semigroup is INFB.
(Namely, \(x \approx x(x^*x)\) holds.)

Corollary (ID, 2010)

For any finite group \(G\), the involution semigroup of subsets \(\mathcal{P}_G^* = (\mathcal{P}(G), \cdot, *)\) is not INFB.
(Namely, \(\mathcal{P}_G^*\) satisfies \(Z_n \approx Z_n x_1^* x_1\) for \(n = |G| + 2\).)
Non-INFB results

Corollary

No finite regular \(*\)-semigroup is INFB.

(Namely, \(x \approx x(x^*x)\) holds.)

Corollary (ID, 2010)

For any finite group \(G\), the involution semigroup of subsets \(\mathcal{P}_G^* = (\mathcal{P}(G), \cdot, *)\) is not INFB.

(Namely, \(\mathcal{P}_G^*\) satisfies \(Z_n \approx Z_n x_1^* x_1\) for \(n = |G| + 2\).)

Remark

The ordinary power semigroup \(\mathcal{P}_G = (\mathcal{P}(G), \cdot)\) is INFB if and only if \(G\) is not Dedekind.
Non-INFB results

Proposition (Crvenković, 1982)

If a finite involution semigroup S admits a Moore-Penrose inverse $†$, then the inverse is term-definable in S.

In particular, such a semigroup satisfies $x \approx x \cdot w(x, x^*) \cdot x$ for some $w = \Rightarrow$ it is not INFB.

Proposition

The involution semigroup of 2×2 matrices over a finite field F with transposition admits a Moore-Penrose inverse if and only if $|F| \equiv 3 \pmod{4}$.

This completes our classification!
Proposition (Crvenković, 1982)

If a finite involution semigroup S admits a Moore-Penrose inverse \(^\dagger\), then the inverse is term-definable in S.

In particular, such a semigroup satisfies $x \approx x \cdot w(x, x^*) \cdot x$ for some w.
Non-INFB results

Proposition (Crvenković, 1982)

If a finite involution semigroup S *admits a Moore-Penrose inverse* †, *then the inverse is term-definable in* S.

In particular, such a semigroup satisfies $x \approx x \cdot w(x, x^*) \cdot x$ for some $w \implies$ it is not INFB.
Non-INFB results

Proposition (Crvenković, 1982)

If a finite involution semigroup S admits a Moore-Penrose inverse \dagger, then the inverse is term-definable in S.

In particular, such a semigroup satisfies $x \approx x \cdot w(x, x^*) \cdot x$ for some $w \Rightarrow$ it is not INFB.

Proposition

The involution semigroup of 2×2 matrices over a finite field \mathbb{F} with transposition admits a Moore-Penrose inverse if and only if $|\mathbb{F}| \equiv 3 \pmod{4}$.
Non-INFB results

Proposition (Crvenković, 1982)

If a finite involution semigroup S admits a Moore-Penrose inverse \dagger, then the inverse is term-definable in S.

In particular, such a semigroup satisfies $x \approx x \cdot w(x, x^*) \cdot x$ for some $w \implies$ it is not INFB.

Proposition

The involution semigroup of 2×2 matrices over a finite field \mathbb{F} with transposition admits a Moore-Penrose inverse if and only if $|\mathbb{F}| \equiv 3 \pmod{4}$.

This completes our classification! ♡
Solution to the (I)NFB problem for matrix involution semigroups

Theorem (Auinger, ID, Volkov, 2008-10)

Let \(n \geq 2 \) and \(\mathbb{F} \) be a finite field. Then

1. \(\mathcal{M}_n(\mathbb{F}) \) is not finitely based;
2. \(\mathcal{M}_n(\mathbb{F}) \) is INFB if and only if either \(n \geq 3 \), or \(n = 2 \) and \(|\mathbb{F}| \not\equiv 3 \pmod{4} \).
Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property.
The gap

Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property. We don’t know what to do with finite involution semigroups (if they exist) such that:

(a) \(B_1^2 \in \text{var} \ S \),
(b) \(S \) satisfies a nontrivial identity of the form \(Z_n \approx W \),
(c) \(S \), however, fails to satisfy an identity of the form \(Z_n \approx Z_n W' \).

This “gap” does not occur for ordinary semigroups, as (b) renders (a) impossible. But this is no longer the case for involution semigroups!
The gap

Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property. We don’t know what to do with finite involution semigroups (if they exist) such that:

(a) \(B^1_2 \in \text{var } S, \)

This “gap” does not occur for ordinary semigroups, as (b) renders (a) impossible. But this is no longer the case for involution semigroups!
The gap

Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property. We don’t know what to do with finite involution semigroups (if they exist) such that:

(a) $B^1_2 \in \text{var } S$,
(b) S satisfies a nontrivial identity of the form $Z_n \approx W$,

This “gap” does not occur for ordinary semigroups, as (b) renders (a) impossible.

But this is no longer the case for involution semigroups!
The gap

Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property. We don’t know what to do with finite involution semigroups (if they exist) such that:

(a) $B_2^1 \in \text{var } S$,
(b) S satisfies a nontrivial identity of the form $Z_n \approx W$,
(c) S, however, fails to satisfy an identity of the form $Z_n \approx Z_n W'$.
The gap

Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property. We don’t know what to do with finite involution semigroups (if they exist) such that:

(a) $B_2^1 \in \text{var } S$,

(b) S satisfies a nontrivial identity of the form $Z_n \approx W$,

(c) S, however, fails to satisfy an identity of the form $Z_n \approx Z_n W'$.

This “gap” does not occur for ordinary semigroups, as (b) renders (a) impossible.
The gap

Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property. We don’t know what to do with finite involution semigroups (if they exist) such that:

(a) $B_2^1 \in \text{var } S$,
(b) S satisfies a nontrivial identity of the form $Z_n \approx W$,
(c) S, however, fails to satisfy an identity of the form $Z_n \approx Z_n W'$.

This “gap” does not occur for ordinary semigroups, as (b) renders (a) impossible. But this is no longer the case for involution semigroups!
The gap

Unfortunately, we have not yet accomplished a full classification of finite involution semigroups with respect to the INFB property. We don’t know what to do with finite involution semigroups (if they exist) such that:

(a) $B_2^1 \in \text{var } S$,
(b) S satisfies a nontrivial identity of the form $Z_n \approx W$,
(c) S, however, fails to satisfy an identity of the form $Z_n \approx Z_n W'$.

This “gap” does not occur for ordinary semigroups, as (b) renders (a) impossible. But this is no longer the case for involution semigroups!

Test-Example

Is $xyxzxyx \approx xyxx^*xzxyx$ implying the non-INFB property?
THANK YOU!

Questions and comments to:

dockie@dmi.uns.ac.rs

Preprints may be found at:
http://sites.dmi.rs/personal/dolinkai