A Nonfinitely Based Finite Semiring

Igor Dolinka
The finite basis problem

\(A \) – a finite algebra
\(\text{Eq}(A) \) – the set of all identities true in \(A \)

Is \(\text{Eq}(A) \) finitely axiomatizable (finitely based)?

McKenzie (1996): in general, \textcolor{red}{\text{undecidable}}
Finitely based finite algebras

- groups: Oates & Powell (1966)
- commutative semigroups: Perkins (1968)
- rings: Львов, Kruse (1973)
Some NFB finite algebras

- Мурский (1965): a 3-element groupoid
 - this is a special case of NFB graph algebras – Baker, McNulty, Werner (1987)
- Perkins (1968): a 6-element semigroup = the Brandt monoid B_2^1 of order 2

\[
\begin{pmatrix}
0 & 0 \\
0 & 0
\end{pmatrix}, \begin{pmatrix}
1 & 0 \\
0 & 0
\end{pmatrix}, \begin{pmatrix}
0 & 1 \\
0 & 0
\end{pmatrix}, \begin{pmatrix}
0 & 0 \\
1 & 0
\end{pmatrix}, \begin{pmatrix}
0 & 0 \\
0 & 1
\end{pmatrix}, \begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]

- the Perkins’ semigroup is INFB = each l.f. variety containing it is NFB (Sapir, 1987)
Semirings

Semiring = an algebra \((\Sigma,+,\cdot,0)\) such that
- \((\Sigma,+ ,0)\) is a commutative monoid,
- \((\Sigma, \cdot)\) is a semigroup,
- the multiplication distributes over addition.

If + is an idempotent operation \((x + x = x)\), then we have ai-semirings.
a subsemiring of $\text{Rel}(2)$, the semiring of binary relations on a two element set, formed by:
 - the four relations with 3 pairs,
 - the empty, the diagonal, and the full relation

alternatively, the ai-semiring formed by 7 Boolean matrices

\[
\begin{bmatrix}
0 & 0 \\
0 & 0 \\
\end{bmatrix}, \begin{bmatrix}
1 & 0 \\
1 & 1 \\
\end{bmatrix}, \begin{bmatrix}
1 & 1 \\
0 & 1 \\
\end{bmatrix}, \\
\begin{bmatrix}
0 & 1 \\
1 & 1 \\
\end{bmatrix}, \begin{bmatrix}
1 & 1 \\
1 & 0 \\
\end{bmatrix}, \begin{bmatrix}
1 & 0 \\
0 & 1 \\
\end{bmatrix}, \begin{bmatrix}
1 & 1 \\
1 & 1 \\
\end{bmatrix}.
\]

(remember that we have $1+1=1$ in the 2-element Boolean semiring)
\(\Sigma_7 \) (continued)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>0</td>
<td>a</td>
<td>f</td>
<td>c</td>
<td>f</td>
<td>a</td>
<td>f</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>f</td>
<td>b</td>
<td>f</td>
<td>d</td>
<td>b</td>
<td>f</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>f</td>
<td>c</td>
<td>f</td>
<td>a</td>
<td>c</td>
<td>f</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>d</td>
<td>f</td>
<td>b</td>
<td>f</td>
<td>d</td>
<td>f</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
</tbody>
</table>

equations of \(B_2^1 = \) semigroup equations of \(\Sigma_7 \)
Is there such a thing as a NFB finite semiring?

Theorem A. Σ_7 is NFB.

According to *MathSciNet*, this is a first example of such kind.

What follows is a (hopefully) **VERY** short outline of the proof idea.
IMAGIGAM words

- a word of the form
 \[yLyL^R \]
 where \(L \) is a linear word not containing \(y \), and \(L^R \) is the reverse of \(L \)

- for all \(n \), \(B_2^1 \) (and so \(\Sigma_7 \)) satisfies the \textbf{imagigam equations}
 \[yx_1x_2 \ldots x_nyx_n \ldots x_2x_1 = yx_n \ldots x_2x_1yx_1x_2 \ldots x_n \]
Isoterm #1

A word u is an isoterm for an ai-semiring identity

$$\sum_i u_i = \sum_j v_j$$

if for each semigroup substitution ϕ such that $\phi(u_i)$ is (for some i) a subword of u we have that

- either not all ϕ-values of u_i's are equal, or
- all ϕ-values of both u_i's and v_j's are equal
Isoterm #2

- for a fixed ai-semiring \(\Sigma \) and words \(u, v \) we write \(u \leq v \) if \(\Sigma \) satisfies \(u + v = v \)
- a word \(w \) is minimal if \(u \leq w \) implies that \(u \) is either 0, or \(w \)
- a minimal word = an isoterm for all identities of \(\Sigma \) (an isoterm of \(\Sigma \))
Isoterm #3

Let n be a natural number and Σ an ai-semiring.

A word u in at least n letters is an n-isoterm of Σ if it is an isoterm for all equations of Σ in less than n letters.
An easy proposition. Let Σ be an ai-semiring. Suppose that for arbitrary large n we manage to find a word w_n which is an n-isoterm, but not an isoterm of Σ.

Then Σ is NFB.
Why isotersms?

If one translates all notions to semigroups this is exactly the tool used by Perkins!

Namely, the imagigam words turn out to be suitable: Perkins proves that

$$yx_1x_2\ldots x_nyx_n\ldots x_2x_1$$

is always a (semigroup) n-isoterm, while the imagigam equations show that it is not an isoterm of the Perkins’ monoid.
René, I’ve got a plan...

Can we do the same for Σ_f?

I.e., is the nth imagigam word an n-isoterm (in the ai-semiring sense) of Σ_f? (It is obviously not an isoterm of Σ_f.)

How to find n-isot TERMS at all?
A good lemma always saves the day!

Lemma. Let w be a word, with precisely n letters occurring in it, let Σ be an ai-semiring, and let $k<n$ be such that

1. each word u in less than n letters, such that w contains a value of u (under some substitution), is minimal with respect to Σ,
2. w satisfies a certain combinatorial (and technical – but not too much) condition called the **k-joint substitution property**.

Then w is a $(k+1)$-isoterm of Σ.
In \(\Sigma_7 \), the imagigam words satisfy both conditions!

1) Each word in at most \(n \) variables that has a value in the \(n \)th imagigam word is minimal in \(\Sigma_7 \).

2) Each imagigam word containing at least \(4k+2 \) letters has the \(k \)-joint substitution property.

1) is a classical combinatorics-on-words issue; for the proof of 2) the key thing is to use a fact from elementary geometry (!)
1) + 2) + Easy Prop. => Theorem A.

To tell the truth, we do not need the `full strength’ of Eq(Σ_7), only 7 its particular features so that we obtain a slightly more general result...
Theorem B. Let Σ be an ai-semiring. Call Σ special if it satisfies the following conditions:

(a) the inequalities of Σ are closed under deletion, i.e. for any words u, v such that $u \leq v$ we have $c(u) = c(v)$, and if u', v' are obtained respectively from u, v by deleting all occurrences of a given variable (provided u, v contain at least two variables), then $u' \leq v'$,

(b) $yx \not\leq xy$,
(c) x and xyx are minimal with respect to Σ,
(d) x^2y, xyx, yx^2 are mutually \leq-incomparable,
(e) $w \not\leq (xy)^2$ whenever $w \in \{xyx, yxyxy\}$ or w contains one of x^2, y^2 as a subword,
(f) $xyzxy \not\leq xyzyx, yxzyx \not\leq xzyx$ and $xzyx \not\leq xzy^2x$,
(g) $w \not\leq xyzttxt$ for $w \in \{xzttxz, xzttxzt, zttxzt\}$.

If Σ is special and satisfies all the imagigam identities, then it is nonfinitely based.
Open questions

- **Q1:** Are the semirings $\text{Rel}(n)$ of binary relations on an n-element set, $n>1$, finitely based or not?

- **Q2:** Is Σ_7 INFB?
 Clearly enough, A2: *Yes* \Rightarrow A1: *They’re not.*

- **Q3:** If A2 is *Yes*, is the same conclusion true for each finite ai-semiring in which all *Zimin words* are minimal (a feature easily proved in Σ_7 by induction)?
Thank you!