Dr. Dušan Jakovetić
Title and affiliation
Associate Professor, Department of Mathematics
and Informatics, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
Email
dusan.jakovetic@dmi.uns.ac.rs
Address
Department of Mathematics and Informatics, New
Building, Second Floor, Room 1
Trg Dositeja Obradovica
3, 21000 Novi Sad, Serbia
Research interests
Algorithms and systems for
distributed optimization, inference, learning, and data analytics, and their
applications.
Education
Ph. D.,
Department of Electrical and Computer Engineering, Carnegie Mellon University,
Pittsburgh, PA, USA, 2013
Ph. D., Instituto Superior Técnico,
Lisbon, Portugal, 2013
Dipl. Ing. (5 years degree), School of Electrical Engineering,
University of Belgrade, 2007
Experience
Associate
Professor, Faculty of Sciences, University of Novi Sad, Serbia, 2020-present
Assistant Professor, Faculty of Sciences,
University of Novi Sad, Serbia, 2015-2020
Visiting Researcher, University of Strathclyde, Glasgow, UK, June 2017-August 2017
Visiting Researcher, University of Ghent,
Belgium, June 2015
Senior
Researcher, BioSense Institute, Novi Sad, Serbia,
2013-2015
Postdoctoral
Researcher, Instituto Superior Tecnico,
Lisbon, Portugal, June 2013-October 2013
Graduate
Research Assistant (PhD student, Teaching Assistant), Department of Electrical
and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA,
2009-2011
Graduate
Research Assistant (PhD student), Instituto Superior Tecnico, Lisbon, Portugal, 2007-2009 + 2011-2013
Teaching
Distributed optimization with
applications (master-level; data science master program,
https://www.pmf.uns.ac.rs/en/studies/study-programs/master-of-science-in-applied-mathematics-data-science/)
Statistical
theory for learning and signal processing (master-level; data science)
Mathematical
modeling seminar (master-level; data science and applied mathematics,
https://www.dmi.uns.ac.rs/files/722/primenjena_matematika_mb.pdf)
Signals
and systems (master-level; data science)
Network
science (master-level; data science)
Projects
EU H2020 project “I-BiDaaS: Industrial-Driven Big Data as a Self-Service
Solution”;
duration: 2018-2020; scientific and technical coordinator
EU H2020 project “C4IIoT: Cyber
security 4.0: protecting the Industrial Internet Of
Things”;
duration: 2019-2021; scientific and technical coordinator
EU H2020 project “COLLABS: A
comprehensive cyber-intelligence framework for resilient collaborative manufacturing
systems”;
duration: 2020-2022; scientific and technical coordinator
EU H2020 project “BIGMATH: Big Data Challenges for
Mathematics”; duration: 2018-2021; experienced researcher
EU H2020 project “ASCAPE:
Artificial intelligence supporting cancer patients across Europe”; duration:
2020-2022; experienced researcher
EU H2020 project “CYRENE:
Certifying the Security and Resilience of Supply Chain Services”; duration:
2020-2023; experienced researcher
“Probotain: An integrated predictive maintenance solution
on robotic production line equipment”; subproject of EU H2020 project Market
4.0; duration: 2021-2022; experienced researcher
Interreg IPA Cross-border
Cooperation program Croatia – Serbia project: “RealForAll:
Real-time measurements and forecasting for successful prevention and management
of seasonal allergies in Croatia-Serbia cross-border region”; duration
2017-2020; experienced researcher
“Application of optimization methods in biomedicine,”
Serbia-Croatia Cooperation in Science and Technology; duration 2019-2020;
(co-)coordinator
“Second Order Methods for Optimization Methods in Machine
Learning,” Italia-Serbia Cooperation in Science and Technology, duration
2019-2022; experienced researcher
“Numerical methods, simulations, and applications”, Serbian
Ministry of Education, Science, and Technological development; duration 2011-to
date; experienced researcher
Awards
Dr. Zoran
Djindjic special award for a young researcher with
outstanding contributions to science in 2017, awarded by the Provincial
Government of Vojvodina, Serbia; 2017
A. G. Milnes award, Carnegie Mellon University, Dept. of
Electrical and Computer Engineering, “presented to an ECE doctoral student or
students for Ph.D. thesis work judged to be of the highest quality and which is
likely to have significant impact in his or her field;” 2014
Claire, MM 1965, and
John Bertucci, E 1963, TPR 1965, Fellowship in
Engineering, Carnegie Mellon University, Dept. of Electrical and Computer
Engineering; 2012
Publications [selected]
Book chapters
·
A. Alexopoulos,
Y. Becerra, O. Boehm, G. Bravos, V. Chatzigiannakis,
C. Cugnasco, G. Demetriou,
I. Eleftheriou, L. Fodor, S. Fotis,
S. Ioannidis, D. Jakovetic,
L. Kallipolitis, V. Katusic,
E. Kavakli, D. Kopanaki, C.
Leventis, M. Maawad Marcos,
R. Martin de Pozuelo, M. Martínez,
N. Milosevic, E. Pere Pages Montanera,
G. Ristow, H. Ruiz-Ocampo,
R. Sakellariou, R. Sirvent,
S. Skrbic, I. Spais, G. Vasiliadis, M. Vinov, “Big Data
Analytics in the Banking Sector: Guidelines and Lessons Learned from the CaixaBank Case,” In: Curry, E., Auer, S., Berre, A.J., Metzger, A., Perez, M.S., Zillner,
S. (eds) Technologies and Applications for Big Data
Value . Springer, Cham. https://doi.org/10.1007/978-3-030-78307-5_13
·
A.
Alexopoulos, Y. Becerra, O. Boehm, G. Bravos, V. Chatzigiannakis, C. Cugnasco, G. Demetriou, I. Eleftheriou, S. Fotis, G. Genchi, S. Ioannidis, D. Jakovetic,
L. Kallipolitis, V. Katusic,
E. Kavakli, D. Kopanaki, C.
Leventis, M. Martínez, J. Mascolo, N. Milosevic, E. Pere
Pages Montanera, G. Ristow,
H. Ruiz-Ocampo, R. Sakellariou,
R. Sirvent, S. Skrbic, I. Spais, G. Danilo Spennacchio, D. Stamenkovic, G. Vasiliadis, M. Vinov, “Big Data Analytics in the Manufacturing
Sector: Guidelines and Lessons Learned through the CRF Case,” In: Curry,
E., Auer, S., Berre, A.J., Metzger, A., Perez, M.S., Zillner, S. (eds) Technologies
and Applications for Big Data Value . Springer, Cham.
https://doi.org/10.1007/978-3-030-78307-5_15
Journal papers and preprints
·
A. Armacki, D. Bajovic, D. Jakovetic, S. Kar, One-Shot
Federated Learning for Model Clustering and Learning in Heterogeneous
Environments, CoRR abs/2209.10866, 2022
·
D. Bajovic, D. Jakovetic,
S. Kar, Large deviations rates for stochastic
gradient descent with strongly convex functions. CoRR
abs/2211.00969, 2022
·
A. Armacki, D. Bajovic, D. Jakovetic, S. Kar, Personalized
Federated Learning via Convex Clustering. CoRR
abs/2202.00718, 2022
·
L. Fodor, D.
Jakovetic, D. Boberic Krsticev, S. Skrbic, A parallel ADMM-based convex
clustering method, EURASIP J. Adv. Signal Process, 2022(1): 108, 2022
·
G. Bravos, A. J. Cabrera, C. Correa, D. Danilovic, N. Evangeliou, G. Ezov, Z. Gajica, D. Jakovetic,
L. Kallipolitis, M. Lukic,
J. Mascolo, D. Masera, R. Mazo, I. Mezei, A. Miaoudakis, N. Miloševic, W. Oliff, J. Robin, M. Smyrlis, G. Sakellari, G. Stamatis, D. Stamenkovic, S. Skrbic, C. Souveyet, S. Vantolas, G. Vasiliadis, D. Vukobratovic, Cybersecurity for Industrial Internet of Things: Architecture, Models and
Lessons Learned, IEEE Access,
2022, doi: 10.1109/ACCESS.2022.3225074.
·
D. Jakovetic, D. Bajovic, A. K. Sahu, S. Kar, N. Milosevic, D. Stamenkovic, Nonlinear Gradient Mappings And Stochastic
Optimization: A General Framework With Applications To Heavy-Tail Noise, SIAM
Journal on Optimization, 2022, to appear
·
M. Savic, V. Kurbalija, M. Ilic, M. Ivanovic, D. Jakovetic,
A. Valachis, S. Autexier, J.
Rust, T. Kosmidis, The Application of Machine
Learning Techniques in Prediction of Quality of Life Features for Cancer
Patients, Computer Science and Information Systems, 2022
·
D. Jakovetić, N. Krejić,
N. Krklec Jerinkić, EFIX:
Exact Fixed Point Methods for Distributed Optimization, Journal of Global
Optimization, 2022
·
D. Jakovetic, M. Vukovic, D. Bajovic,
A. K. Sahu, S. Kar,
Distributed Recursive Estimation Under Heavy-Tail Communication Noise, 2022,
available at: https://github.com/dusanjakovetic/Large-scale-and-distributed-optimization-learning-and-inference/blob/main/DistributedRecursiveHeavyTail.pdf
·
D. Jakovetic, N. Krejic, N. Krklec
Jerinkic, A
Hessian inversion-free exact second order method for distributed consensus
optimization, IEEE Transactions on Signal and Information Processing over
Networks ( Volume: 8), pp. 755 – 770, 2022
·
G. Malaspina, D. Jakovetic,
N. Krejic, Linear Convergence Rate Analysis of a
Class of Exact First-Order Distributed Methods for Time-Varying Directed
Networks and Uncoordinated Step Sizes, 2021, available at:
https://arxiv.org/pdf/2007.08837.pdf
·
S. Rackovic,
C. Soares, D. Jakovetic, Z. Desnica,
Accurate, Interpretable, and Fast Animation: An Iterative, Sparse, and
Nonconvex Approach, 2021, available at: https://arxiv.org/abs/2109.08356
·
D. Jakovetic, N. Krejic, N. Krklec Jerinkic, G.
Malaspina, A. Micheletti, Distributed fixed point method for solving systems of
linear algebraic equations, Automatica, vol. 134, 2021.
·
L. Fodor, D. Jakovetic, N. Krejic, N. Krklec
Jerinkic, S. Skrbic, Performance evaluation and analysis of distributed
multi-agent optimization algorithms with sparsified directed communication,
EURASIP J. Adv. Signal Processing, 2021.
·
M. Savic, J.
Atanasijevic, D. Jakovetic, N.
Krejic, Tax Evasion Risk Management Using a Hybrid Unsupervised Outlier
Detection Method, Expert Syst. Appl. 193: 116409, 2022
·
M. Savic, M.
Lukic, D. Danilovic, Z. Bodroski, D. Bajovic, I. Mezei, D. Vukobratovic, S.
Skrbic, D. Jakovetic, Deep Learning
Anomaly Detection for Cellular IoT With Applications in Smart Logistics, IEEE
Access, vol. 9, pp. 59406-59419, 2021.
·
D. Jakovetic, D. Bajovic, J. M. F. Xavier, J. M. F.
Moura, Primal-Dual Methods for Large-Scale and Distributed Convex Optimization
and Data Analytics. Proceedings of the IEEE, 108(11): 1923-1938, 2020.
·
D. Bajovic, D. Jakovetic, N. Krejic, N. Krklec
Jerinkic, Distributed second order methods with Increasing number of working
nodes, IEEE Transactions on Automatic Control, 2020, DOI:
10.1109/TAC.2019.2922191
·
M. Panic, D. Jakovetic, D. Vukobratovic, V.
Crnojevic, A. Pizurica, MRI Reconstruction Using Markov Random Field and Total
Variation as Composite Prior, Sensors 20(11), 3185, 2020.
·
D. Jakovetic, A Unification and Generalization of
Exact Distributed First-Order Methods, IEEE Trans. Signal and Information
Processing over Networks, vol. 5, no. 1, pp. 31-46, 2019.
·
R. Xin, D. Jakovetic, U. A. Khan, Distributed
Nesterov Gradient Methods Over Arbitrary Graphs, IEEE Signal Processing
Letters, vol. 26, no. 8, pp. 1247-1251, 2019.
·
D. Jakovetić, N. Krejić, N.
Krklec Jerinkić, Exact spectral-like gradient method for
distributed optimization, Computational Optimization and Applications, vol. 74,
no. 3, pp. 703–728., 2019.
·
K. He, D. Jakovetic, B. Zhao, V. Stankovic, L. Stankovic and S. Cheng, A Generic
Optimisation-based Approach for Improving Non-intrusive Load Monitoring, IEEE
Transactions on Smart Grid, 2019.
·
J.
Atanasijević, D. Jakovetić, N.
Krejić, N. Krklec Jerinkić, D. Marković, Using Big Data Analytics to Improve Efiiciency
of Tax Collection in the Tax Administration of the Republic of Serbia,
Ekonomika preduzeća, pp. 115-130., 2019.
·
A.K. Sahu, D. Jakovetic, D. Bajovic, S. Kar,
„Communication Efficient Distributed Weighted Non-Linear Least Squares
Estimation,“ Eurasip Journal on Advances in Signal Processing, Article number: 66, 2018.
·
A.K. Sahu, D. Jakovetic, S. Kar, “CIRFE: A
Distributed Random Fields Estimator”, IEEE Transactions on Signal Processing,
2018.
·
A.K. Sahu, D. Jakovetic, S. Kar, “Communication
Optimality Trade-offs For Distributed Estimation”, submitted, 2018.
·
B. Sikoparija,
O. Marko, M. Panic, D Jakovetic, P
Radisic, „How to prepare a pollen calendar for forecasting daily pollen
concentrations of Ambrosia, Betula and Poaceae?“, Aerobiologia, 1-15 D, 2018.
·
D. Bajović, D. Jakovetic, N. Krejic, N. Krklec
Jerinkic, „Parallel Stochastic Line Search Methods with Feedback for Minimizing
Finite Sums“, submitted, 2017.
·
D. Bajovic, D. Jakovetic, N. Krejic, N. Krklec
Jerinkic, „Newton-like Method with Diagonal Correction for Distributed
Optimization,“ SIAM Journal on Optimization, vol. 27, no. 2, pp. 1171-1203,
2017.
·
F. K. van
Evert, S. Fountas, D. Jakovetic, V.
Crnojevic, I. Travlos, C. Kempenaar, „Big Data for weed control and crop
protection,“ Weed Research, vol. 57, no. 4, pp. 218-233, August 2017.
·
D. Jakovetic, D. Bajovic,
N. Krejic, and N. Krklec Jerinkic, “Distributed Gradient Methods with Variable
Number of Working Nodes,” IEEE Trans. Signal Processing, vol. 64, no. 15, pp.
4080-4095, 2016.
·
D. Vukobratovic,
D. Jakovetic,
V. Skachek, D. Bajovic, D. Sejdinovic, G. Karabulut-Kurt, C.
Hollanti, and I. Fischer, “CONDENSE: A Reconfigurable
Knowledge Acquisition Architecture for Future 5G IoT,”
IEEE Access 4, pp. 3360-3378, 2016.
·
D. Jakovetic, J. M. F. Moura,
and J. Xavier, “Linear Convergence Rate of a Class of Distributed Augmented Lagrangian Algorithms ,” IEEE Transactions on Automatic
Control, vol. 60, no. 4, pp. 922 - 936,
April 2015.
·
D. Jakovetic, D. Bajovic,
D. Vukobratovic, and V. Crnojevic,
“Cooperative Slotted Aloha for Multi-Base Station Systems,” IEEE Transactions
on Communications, vol. 63, no. 4, pp. 1443 - 1456, April 2015.
·
D. Jakovetic, J. Xavier and J. M. F. Moura, “Convergence Rates of Distributed Nesterov-like Gradient Methods on Random Networks,” IEEE
Transactions on Signal Processing, vol. 62, no. 4, pp. 868 - 882, February 2014.
·
D. Jakovetic, J. Xavier, and J. M. F. Moura, “Fast distributed gradient methods,” IEEE
Transactions on Automatic Control, vol. 59, no. 5, pp. 1131 - 1146, May 2014.
·
D. Bajovic, D. Jakovetic,
J. M. F. Moura, J. Xavier, and B. Sinopoli,
“Large Deviations Performance of Consensus+Innovations
Distributed Detection with non-Gaussian Observations,” IEEE Transactions on
Signal Processing, vol. 60, no. 11, pp. 5987-6002, November 2012.
·
D. Jakovetic, J. M. F. Moura,
and J. Xavier, “Distributed Detection over Noisy Networks: Large Deviations
Analysis,” IEEE Transactions on Signal Processing, vol. 60, no. 8, pp.
4306-4320, August 2012.
·
D. Bajovic, D. Jakovetic,
J. Xavier, B. Sinopoli and J. M. F. Moura, “Distributed detection via Gaussian running
consensus: large deviations asymptotic analysis,” IEEE Transactions on Signal
Processing, vol. 59, no. 9, pp. 4381-4396, September 2011.
·
D. Jakovetic, J. Xavier and J. M. F. Moura, “Cooperative convex optimization in networked
systems: augmented Lagrangian algorithms with
directed gossip communication,” IEEE Transactions on Signal Processing, vol.
59, no. 8, pp. 3889-3902, August 2011.
·
D. Jakovetic, J. Xavier and J. M. F. Moura, “Weight optimization for consensus algorithms with
correlated switching topology,” IEEE Transactions on Signal Processing, vol.
58, no. 7, pp. 3788-3801, July 2010.
Conference papers
(accepted/published)
·
A. Armacki, D. Bajovic, D. Jakovetic, S. Kar, Personalized
Federated Learning via Convex Clustering, IEEE International Smart Cities
Conference, ISC2, 2022
·
K. He, D. Jakovetic, V. Stankovic, and L. Stankovic, “Post-processing for
event-based non-intrusive load monitoring,” NILM2018 4th International Workshop
on Non-intrusive Load Monitoring, Austin, March 2018.
·
A.
Mastilovic, D. Vukobratovic, D.
Jakovetic, D. Bajovic, „Cooperative Slotted ALOHA for massive M2M random
access using directional antennas“, ICC 2017, IEEE International Conference on
Communications, ICC Workshops, pp. 731-736, Paris, France, May 2017
·
D. Vukobratovic, D. Jakovetic, V. Skachek, D. Bajovic, D. Sejdinovic, „Network
function computation as a service in future 5G machine type communications,“
ISTC 2016, 9th International Symposium on
Turbo Codes and Iterative Information Processing, pp. 365-369, Brest, France,
Sep. 2016.
·
D. Jakovetic, D. Bajovic,
N. Krejic, N. Krklec Jerinkic, „Distributed first and second order methods with increasing number of
working nodes,“ GlobalSIP 2016,
IEEE Global Conference on Signal and Information Processing, pp.
480-484, Washington, DC, USA, Dec. 2016, invited
·
D.
Jakovetic, D. Bajovic, and D. Vukobratovic: "Distributed
Estimation of Sparse User Activity for Multi-Base Station On-Off Random
Access," to appear in proc. IEEE International Conference on
Communications 2015 - MASSAP Workshop, London, UK, June 2015.
·
D.
Jakovetic, A. Minja, D. Bajovic, and D. Vukobratovic:
"Distributed Storage Allocations for Neighbourhood-Based Data
Access," to appear in proc. IEEE Information Theory Workshop 2015,
Jerusalem, Israel, April 2015.
·
D. Bajovic, D. Jakovetic, D. Vukobratovic, and V. Crnojevic: "Slotted
ALOHA for Networked Base Stations: Algorithms and Performance," European
Wireless 2014, pp. 1-6, Barcelona, Spain, May 2014.
·
D. Jakovetic, D. Bajovic, D. Vukobratovic, and V.
Crnojevic: "Slotted ALOHA for Networked Base Stations with Spatial and
Temporal Diversity," IEEE International Symposium on Information Theory,
pp. 1578 - 1582, ISIT
2014, Honolulu, Hawaii, July 2014.
·
D. Bajovic, D. Jakovetic, D. Vukobratovic, and V. Crnojevic: "Slotted
ALOHA for Networked Base Stations," IEEE International Conference on
Communications ICC 2014 - MASSAP Workshop, pp. 520 - 526, Sydney,
Australia, June 2014.
·
D. Jakovetic, J. Xavier,
and J. M. F. Moura, “Distributed Nesterov Gradient Methods for Random Networks:
Convergence in Probability and Convergence Rates,” IEEE
International Conference on Acoustics, Speech and Signal Processing -
ICASSP'14, pp. 1508 – 1511, Florence, Italy, May 2014, invited
·
D. Jakovetic, J. M. F.
Moura, and J. Xavier, “Distributed Augmented Lagrangian Algorithms: Convergence
Rate,” 1st IEEE Global Conference on Signal and Information Processing, pp. 563-566, Austin, Texas, USA, December 2013,
invited
·
D. Jakovetic, J. M. F.
Moura, and J. Xavier, “Distributed Nesterov-like Gradient Algorithms,” CDC
2012, 51st IEEE Conference on Decision and Control, pp. 5459-5464, Maui,
Hawaii, December 2012, invited
·
D. Jakovetic, J. Xavier,
J. M. F. Moura, “Convergence Rate Analysis of Distributed Gradient Methods for
Smooth Optimization,” 20th Telecommunications Forum, pp. 867-870, Belgrade,
Serbia, November 2012
·
D. Jakovetic, J. M. F.
Moura, and J. Xavier, “Consensus+Innovations Detection: Phase Transition Under
Communication Noise,” 50th Annual Allerton Conference on Communication,
Control, and Computing, pp. 1559-1563, Monticello, Illinois, October 2012,
invited
·
D. Jakovetic, J. M. F.
Moura, and J. Xavier, “Fast Cooperative Distributed Learning,” 46th Asilomar
Conference on Signals, Systems and Computers, pp. 1513-1517, Pacific Grove,
California, November 2012, invited
·
D. Bajovic, D. Jakovetic, J. Xavier, B. Sinopoli and J. M. F. Moura,
“Asymptotic Performance of Distributed Detection over Random Networks,” IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP'11,
pp. 3008–3011, Prague, Czech Republic, May 2011
·
D. Bajovic, D. Jakovetic, J. M. F. Moura, J. Xavier and B. Sinopoli, “Large
Deviations Analysis of Consensus+innovations Detection in Random Networks,”
49th Allerton Conference on Communication, Control, and Computing, pp. 5987-6002,
Illinois, USA, September 2011, invited
·
D. Bajovic, D. Jakovetic, J. Xavier, B. Sinopoli and J. M. F. Moura,
“Distributed Detection over Time Varying Networks: Large Deviations Analysis,”
48th Allerton Conference on Communication, Control, and Computing, pp. 302 –
309, Illinois, USA, October 2010.
·
D. Jakovetic, J. Xavier
and J. M. F. Moura, “Consensus in Correlated Random Topologies: Weights for
Finite Time Horizon,” IEEE International Conference on Acoustics, Speech and
Signal Processing - ICASSP'10, pp. 2974-2977, Dallas, Texas, USA, March 2010.