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Abstract. We relate the concept of measure valued solutions to conservation

laws, introduced by DiPerna, to the concept of generalized function solutions

arising in a differential algebra containing the distributions and having the
algebra of smooth functions as a subalgebra. As an example, following results

of DiPerna and Majda on measure valued solutions, we construct generalized

solutions to the Euler equations.
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1. Introduction

In this paper, we relate generalized function solutions and measure valued solu-
tions to

div f(u) = (div f1(u), . . . ,div fm(u)) = 0, u : Ω→ Rm, (1)

where Ω is an open subset of Rn, u = (u1, . . . , um) : Ω→ Rm and f = (f1, . . . , fm),
fk = (fk1 , . . . , f

k
n) : Rm → Rn, k = 1, . . . ,m, is assumed to be smooth and of at

most polynomial growth, together with all derivatives, as well as the perturbed
system

div f(u) = εL(u), ε ∈ (0, 1), (2)

where L = (L1, . . . , Lm) is a linear partial differential operator with smooth coeffi-
cients.

The concept of measure valued solutions to (1) has been introduced by DiPerna
[4], having the motivating background from the work of Tartar and Murat on com-
pensated compactness, [14, 15]. Measure valued solutions have been designed to
handle the convergence question arising with problem (2) and to capture concentra-
tion phenomena. One has the following basic properties [4, 9, 11]: (i) if u ∈ Lp(Ω),
1 ≤ p ≤ ∞ is a weak solution to (1), then the family of Dirac measures δu(x), x ∈ Ω,
is a measure valued solution; (ii) if {uε}ε∈(0,1) is a bounded sequence of solutions
to (2) in Lp(Ω), 1 ≤ p ≤ ∞, and f satisfies appropriate growth conditions, then
the associated Young measure is a measure valued solution to (1).

On the other hand, we work with the algebra of generalized functions Gs(Ω;Rm),
which was introduced by the second author. The elements of this algebra are equi-
valence classes of nets of smooth functions on Ω. In this setting, the system (1) is
understood as( n∑
j=1

∇fkj (u)• ∂u
∂xj

)
k=1,...,m

= 0 ⇐⇒
{( n∑

j=1

∇fkj (uε)•
∂uε
∂xj

)
k=1,...,m

}
ε

∈ Ns(Ω;Rm),

(3)
1
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where Ns(Ω;Rm) is the set of negligible functions (see Section 2), and • stands for
scalar product. We call a solution u ∈ Gs(Ω;Rm) to (3) a strong solution. However,
it turns out that this strong formulation does not allow discontinuous solutions. For
this reason, we shall use the concept of association (see Section 2 for the definition
of ≈). An element u of Gs(Ω;Rm) is called an approximate generalized solution to
(1) if

n∑
j=1

∇fkj (u) • ∂u
∂xj
≈ 0 ⇐⇒

n∑
j=1

∫
Ω

∇fkj (uε) •
∂uε
∂xj

φk(x) dx→ 0, ε→ 0, (4)

holds for all φ = (φ1, . . . , φm) ∈ D(Ω;Rm) and all k = 1, . . . ,m. For the concept of
approximate and generalized solutions to (1) we refer to [1, 2, 7, 12].

In many cases, equation (2) has a classical solution uε for each ε > 0, and by
means of some maximum principle, one can often prove that the family {uε}ε∈(0,1)

is a bounded subset of Lp(Ω;Rm), 1 ≤ p ≤ ∞. Those uniformly bounded families
are in the background of both approximate and measure valued solutions. We will
show in Lemma 1 how to construct a solution u ∈ Gs(Ω;Rm) to (4) from such a se-
quence. Theorems 2 and 4 are related to Y∞(Ω;Rm)-measure valued solutions and
approximate generalized solutions of bounded type to (1), while Theorems 6 and
7 are related to Yp(Ω;Rm)-measure valued solutions and approximate generalized
solutions of p-bounded type to (1).

As a special case we will consider the Euler equations and construct approxi-
mate generalized solutions to the Euler equations arising from a sequence of weak
solutions with L2-uniform bound. The Euler equations for an incompressible ho-
mogeneous fluid in n space dimensions are given by

∂v

∂t
+ v · ∇v = −∇p , (5)

where t > 0, x ∈ Rn, v = (v1, . . . , vn)> : R+ × Rn → Rn, is the fluid velocity,
div v = 0, v(x; 0) = v0(x), and p is the scalar pressure. These equations are the
limiting case for the Navier-Stokes equations, with Reynold’s numbers 1/ε,

∂vε

∂t
+ vε · ∇vε = −∇pε + ε4vε, ε > 0. (6)

Recall, [6]: If v0 is a smooth divergence-free velocity field in L2(R3) and vε are weak
solutions of the Navier-Stokes equations (6) with initial data v0, then a subsequence
{vεk}k has a limit that defines a measure valued solution to the Euler equations (5).
Approximate generalized solutions to (5) arise from the same subsequence of weak
solutions to the Navier-Stokes equations. That construction is given in Proposition
8.

2. Generalized functions as approximate solutions

2.1. The algebra Gs(Ω;Rm). We briefly recall the definition of Gs(Ω;Rm), where
Ω is an open subset of Rn. A net {uε}ε∈(0,1) ∈ (C∞(Ω;Rm))(0,1) is called moderate
if it has the property

(∀K ⊂⊂ Ω) (∀α ∈ Nn0 ) (∃N > 0) ||∂αuε||L∞(K;Rm) = O(ε−N ) as ε→ 0.

The set of moderate nets is denoted by EM,s(Ω). A net {uε}ε∈(0,1) is called null or
negligible if

(∀K ⊂⊂ Ω) (∀α ∈ Nn0 ) (∀M > 0) ||∂αuε||L∞(K;Rm) = O(εM ) , ε→ 0.
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This subset is denoted by Ns(Ω;Rn). It is clear that EM,s(Ω;Rm) is an alge-
bra with partial derivatives, where operations are defined componentwise, while
Ns(Ω;Rn) is an ideal therein, closed under differentiation. The special algebra
is defined as the factor algebra Gs(Ω;Rm) = EM,s(Ω;Rm)/Ns(Ω;Rm). With the
operations defined on representatives, we have that Gs(Ω;Rm) is an algebra with
partial derivatives. All spaces of functions and distributions we work with (e.g.
the space of distributions with compact support E ′, smooth functions with com-
pact support C∞0 , D′, L∞loc, Lp and so on) are embedded in Gs(Ω;Rm). For
those embeddings we refer to [7]. If f is smooth and of at most polynomial
growth, together with all derivatives, then the composition f(u) with u ∈ Gs(Ω;Rm)
is well-defined by f(u) = [{f(uε)}ε∈(0,1)]. Two elements u, v ∈ Gs(Ω;Rm) are
called associated, u ≈ v, if uε − vε → 0 in D′(Ω;Rm), as ε → 0, for some, and
hence all, representatives {uε}ε∈(0,1) and {vε}ε∈(0,1). We shall say that an element
u ∈ Gs(Ω;Rm) is of bounded type, resp. of p-bounded type, if it has a represent-
ing net {uε}ε∈(0,1) ∈ EM,s(Ω;Rm), which is a bounded subset of L∞(Ω;Rm), resp.
Lp(Ω;Rm).

2.2. Conservation laws in Gs(Ω;Rm). From now on we make the assumption.
For all k = 1, . . . ,m and j = 1, . . . , n,

fkj are smooth and of polynomial growth, together with all derivatives. (7)

Lemma 1. Assume that fkj satisfy (7).
(a) If there exists a sequence {vε}ε∈(0,1) in L∞(Ω;Rm), bounded in L∞(Ω;Rm),

such that div fk(vε)→ 0 in D′(Ω) as ε→ 0, k = 1, . . . ,m, then there also exists a
solution u ∈ Gs(Ω;Rm) of bounded type to div f(u) ≈ 0.
(b) Let 1 ≤ p <∞ and f additionally satisfy

|∇fkj (λ)| ≤ (1 + |λ|)p−1, λ ∈ Rm, k = 1, ...,m, j = 1, ..., n. (8)

If there exists a sequence {vε}ε∈(0,1), bounded in Lp(Ω;Rm), such that div fk(vε)→
0 in D′(Ω) as ε→ 0, then there exists a solution u ∈ Gs(Ω;Rm) of p-bounded type
to div f(u) ≈ 0.

Proof. Let φ be an element of C∞0 (Rn) with integral one and φδ(·) = δ−nφ(·/δ), δ >
0. For fixed ε ∈ (0, 1), we have that

viε ∗ φδ → viε, as δ → 0, for i = 1, ...,m (9)

in L1
loc(Ω) provided that vε ∈ L∞(Ω;Rm) (part a)). If vε ∈ Lp(Ω;Rm) with p <∞,

then the convergence (9) holds in Lp(Ω) (part b)). Moreover, {viε ∗ φδ : ε ∈
(0, 1), δ ∈ (0, 1)} is bounded independently of δ and ε in L∞(Ω), resp. Lp(Ω) (for
the convolution here we extend viε to be zero outside Ω and after convolving with
φδ, we take the restriction to Ω). Letting (Km)m≥1 be an exhausting sequence
of compact subsets of Ω (we need it just for the L1

loc(Ω)-convergence in (9)), we
can find a strictly decreasing zero sequence (δm)m≥1 of positive numbers such that
||vi1/m ∗ φδ − vi1/m||L1(Km) ≤ 1/m, for 0 < δ ≤ δm. In the case of Lp(Ω;Rm)-

convergence in (9) we determine (δm)m≥1 so that ||vi1/m ∗ φδ − v
i
1/m||Lp(Ω) ≤ 1/m

holds for 0 < δ ≤ δm and i = 1, ...,m. Define an increasing, piecewise constant
function η : (0, 1) → (0, 1] by η(ε) = 1/m for δm+1 < ε ≤ δm,m ≥ 1 and η(ε) = 1
for ε ≥ δ1 and let uiε = viη(ε)∗φε, ε ∈ (0, 1). We note that uε is smooth, and that the

family {vη(ε)}ε∈(0,1) has the same bound in L∞, resp. Lp, as {vε}ε∈(0,1). Finally,
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we see that ∂αuiε = viη(ε) ∗ ε
−|α|(∂αφ)ε where, using the notation introduced above,

(∂αφ)ε(x) = ε−n(∂αφ)(x/ε). It follows that {uε}ε∈(0,1) is moderate. Let u be its
class in Gs(Ω;Rm). Clearly, u is of bounded resp. p-bounded type. By definition,
we have that ||uε − vη(ε)||L1(Km;Rm) ≤ 1/m, resp. ||uε − vη(ε)||Lp(Ω;Rm) ≤ 1/m,

for δm+1 < ε ≤ δm,m ∈ N, so uε − vη(ε) → 0, ε → 0, in L1
loc(Ω;Rm), resp. in

Lp(Ω;Rm). Now we will prove parts a) and b) separately.
a) We have that {uε}ε∈(0,1) and {vη(ε)}ε∈(0,1) are bounded nets in L∞(Ω;Rm).

It follows immediately that for k = 1, ...,m and j = 1, ..., n,

fkj (uε)− fkj (vη(ε)) = (uε − vη(ε)) •
∫ 1

0

∇fkj
(
τuε + (1− τ)vη(ε)

)
dτ

converges to zero in L1
loc(Ω). So,

div fk(uε)− div fk(vη(ε)) → 0 in D′(Ω). (10)

Using the fact that div fk(vε)→ 0 and that vη(ε) is a subsequence of vε, we obtain

from (10) that div fk(uε)→ 0, ε→ 0, in D′(Ω). This proves that div f(u) ≈ 0.
b) In this subcase, the families {uε}ε∈(0,1) and {vη(ε)}ε∈(0,1) are bounded in

Lp(Ω;Rm). In order to show that u is an approximate generalized solution it is
enough to show (10), i.e. that for all test functions θ ∈ D(Ω),

−
n∑
j=1

∫
Ω

(
fkj (uε(x))− fkj (vη(ε)(x))

)
· ∂θ(x)

∂xj
dx→ 0, as ε→ 0,

for all k = 1, . . . ,m. But (8), the mean value theorem and Hölder’s inequality give∣∣∣ ∫
Ω

(
fkj
(
uε(x)

)
−fkj

(
vη(ε)(x)

))
·∂θ(x)

∂xj
dx
∣∣∣ ≤ c ||uε−vη(ε))||Lp

(
1+||uε||

p
q

Lp+||vη(ε)||
p
q

Lp

)
where for p 6= 1, q = p

p−1 , so the desired convergence result follows. Note that for

p = 1, from (8) we have a L∞-bound for gradients ∇fkj . �

3. Young measures as measure valued solutions and equivalence

Let Ω be an open subset of Rn and denote byM(Rm) the space of regular Borel
measures on Rm with finite total mass; M(Rm) can be represented as the dual of
the space C0(Rm) of the continuous functions vanishing at infinity endowed with the
sup norm. A Young measure is a weakly measurable mapping x 7→ νx ∈ M(Rm),
x ∈ Ω, such that each νx is a probability measure. Weak measurability means that
for all v ∈ C0(Rm), the mappings x 7→ 〈 νx, v 〉 =

∫
Rm v(λ)νx(dλ) ∈ R, x ∈ Ω, are

measurable. We denote the set of Young measures by Y(Ω;Rm). Let {uε}ε∈(0,1) be
a sequence of L∞(Ω;Rm)-functions, whose L∞-norms are bounded by some positive
constant, independently of ε. The basic Young measure theorem, see for example
[4], says that there exists a subsequence {uk}k and a Young measure ν = {νx}x∈Ω,
such that for every F ∈ C(Rm),

w∗ − lim
k→∞

F (uk) = F (11)

in L∞, where F (x) :=
∫
Rm F (λ) dνx(λ), for almost all x ∈ Ω. In addition, almost

all νx are supported in the same compact set. Such Young measures are referred
to as L∞-Young measures and denoted by Y∞(Ω;Rm). In fact, the support con-
dition characterizes Y∞(Ω;Rm): a Young measure ν arises from a sequence of
L∞(Ω;Rm)-uniformly bounded functions if and only if there exists K ⊂⊂ Rm



GENERALIZED AND MEASURE VALUED SOLUTIONS TO CONSERVATION LAWS 5

such that supp νx ⊂ K, for almost all x ∈ Ω. On the other hand, Schonbek,
[13], introduced Lp-Young measures, Yp(Ω;Rm), for 1 < p < ∞, as Young mea-
sures arising from sequences of Lp(Ω,Rm)-bounded functions, and proved a sim-
ilar result, i.e., given a sequence of Lp(Ω,Rm)-bounded functions, there exists
a subsequence {uk}k and a Young measure ν = {νx}x∈Ω, such that for every
F ∈ Cp(Rm) = {v ∈ C(Rm) : v(λ) = o(|λ|p), |λ| → ∞}, F ◦ uk → F as k → ∞,
weakly in L1(Ω;Rm). A characterization of Yp(Ω;Rm) was given by Kruž́ık and
Roub́ıček, [9], i.e. a Young measure ν = {νx}x belongs to Yp(Ω;Rm) if and only if
the function x 7→

∫
Rm |λ|p dνx(λ) belongs to L1(Ω). The result actually holds for

p = 1 as well.
Following DiPerna [4] who defined the notion of a measure valued solution to (1)

we say that a Young measure {νx}x∈Ω is a Y∞(Ω;Rm), resp. Yp(Ω;Rm)-measure
valued solution to (1) if:

1. supp νx ⊂ K, for some K ⊂⊂ Rm, resp.

[
x 7→

∫
Rm |λ|p dνx(λ)

]
∈ L1(Ω),

2. for all g ∈ C(Rm), resp. g ∈ Cp(Rm), x 7→
∫
Rm g dνx is measurable,

3. for all k = 1, ...,m,
∑n
j=1

∂
∂xj

(∫
Rm fkj dνx

)
= 0, in D′(Ω).

We are now in the position to relate measure valued solutions and approximate
generalized solutions.

Theorem 2. a) Let u ∈ Gs(Ω;Rm) be of bounded type and solve div f(u) ≈ 0.
Then each Young measure {µx}x∈Ω, arising from a subsequence of any bounded
representing sequence of u is a Y∞(Ω;Rm)-measure valued solution to (1).
b) If u ≈ ι(v), for some v ∈ L∞(Ω;Rm), then v(x) =

∫
Rm λdµx(λ) for almost all

x ∈ Ω.

Proof. Part a) follows from the Young measure theorem and the fact that u is
an approximate generalized solution, while part b) follows from the definition of
association and the fact that uεk →

∫
Rm λ dµx(λ), k → ∞, what we obtain from

(11), by taking F equal to the identity mapping, F (λ) ≡ λ. �

Remark 3. Even if ι(v) ≈ u for some v ∈ L∞(Ω;Rm), in general, different sequences
lead to different Young measures, since f(u) is not generally associated with f(ι(v)).
In this sense, u ∈ Gs(Ω;Rm) could be viewed as representing a collection of Young
measures having the same first moment, i.e. for all Young measures

∫
Rm λdµx(λ)

is the same for almost all x ∈ Ω.

Theorem 4. a) Let {µx}x∈Ω be a Y∞(Ω;Rm)-measure valued solution to (1). Then
there is a sequence {uε}ε∈(0,1) ∈ EM,s(Ω;Rm), whose class u is of bounded type and
solves div f(u) ≈ 0.

b) Moreover, this sequence admits a unique Young measure coinciding with {µx}x∈Ω

for almost all x ∈ Ω, and u ≈ ι(v), where v(x) =
∫
Rm λdµx(λ).

Proof. a) According to the characterization of Y∞(Ω;Rm), there is a uniformly
bounded sequence {vp}p ⊂ L∞(Ω;Rm) having {µx}x∈Ω as its Young measure,
that is for every g ∈ C(Rm), g(vp) → ḡ, weak* in L∞, as p → ∞, where ḡ(x) =∫
Rm g dµx. It follows that, as p→∞,

n∑
j=1

∂

∂xj
fkj (vp)→

n∑
j=1

∂

∂xj

∫
Rm

fkj dµx, in D′(Ω), k = 1, ...,m. (12)
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The right hand side of (12) equals zero because {µx}x∈Ω is a measure valued solution
to (1). Applying Lemma 1 to the sequence {vp}p, we obtain an element u ∈
Gs(Ω;Rm) of bounded type solving (4).

b) Since we have that for all g ∈ C(Rm), g(vp) → ḡ, weak* in L∞, as k →
∞, every subsequence of vp leads to the same Young measure. We replace v1/m

appearing in the proof of Lemma 1 by vm, construct η(ε) accordingly, so that
vη(ε) = vm, for 0 < δ ≤ δm, m ≥ 1, and let uiε = viη(ε) ∗ φε, with φ as in Lemma

1, and u = [{uε}ε∈(0,1)] ∈ Gs(Ω;Rm). Since uε − vη(ε) → 0, in L1
loc(Ω;Rm), ε → 0,

it follows that g(uε) − g(vη(ε)) → 0, in L1
loc(Ω;Rm), ε → 0, for every g ∈ C(Rm)

and that {g(uε)}ε and {g(vη(ε))}ε have the same weak*-limits in L∞(Ω;Rm). Thus
{uε}ε and {vη(ε)}ε give rise to the same unique Young measure. It is then clear

that u ≈ ι(v) = ι(limk→∞ vk) = ι(v), where v(x) =
∫
Rm λ dµx(λ). �

Remark 5. Again, the generalized function u constructed in the proof of the The-
orem 4 is not unique. In fact, let {wε}ε∈(0,1) ⊂ EM,s(Ω) be any other uniformly
bounded sequence, all whose subsequences give rise to the same Young measure,
and let w be its class in Gs(Ω;Rm). Then clearly we must have that u ≈ w. But
it is not necessarily true that u = w in Gs(Ω;Rm). For example, it suffices to take
{wε}ε∈(0,1) in such a way that uε−wε converges to zero in L1

loc, but {uε−wε}ε∈(0,1)

does not belong to Ns(Ω;Rm).
This time nonuniqueness comes from the fact that Ns(Ω;Rm) is strictly smaller

than the space of L1
loc-zero sequences. To put it more explicitly, let {vε}ε∈(0,1)

and {wε}ε∈(0,1) be two uniformly bounded sequences in EM,s(Ω). Then {vε}ε∈(0,1)

and {wε}ε∈(0,1) are equal in Gs(Ω;Rm), if their difference belongs to Ns(Ω;Rm);
they produce the same Young measure, if their difference converges to zero in
L1

loc(Ω;Rm); they are associated in Gs(Ω;Rm), if their difference converges to zero
in D′(Ω;Rm). Thus the various occurrences of nonuniqueness can be attributed to
differing stability properties inherent in the respective solution concepts.

For Yp(Ω;Rm)-measure valued solution and approximate generalized solutions of
p-bounded type, results analogous to Theorems 2 and 4 are valid. In the following
two theorems, in addition to (7) and (8), we assume that fkj ∈ Cp(Rm).

Theorem 6. a) Let u ∈ Gs(Ω;Rm) be of p-bounded type and solve div f(u) ≈ 0.
Then each Young measure {µx}x∈Ω, arising from a subsequence of any p-bounded
representing sequence of u is a Yp(Ω;Rm)-measure valued solution to (1).

b) If u ≈ ι(v), for some v ∈ Lp(Ω;Rm), then v(x) =
∫
Rm λdµx(λ) for almost all

x ∈ Ω.

Theorem 7. a) Let {µx}x∈Ω be a Yp(Ω;Rm)-measure valued solution to (1). Then
there is a sequence {uε}ε∈(0,1) ∈ EM,s(Ω;Rm), whose class u is of p-bounded type
and solves div f(u) ≈ 0.

b) Moreover, this sequence admits a unique Young measure coinciding with {µx}x∈Ω

for almost all x ∈ Ω, and ι(v) ≈ u, where v(x) =
∫
Rm λdµx(λ).

Proof. a) According to the characterization of Yp(Ω;Rm), there is a sequence {up}
having {µx}x∈Ω as its Young measure. The sequence {up} is uniformly bounded in
Lp and for all g ∈ Cp we have weak convergence in L1 of the composition g(up).
Applying that to fk = (fk1 , . . . , f

k
n), we obtain div fk(up)→

∫
Rm div fk(λ) dµx(λ) =

0 in D′(Ω), k = 1, ...,m, because {µx}x∈Ω is a measure valued solution to div f(u)
= 0, and that is why {up} fulfills the conditions of Lemma 1b). Now, by the



GENERALIZED AND MEASURE VALUED SOLUTIONS TO CONSERVATION LAWS 7

construction from the proof of Lemma 1, we obtain a solution to div f(u) ≈ 0 of
p-bounded type. The proof of the part b) is similar to the proof of Theorem 4b). �

4. Approximate generalized solutions to the Euler equations

The conservative form of the Euler equations is

∂v

∂t
+ div(v ⊗ v) +∇p = 0, div v = 0,

where div v ⊗ v =
(

div(v1v1, . . . , vnv1), . . . , div(v1vn, . . . , vnvn)
)>

. Thus we deal
with a system of n equations of the form divn+1 fj(v) ≈ 0, j = 1, . . . , n, where
fj(v) = (vj , v1vj , v2vj , . . . , vnvj), fj : Rn → Rn+1, j = 1, . . . , n and the divergence
is taken with respect to the variables (t, x1, x2, . . . , xn).

Following DiPerna, Majda [6], who constructed measure-valued solutions to the
Euler equations, we have that, under the same assumptions as in [6, Proposition
5.1], there exists an approximate generalized solution to the Euler equations.

Proposition 8. Assume that {vε}ε∈(0,1) is a sequence of functions satisfying div vε =
0, and the following conditions:

a) Weak stability: For any Ω ⊂ Rn × R+, there exists a constant C = CΩ such
that ∫

Ω

|vε(x; t)|2 dxdt ≤ C.

b) Weak consistency: For all test functions φ ∈ C∞0 (Ω;Rn),

lim
ε→0

∫
Ω

φt · vε +∇φ : vε ⊗ vε dxdt = 0.

Then there exists u ∈ Gs(Ω;Rn), which is an approximate generalized solution of
2-bounded type to the Euler equations.

Proof. Weak consistency gives that divn+1 fj(vε)→ 0 in D′(Ω), for all j = 1, . . . , n,
so we can just apply Lemma 1, to obtain an approximate generalized solution of 2-
bounded type, because the condition (8) is fulfilled for fj defined above and p = 2.
Further, we can infer that

lim
ε→0

∫
Ω

(
ujε − v

j
η(ε)

)
φjt +

n∑
i=1

(
ujεu

i
ε − v

j
η(ε)v

i
η(ε)

)
φjxi

dxdt = 0,

for all test functions φj ∈ C∞0 (Ω), directly from the following estimate:∣∣∣∣ ∫
Ω

(
ujε − v

j
η(ε)

)
φjt +

n∑
i=1

(
ujεu

i
ε − v

j
η(ε)v

i
η(ε)

)
φjxi

dxdt

∣∣∣∣
=

∣∣∣∣ ∫
Ω

(
ujε − v

j
η(ε)

)
φjt +

n∑
i=1

(
ujεu

i
ε ± v

j
η(ε)u

i
ε − v

j
η(ε)v

i
η(ε)

)
φjxi

dxdt

∣∣∣∣
≤ ||ujε − v

j
η(ε)||L2 ||φjt ||L2 +

n∑
i=1

sup |φjxi
|
(
||ujε − v

j
η(ε)||L2 ||uiε||L2 + ||vjη(ε)||L2 ||uiε − viη(ε)||L2

)
≤ c1||ujε − v

j
η(ε)||L2 +

n∑
i=1

(
c2||ujε − v

j
η(ε)||L2 + c3||uiε − viη(ε)||L2

)
, j = 1, ..., n.

�
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