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ABSTRACT. We relate the concept of measure valued solutions to conservation
laws, introduced by DiPerna, to the concept of generalized function solutions
arising in a differential algebra containing the distributions and having the
algebra of smooth functions as a subalgebra. As an example, following results
of DiPerna and Majda on measure valued solutions, we construct generalized
solutions to the Euler equations.
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1. INTRODUCTION

In this paper, we relate generalized function solutions and measure valued solu-
tions to

div f(u) = (div f*(u),...,div f™(u)) =0, u:Q—R™, (1)
where ) is an open subset of R”, u = (u!,...,u™): Q — R™and f = (f,..., f™),
fF= (k) R™ - R, k=1,...,m, is assumed to be smooth and of at

most polynomial growth, together with all derivatives, as well as the perturbed
system

div f(u) =eL(u), €€ (0,1), (2)

where L = (L',...,L™) is a linear partial differential operator with smooth coeffi-
cients.

The concept of measure valued solutions to (1) has been introduced by DiPerna
[4], having the motivating background from the work of Tartar and Murat on com-
pensated compactness, [14, 15]. Measure valued solutions have been designed to
handle the convergence question arising with problem (2) and to capture concentra-
tion phenomena. One has the following basic properties [4, 9, 11]: (i) if u € LP(Q),
1 < p < oo is a weak solution to (1), then the family of Dirac measures d,(,, € €,
is a measure valued solution; (i) if {uc}ce(0,1) is @ bounded sequence of solutions
to (2) in LP(Q), 1 < p < oo, and f satisfies appropriate growth conditions, then
the associated Young measure is a measure valued solution to (1).

On the other hand, we work with the algebra of generalized functions Gs(£2; R™),
which was introduced by the second author. The elements of this algebra are equi-
valence classes of nets of smooth functions on €. In this setting, the system (1) is
understood as

(évﬁ(u)-;i)k:%m =0 < {(ivff(us)-

ou

< € N, (Q;R™),
6xj>k=1,...,m}e ( )
(3)
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where N, (Q;R™) is the set of negligible functions (see Section 2), and e stands for
scalar product. We call a solution u € G4(€2; R™) to (3) a strong solution. However,
it turns out that this strong formulation does not allow discontinuous solutions. For
this reason, we shall use the concept of association (see Section 2 for the definition
of ). An element u of G5(2;R™) is called an approximate generalized solution to
(1) if

n . .%N n ; .
YW = Y [ vt

holds for all ¢ = (¢*,...,¢™) € D(;R™) and all k = 1,...,m. For the concept of
approximate and generalized solutions to (1) we refer to [1, 2, 7, 12].

In many cases, equation (2) has a classical solution u. for each ¢ > 0, and by
means of some maximum principle, one can often prove that the family {u. }.¢(0,1)
is a bounded subset of LP(£2;R™), 1 < p < co. Those uniformly bounded families
are in the background of both approximate and measure valued solutions. We will
show in Lemma 1 how to construct a solution u € G4(2; R™) to (4) from such a se-
quence. Theorems 2 and 4 are related to Y°°(€2; R™)-measure valued solutions and
approximate generalized solutions of bounded type to (1), while Theorems 6 and
7 are related to YP(2; R™)-measure valued solutions and approximate generalized
solutions of p-bounded type to (1).

As a special case we will consider the Euler equations and construct approxi-
mate generalized solutions to the Euler equations arising from a sequence of weak
solutions with L2-uniform bound. The Euler equations for an incompressible ho-
mogeneous fluid in n space dimensions are given by

Oue
aquﬁ (z)dx — 0, e =0, (4)

%erVv:pr, (5)
where t > 0, z € R", v = (v1,...,v,)" : RT x R® — R", is the fluid velocity,

dive = 0, v(z;0) = vo(x), and p is the scalar pressure. These equations are the
limiting case for the Navier-Stokes equations, with Reynold’s numbers 1/¢,

ov®
ot

Recall, [6]: If v is a smooth divergence-free velocity field in L?(R3) and v, are weak
solutions of the Navier-Stokes equations (6) with initial data vg, then a subsequence
{ve, }x has a limit that defines a measure valued solution to the Euler equations (5).
Approximate generalized solutions to (5) arise from the same subsequence of weak
solutions to the Navier-Stokes equations. That construction is given in Proposition
8.

+0° - Vo' = =Vp° +elv®, ¢>0. (6)

2. GENERALIZED FUNCTIONS AS APPROXIMATE SOLUTIONS

2.1. The algebra G,(2; R™). We briefly recall the definition of G4(£2; R™), where
Q2 is an open subset of R™. A net {uc}.c(0,1) € (C*(; R™))(1) is called moderate
if it has the property
(VK CC Q) (Va € N§) BN > 0) [0%uc| poo (g rm)y = O(e™N) ase — 0.
The set of moderate nets is denoted by Ens,s(€2). A net {uc}.c(o,1) is called null or
negligible if
(VK CC Q) (Vo € N) (VM > 0) [0%ue| oo (s.mm) = O(EM) ;e — 0.
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This subset is denoted by N (;R™). It is clear that £ s(Q;R™) is an alge-
bra with partial derivatives, where operations are defined componentwise, while
N;s(€;R™) is an ideal therein, closed under differentiation. The special algebra
is defined as the factor algebra G(;R™) = Enrs(Q;R™)/Ns(;R™). With the
operations defined on representatives, we have that G;(£2;R™) is an algebra with
partial derivatives. All spaces of functions and distributions we work with (e.g.
the space of distributions with compact support £, smooth functions with com-
pact support C§°, D', L2, LP and so on) are embedded in G4(2;R™). For
those embeddings we refer to [7]. If f is smooth and of at most polynomial
growth, together with all derivatives, then the composition f(u) with u € G;(2; R™)
is well-defined by f(u) = [{f(uc)}ee0,1)]. Two elements u,v € G,(;R™) are
called associated, u = v, if uc —v. — 0 in D'(Q;R™), as ¢ — 0, for some, and
hence all, representatives {uc}ce(0,1) and {ve}ee(0,1). We shall say that an element
u € Gs(Q;R™) is of bounded type, resp. of p-bounded type, if it has a represent-
ing net {uc}ee0,1) € Em,s($2; R™), which is a bounded subset of L>(Q;R™), resp.
LP(Q; R™).

2.2. Conservation laws in G4(2;R™). From now on we make the assumption.
Foralk=1,...,mand j=1,...,n,

f;-“ are smooth and of polynomial growth, together with all derivatives. (7

Lemma 1. Assume that f;C satisfy (7).

(a) If there exists a sequence {v:}ee(o,1) 1 L (S R™), bounded in L (S R™),
such that div f¥(v.) — 0 in D'() as € — 0, k = 1,...,m, then there also erists a
solution u € G4(;R™) of bounded type to div f(u) ~ 0.

(b) Let 1 <p < oo and f additionally satisfy

|vf]l<()\)| <@A+ADPT, XNeER™ k=1,...,m, j=1,..,n. (8)

If there exists a sequence {vc}.c(0,1), bounded in LP(S;R™), such that div fFve) —
0 in D'() as € — 0, then there exists a solution u € G4(Q;R™) of p-bounded type
to div f(u) =~ 0.

Proof. Let ¢ be an element of C§°(R™) with integral one and ¢5(-) = 6~"¢(-/d), § >
0. For fixed ¢ € (0,1), we have that

vl xps — vl as 6 — 0, fori=1,...,m (9)
in L1

1o () provided that ve € L (;R™) (part a)). If v, € LP(Q;R™) with p < oo,
then the convergence (9) holds in LP(Q2) (part b)). Moreover, {vi * ¢s5 : € €
(0,1), d € (0,1)} is bounded independently of § and ¢ in L>°(Q), resp. LP(2) (for
the convolution here we extend v? to be zero outside  and after convolving with
¢s5, we take the restriction to ). Letting (K,,)m>1 be an exhausting sequence
of compact subsets of 2 (we need it just for the L (£2)-convergence in (9)), we
can find a strictly decreasing zero sequence (d,,)m>1 of positive numbers such that
Hui/m * Q5 — Ui/m“Ll(Km) < 1/m, for 0 < § < &,,. In the case of LP(;R™)-
convergence in (9) we determine (d,,)m>1 so that Hvi/m * Q5 — vi/m”Lp(Q) <1/m
holds for 0 < § < §,, and i = 1,...,m. Define an increasing, piecewise constant
function n : (0,1) — (0,1] by n(e) = 1/m for ;a1 < & < dp,m > 1 and n(e) =1
for e > 61 and let ul = v’ _ x¢., € € (0,1). We note that u. is smooth, and that the

n(e)
family {vy()}ee(0,1) has the same bound in L, resp. LP, as {v.}.c(0,1). Finally,
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we see that 9%ul = ”f,(a) x e~ 121(9*¢). where, using the notation introduced above,
(0%¢)e(x) = e7(0%¢)(x/e). It follows that {uc}.c(o,1) is moderate. Let u be its
class in G4(2; R™). Clearly, u is of bounded resp. p-bounded type. By definition,
we have that |uc — vyl L1 (K, rm) < 1/m, resp. ue — vy Lr(@rmy < 1/m,
for 61 < € < 0my,m € N, 80 ue —vye) — 0, € — 0, in L%OC(Q;RW), resp. in
LP(Q;R™). Now we will prove parts a) and b) separately.

a) We have that {u.}.c(o,1) and {vy(c)}ee(0,1) are bounded nets in L>°(Q; R™).
It follows immediately that for k =1,....m and j =1, ..., n,

1
f]k(ue) - f]]‘c(vn(s)) = (ue - 'Un(e)) hd / Vf]k (Tue + (1 - T)Un(a)) dr
0
converges to zero in L. (€2). So,
div f*(uz) — div f*(v,2)) — 0 in D'(Q). (10)
Using the fact that div f¥(v.) — 0 and that Up(e) 18 a subsequence of v, we obtain
from (10) that div f¥(u.) — 0, € — 0, in D’(2). This proves that div f(u) ~
b) In this subcase, the families {uc}.c(0,1) and {vy(e)}ee(0,1) are bounded in

LP(Q;R™). In order to show that w is an approximate generalized solution it is
enough to show (10), i.e. that for all test functions 6 € D(Q),

_Z/ fk (ue(z f (V) (@ ))) . 83;33) dx — 0, as e — 0,
j

for all k =1,...,m. But (8), the mean value theorem and Holder’s inequality give
5‘9(

[ (1 uete f’“( 0@))) Ty o] < e lue=vye)las (1 el +one 1)

where for p # 1, ¢ = -2, so the desured convergence result follows. Note that for

p =1, from (8) we have a L°°-bound for gradients Vf]’?. O

3. YOUNG MEASURES AS MEASURE VALUED SOLUTIONS AND EQUIVALENCE

Let  be an open subset of R™ and denote by M(R™) the space of regular Borel
measures on R™ with finite total mass; M(R™) can be represented as the dual of
the space Cp(R™) of the continuous functions vanishing at infinity endowed with the
sup norm. A Young measure is a weakly measurable mapping = — v, € M(R™),
x € €, such that each v, is a probability measure Weak measurabﬂity means that
for all v € Cy(R™), the mappings = — (Vg, v) = [pm V(AN)Ve(dX) € R, z € Q, are
measurable. We denote the set of Young measures by Y(2; R™). Let {uE}Ee (0,1) be
a sequence of L (Q; R™)-functions, whose L*-norms are bounded by some positive
constant, independently of . The basic Young measure theorem, see for example
[4], says that there exists a subsequence {uy}r and a Young measure v = {v; },cq,
such that for every F' € C(R™),

w* — lim F(uy) =F (11)
k—o0
in L>°, where F(z me A) dvg(X), for almost all z € Q. In addition, almost

all v, are supported in the same compact set. Such Young measures are referred
to as L*°-Young measures and denoted by Y*°(Q;R™). In fact, the support con-
dition characterizes Y*°(Q;R™): a Young measure v arises from a sequence of
L>°(Q; R™)-uniformly bounded functions if and only if there exists K CcC R™
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such that suppr, C K, for almost all z € . On the other hand, Schonbek,
[13], introduced LP-Young measures, YP(Q;R™), for 1 < p < oo, as Young mea-
sures arising from sequences of LP({, R™)-bounded functions, and proved a sim-
ilar result, i.e., given a sequence of LP(Q,R™)-bounded functions, there exists
a subsequence {uj}r and a Young measure v = {v,;},cq, such that for every
F e C,(R™) = {v e CR™) : v(\) = o(|\P), |]\| = oo}, Fou — F as k — oo,
weakly in L'(€;R™). A characterization of YP(Q;R™) was given by Kruzik and
Roubicek, [9], i.e. a Young measure v = {v, }, belongs to YP(Q; R™) if and only if
the function  — [5,. [A[? dvz(X) belongs to L'(€2). The result actually holds for
p =1 as well.

Following DiPerna [4] who defined the notion of a measure valued solution to (1)
we say that a Young measure {v; },cq is a Y°(;R™), resp. YP(Q2; R™)-measure
valued solution to (1) if:

1. supp v, C K, for some K CC R™, resp. {x = Jom (AP dva(N) | € LH(€),
2. for all g € C(R™), resp. g € Co(R™), & +— [,, g dv, is measurable,
3. forall k=1,...,m, 2?:1 ai(fﬂw fjk dz/x) =0, in D'(Q).

We are now in the position to relate measure valued solutions and approximate
generalized solutions.

Theorem 2. a) Let u € G,(Q;R™) be of bounded type and solve div f(u) ~ 0.
Then each Young measure {z}ocq, arising from a subsequence of any bounded
representing sequence of u is a Y°°(; R™)-measure valued solution to (1).

b) If u = 1(v), for some v € L™ (Q;R™), then v(x) = [pn Adpg(X) for almost all
x €.

Proof. Part a) follows from the Young measure theorem and the fact that u is
an approximate generalized solution, while part b) follows from the definition of
association and the fact that ue, — [5.. Aduz(X), k& — oo, what we obtain from
(11), by taking F' equal to the identity mapping, F'(\) = A. O

Remark 3. Even if 1(v) & u for some v € L>®°(Q; R™), in general, different sequences
lead to different Young measures, since f(u) is not generally associated with f(¢(v)).
In this sense, u € G4(€;R™) could be viewed as representing a collection of Young
measures having the same first moment, i.e. for all Young measures [p,, Adpz ()
is the same for almost all x € €.

Theorem 4. a) Let {1z }zcq be a Y°(Q; R™)-measure valued solution to (1). Then
there is a sequence {uc}ec0,1) € Em,s(Q;R™), whose class u is of bounded type and
solves div f(u) =~ 0.

b) Moreover, this sequence admits a unique Young measure coinciding with { iz }zcq
for almost all v € Q, and u = 1(v), where v(x) = [5,. Adpe(N).

Proof. a) According to the characterization of Y*°(£2;R™), there is a uniformly
bounded sequence {vy}, C L°°(;R™) having {u,}zcq as its Young measure,
that is for every g € C(R™), g(vp) — g, weak™ in L™, as p — oo, where g(z) =
Jgm 9 dpie. It follows that, as p — oo,

SN "9 _
> %ff(vp) = %/R fFdps, inD(Q), k=1,..,m. (12)
j=1 "7 j=1 ) IR
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The right hand side of (12) equals zero because {1, }zc is a measure valued solution
to (1). Applying Lemma 1 to the sequence {v,},, we obtain an element u €
G<(€;R™) of bounded type solving (4).

b) Since we have that for all ¢ € C(R™), g(v,) — g, weak* in L>°, as k —
o0, every subsequence of v, leads to the same Young measure. We replace vy,
appearing in the proof of Lemma 1 by wv,,, construct n(e) accordingly, so that
Up(e) = Um, for 0 < 6 < 0, m > 1, and let ul = v;(a) * ¢z, with ¢ as in Lemma
1, and u = [{uctec(o,1)] € Gs(;R™). Since ue — v,y — 0, in LL (% R™), € — 0,
it follows that g(uz) — g(vye)) — 0, in Li (Q;R™), e — 0, for every g € C(R™)
and that {g(uc)}c and {g(v,())} have the same weak*-limits in L>°(€2; R™). Thus
{uc}e and {v, ()} give rise to the same unique Young measure. It is then clear
that u ~ ¢(v) = t(limg_y00 v&) = t(v), where v(z) = [, Adpz(N). O

m

Remark 5. Again, the generalized function u constructed in the proof of the The-
orem 4 is not unique. In fact, let {w.}.c0,1) C Enr,s(2) be any other uniformly
bounded sequence, all whose subsequences give rise to the same Young measure,
and let w be its class in G5(Q;R™). Then clearly we must have that u ~ w. But
it is not necessarily true that u = w in G4(Q2; R™). For example, it suffices to take
{we}.e(0,1) in such a way that u. —w. converges to zero in Li , but {ue —w:}ee(0,1)
does not belong to N(£;R™).

This time nonuniqueness comes from the fact that N(Q; R™) is strictly smaller
than the space of Llloc-zero sequences. To put it more explicitly, let {’UE}EG(OJ)
and {we }ce(0,1) be two uniformly bounded sequences in s 5(2). Then {ve}oe(0,1)
and {we}oc0,1) are equal in Gy(Q;R™), if their difference belongs to N,(;R™);
they produce the same Young measure, if their difference converges to zero in
Li (Q;R™); they are associated in Gs(€;R™), if their difference converges to zero
in D’'(2; R™). Thus the various occurrences of nonuniqueness can be attributed to
differing stability properties inherent in the respective solution concepts.

For YP(£2; R™)-measure valued solution and approximate generalized solutions of
p-bounded type, results analogous to Theorems 2 and 4 are valid. In the following
two theorems, in addition to (7) and (8), we assume that fF € C,(R™).

Theorem 6. a) Let u € G5(Q;R™) be of p-bounded type and solve div f(u) = 0.
Then each Young measure {pz tzeq, arising from a subsequence of any p-bounded
representing sequence of u is a YP(2; R™)-measure valued solution to (1).

b) If u = 1(v), for some v e LP(Q;R™), then v(x) = [4n Aduz(X) for almost all
x €.

Theorem 7. a) Let {,}zeq be a YP(Q; R™)-measure valued solution to (1). Then
there is a sequence {uc}ee,1) € Em,s(R™), whose class u is of p-bounded type
and solves div f(u) = 0.

b) Moreover, this sequence admits a unique Young measure coinciding with { i, }zcq
Jor almost all x € Q, and 1(v) = u, where v(x) = [, Adpe(N).

Proof. a) According to the characterization of Y?(2; R™), there is a sequence {u,}
having {(, }zecq as its Young measure. The sequence {u,} is uniformly bounded in
LP and for all g € C, we have weak convergence in L' of the composition g(u,).
Applying that to f* = (fF,..., f¥), we obtain div f*(u,) — me div fE(\) dpe(N) =
0in D'(Q2), k =1,...,m, because {1z }zcq is a measure valued solution to div f(u)
= 0, and that is why {u,} fulfills the conditions of Lemma 1b). Now, by the
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construction from the proof of Lemma 1, we obtain a solution to div f(u) =~ 0 of
p-bounded type. The proof of the part b) is similar to the proof of Theorem 4b). O

4. APPROXIMATE GENERALIZED SOLUTIONS TO THE EULER EQUATIONS

The conservative form of the Euler equations is

0

(*)itj +diviv®v)+Vp=0, dive=0,
where divy @ v = (div(vlvl, Cey VRV )y ey div(vivg, .. ,vnvn))T. Thus we deal
with a system of n equations of the form div,41 f;(v) = 0, j = 1,...,n, where
[i (W) = (vj, 0105, V205, ..., va05), fj : R® = R j=1,... n and the divergence
is taken with respect to the variables (¢, 1,22, ..., Zn)-

Following DiPerna, Majda [6], who constructed measure-valued solutions to the
Euler equations, we have that, under the same assumptions as in [6, Proposition
5.1], there exists an approximate generalized solution to the Euler equations.

Proposition 8. Assume that {v.:}.c(0,1) is a sequence of functions satisfying div v, =
0, and the following conditions:

a) Weak stability: For any Q C R™ x RT, there exists a constant C = Cgq such
that

/ |ve (5 1)|? dadt < C.
Q
b) Weak consistency: For all test functions ¢ € C3°(;R™),

lim [ ¢¢-ve+Vo:v. Qv dadt =0.
e—=0 Jo

Then there exists u € Gs(Q;R™), which is an approzimate generalized solution of
2-bounded type to the Fuler equations.

Proof. Weak consistency gives that div,41 fj(ve) = 0in D'(Q), forall j =1,...,n,
so we can just apply Lemma 1, to obtain an approximate generalized solution of 2-
bounded type, because the condition (8) is fulfilled for f; defined above and p = 2.
Further, we can infer that

Eli_r% ; (ug — vf](E))ﬁ + Zl (uguz — vi(a)v;(s))qﬁgi dzdt =0,

for all test functions ¢/ € C§°(2), directly from the following estimate:

’ /Q (ul — vg(s))qﬁ{ + Z (ulul — vg(s)v;(s))gbfﬁi dxdt‘
i—1

- ‘ /Q (ul — vi’(g))qﬁi + Z (ulul + vf](e)ué — Uf](e)v;(e))qﬁii dxdt‘
i=1

n
< Jul = vl leelod e + 3 sup I, | (Jul = vl o lralulas + o) o laellet = v 22
=1
. n .
< alul —v) gl + Z (02||u§ = vy oyl +eslue — ’U;(E)”L2)7 j=1,.,n.

i=1
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