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Abstract. We analyze family of solutions to multidimensional scalar conser-
vation law, with flux depending on the time and space explicitly, regularized
with vanishing diffusion and dispersion terms. Under a condition on the ba-
lance between diffusion and dispersion parameters, we prove that the family
of solutions is precompact in L1

loc. Our proof is based on the methodology
developed in [22], which is in turn based on Panov’s extension [18] of Tar-
tar’s H-measures [26], or Gerard’s micro-local defect measures [5]. This is new
approach for the diffusion-dispersion limit problems. Previous results were
restricted to scalar conservation laws with flux depending only on the state
variable.

1. Introduction

Nonlinear hyperbolic conservation laws model many physical, mechanical and
chemical phenomena. Some of well known examples are flow in porous media, sedi-
mentation processes, traffic flow, blood flow. However, these phenomena typically
occur in heterogenous media and therefore it is very important to investigate conser-
vation laws involving flux explicitly depending on the position in space (x variable)
and time (t variable). Accordingly, the subject of the paper is the following Cauchy
problem for multidimensional scalar conservation law

∂tu(t, x) + divxf(t, x, u) = 0, u(0, x) = u0(x), x ∈ Rd, t ∈ R+.(1)

Still, the mentioned conservation law often describes only approximatively ap-
propriate physical situation. More precisely, in order to simplify the model, terms
like diffusion or dispersion are neglected since one can often assume that they have
no essential influence on the considered process. On the other hand, Cauchy prob-
lem (1) admits discontinuous solutions, and it is well known that such solutions are
not unique. Therefore, to obtain the information that is physically relevant, it is
important to inspect which solution is selected by a specific zero diffusion-dispersion
limit.
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Therefore, we consider the following family of problems

∂tu
ε,δ + divxf(t, x, uε,δ) = ε

d∑

j=1

∂xj
bj(∇xuε,δ) + δ

d∑

j=1

∂xjxjxj
uε,δ,(2)

uε,δ(0, x) = uε
0(x), x ∈ Rd, ε, δ > 0,(3)

where the initial data uε
0 from (3) converge to the initial datum u0 from (1) strongly

in L2(Rd), as ε → 0 (all terms from (1), (2) and (3) are precisely described in the
next chapter). In order to obtain a weak entropy solution to (1) as a limit of a
subsequence of the solutions to (2)-(3), we study precompactness properties of the
family (uε,δ)ε,δ. The goal is to obtain optimal diffusion-dispersion ratio, i.e. the
optimal balance of the two parameters ε and δ.

In our investigation we were mainly inspired by the results of S. Hwang, [10],
which are followed in the proof of the Theorem 1, and S. A. Sazhenkov, [22], which
enable us to consider equation (1) in more general form than the one from [10].

Let us briefly recall already obtained results on the problem of diffusion–dis-
persion limit. Naturally, first results are obtained for flux independent on space and
time. In [23], using compensated compactness argument, the author proves that
the family of solutions to KdV-Burgers equation converges to a weak solution to
Burgers equation if diffusion parameter ε and dispersion parameter δ are balanced
in the sense that δ = O(ε2), as ε → 0. Using the same methodology, in [15] the
diffusion-dispersion problem is addressed for the case of flux in general form. The
balance between two parameters obtained there is analogous to the result from [23].

Multidimensional homogeneous model, completely analogous to (2) (nonlinear
diffusion, linear dispersion), was firstly introduced by J. M. Correia and P. G.
LeFloch, [1]. Similar problem was considered in [12] but under less restrictive
conditions on the relative size between diffusion and dispersion parameters. More
precisely, it is proved in [12] that the family of solutions of a scalar conservation
law perturbed by diffusion and dispersion converges to a unique entropy admissible
weak solution (see [13]) of appropriate conservation law if the diffusion parameter
ε predominates the dispersion parameter δ in the sense that δ = o(ε2), as ε →
0. To accomplish this, authors use the concept of measure valued solutions to
conservation laws introduced by DiPerna [3]. Recent step forward with respect to
the relative size of diffusion and dispersion parameters is made in [10] (see also [8, 9]
for the similar results and methodology). Using the kinetic approach [21] and the
averaging lemma [16, 21, 25], the author obtains the diffusion-dispersion limit if
the diffusion parameter ε and the dispersion parameter δ are balanced in the sense
that δ = O(ε2), as ε → 0 (or more precisely δ = O(ε

r+3
r+1 ) for appropriate r ≥ 1;

see (H2) below). It is important to stress that in every of the previously mentioned
works the flux corresponding to the considered conservation law does not depend
on space and time explicitly. Thus, unlike the situation we have here, it is tacitly
assumed that the authors are dealing with a process in a homogenous media.

Now, we shall analyze more closely the problem we are dealing with. If we
assume that the relative size of ε and δ is weaker than in [10], then we can rely on
[3] (as in [12]) to state that the family (uε,δ)ε,δ of solutions to (2)-(3) converges to
unique entropy admissible weak solution to (1). Also, if we consider one dimensional
variant of (2)-(3) and assume that the relative size of ε and δ is the same as in [10],
we can use compensated compactness, and even assume that the flux f = f(t, x, λ)
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from (1) is discontinuous in (t, x) ∈ R+ ×R to obtain the convergence result (see
[7]).

In order to obtain the results analogous to those from [10] (multidimensional
space, optimal diffusion-dispersion ratio), similarly as there, we shall use kinetic
formulation of the conservation law that we are considering (see also [2]).

Note that in [10] the author has used the averaging lemma for an appropriate
transport equation [21]. But, only result concerning averaging lemmas for transport
equations with a flux explicitly depending on space and time variable is the one
from [5]. It is proved in [5] that for the sequence of solutions (hn)n ∈ L2(Rd ×R)
of transport equations

divxa(x, λ)hn(x, λ) =
N∑

k=0

∂k
λgk

n(x, λ), x ∈ Rd, λ ∈ R, a ∈ C1(Rd ×R),

and every ρ ∈ C1
0 (R), the sequence of averaged quantities( ∫

Rd

ρ(λ)hn(x, λ)dλ

)

n

is strongly precompact in L1
loc(R

d),

if for every k = 1, ..., N, the sequences (gk
n(x, λ))n are strongly precompact in

H−1(Rd ×R).
Furthermore, the result on velocity averaging given in [5] is weaker than the result

from e.g. [21], which is used in [10]. Therefore, we need stronger precompactness
result than the one from [5]. We will accomplish this by using results of [20] (H-
measures), where the results from [5] are improved by the use of additional, more
regular assumptions on the sequence (hn)n (defined in (10)), whose convergence we
want to prove (see also [5, 18, 19, 20, 26] for the H-measure techniques).

The first result involving diffusion-dispersion limits in heterogenous media is
given in [7]. It is proved that for the flux f = f(t, x, λ), (t, x, λ) ∈ R+ × Rd ×
R which is the Caratheodory vector (i.e. measurable in (t, x) ∈ R+ × Rd and
continuous in λ) of locally bounded variation, the family of solutions of appropriate
scalar conservation law perturbed by diffusion and dispersion parameter converges
to a weak solution of appropriate conservation law if the diffusion parameter ε
predominates the dispersion parameter δ in the sense that δ = o(ε2), as ε → 0.

We will improve the balance result from [7], but with the stronger assumptions
on the flux (see (H3) in the next chapter).

The paper is organized as follows. In Section 2 we give basic notations, as-
sumptions and the statement of the main theorem. In Section 3 we prove a priori
inequalities for the family (uε,δ)ε,δ. In Section 4 we prove necessary precompact-
ness result for a family of solutions of appropriate transport equation. In Section 5
we show how to reduce (2) to transport equation (26). Then, we use results from
Section 3 to prove that the family of solutions to (26), as well as (26) itself, satisfy
conditions from Section 4 to conclude strong precompactness of the family (uε,δ)ε,δ.

2. Notations, assumptions and the statement of the main result

In the sequel, for a vector valued function g = (g1, ..., gd) defined on R+×Rd×R,
we denote

|g|2 =
d∑

i=1

|gi|2.
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The partial derivative Dxi at the point (t, x, u), where u possibly depends on (t, x),
is defined by the formula

Dxi
g(t, x, λ) = (∂xi

g(t, x, λ))|λ=u(t,x).

In particular, the full derivative ∂xi
and the partial derivative Dxi

are connected
by the identity

∂xi
g(t, x, u) = Dxi

g(t, x, u) + ∂ug(t, x, u)∂xi
u.

Now, we list basic assumptions.
1. Assumption on the solutions uε,δ and the initial data:

We assume that (uε,δ)ε,δ has enough regularity so that all formal computations
below are correct. Moreover, we assume that uε,δ, ∂xiu

ε,δ and ∂xixj u
ε,δ vanish as

|x| → ∞.
For the initial data we assume:

u0 ∈ L1(Rd) ∩ L2(Rd),

uε
0 ∈ H1(Rd) and ∇uε

0 ∈ H1(Rd;Rd), for every fixed ε > 0,

uε
0 → u0 strongly in L2(Rd) ∩ L1(Rd), as ε → 0.

Notice that from the last assumption (uε
0)ε is uniformly bounded in L2(Rd).

2. Assumptions on the diffusion term b = (b1, ..., bd) : Rd → Rd:
(H1) There exist r ≥ 1 and constants C1, C2 such that

C1|λ|1+r ≤ λ · b(λ) ≤ C2|λ|1+r, for all λ ∈ Rd.

(H2) The gradient matrix Db(λ) is positively definite matrix uniformly in λ ∈ Rd,
i.e. there exists a positive constant C3 such that

ξT Db(λ)ξ ≥ C3|ξ|2, for all λ, ξ ∈ Rd.

3. Assumption on the flux vector f = (f1, ..., fd) : Π×R → Rd:
(H3) We assume that f = f(t, x, u) and fu(t, x, u) are continuous and that they
have locally integrable derivatives with respect to t and x. These assumptions
enable us to make calculations in a priori estimates of the next section. Moreover,
we assume:

1) If r > 1, appearing in (H1), then ∂uf ∈ L
2(r+1)

r−1 (R+ ×Rd ×R); if r = 1,
then ∂uf ∈ L∞(R+ ×Rd ×R),

2) |Dxifj(t, x, v)| ≤ |ζi,j(t, x)||v|, for some ζi,j ∈ L∞(R+×Rd), i, j = 1, . . . , d
and Dxifi ∈ L1(R+ ×Rd ×R).

Remark 1. The inspection of the proof of Lemma 2 shows that the integrability
condition of Dxifi(t, x, v) with respect to v reflects the problem of uniform bound-
edness of the net of solutions uε, which would imply the integrability assumption of
Dxifi with respect to (t, x). Still, it is an open problem to find a weaker condition
than (H3).

4. Genuine nonlinearity condition:
We will assume that vector function f is genuinely nonlinear, i.e. for every ξ =
(ξ1, ...ξd) ∈ Sd−1, and almost every (t, x) ∈ R+ ×Rd, the mapping

(4) λ 7→ 〈ξ , fi(t, x, λ)〉 is not affine in λ on any nontrivial interval.
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The main result of the paper is the following theorem.

Theorem 1. The family of smooth solutions (uε,δ)ε,δ to Cauchy problem (2)-(3) is
strongly precompact in L1

loc(R
+×Rd) if ε and δ from (2) are balanced in the sense

that

δ = O(ε
r+3
r+1 ) as ε → 0.

To prove the theorem, we shall combine approaches from [10] and [22]. First,
we reduce equation (2) to a family of transport equations (26) and then we use
techniques of H-measures from [22] to prove strong precompactness of family of
solutions to (26).

Remark 2. Before we start with the proof, we compare our result with the ones
existing in the literature which we generalize (those are in [1] and [10]).

Recall once again that model (2) was introduced in [1] in the case of homogeneous
flux, i.e. f = f(u) : R → Rd. There, it is proved that if δ = o(ε

r+3
r+1 ), ε → 0, then

the family of solutions (uε,δ)ε,δ converges in Ls((0, T ); L1
loc(R

d)), for all s < ∞ and
T > 0, to a unique entropy admissible solution u ∈ L∞((0, T ); L1(Rd)) of (1).

The same problem with the same assumptions as in [1] was considered in [10],
where is proved that if δ = O(ε

r+3
r+1 ), as ε → 0, then the family of solutions (uε,δ)ε,δ

converges in Ls((0, T ); L1
loc(R

d)) for all s < ∞ and T > 0, to a weak solution u ∈
L∞((0, T ); L1(Rd)) of (1). Here, we obtain analogical result but for heterogeneous
flux and by the use of a new approach.

3. A priori inequalities

In this section, we shall determine a priori inequalities for the solutions to the
problem (2)-(3). For the simplicity, in the sequel we shall write uε implying uε,δ

and consider that ε ∈ (0, 1).

Lemma 2. Under the assumptions (H1) and (H3), the family of solutions (uε)ε to
(2)-(3) for every t ∈ [0, T ] satisfies the following inequality

(5)
∫

Rd

|uε(t, x)|2dx + ε

∫ t

0

∫

Rd

|∇uε(t′, x)|r+1dxdt′ ≤ c,

for some c > 0 that does not depend on ε.

Proof: Let η = η(u), u ∈ R, be a smooth function. We multiply (2) by η′(uε)
and define q = (q1, ..., qn) as

qi(t, x, u) =
∫ u

0

η′(v)∂vfi(t, x, v)dv, i = 1, ..., d.
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Thus, (2) becomes

∂tη(uε) + divx qi(t, x, uε)

−
d∑

i=1

∫ uε

0

Dxi
∂vfi(t, x, v)η′(v)dv +

d∑

i=1

η′(uε)Dxi
fi(t, x, uε)

= ε

d∑

i=1

∂xi

(
η′(uε)bi(∇uε)

)− εη′′(uε)
d∑

i=1

bi(∇uε)∂xiu
ε

+ δ

d∑

i=1

∂xi

(
η′(uε)∂xixi

uε
)− δ

2
η′′(uε)

d∑

i=1

∂xi
(∂xi

uε)2.

(6)

Choosing here η(u) = u2

2 , integrating over Π = [0, t)×Rd, taking into account (H1)
and partial integration, we obtain

1
2

∫

Rd

|uε(t, x)|2dx + εC1

∫ t

0

∫

Rd

|∇uε(t′, x)|1+rdxdt′

≤(H1) 1
2

∫

Rd

|uε(t, x)|2dx + ε

∫ t

0

∫

Rd

∇uε(t′, x) · b(∇uε(t′, x))dxdt′

=
1
2

∫

Rd

|uε
0(x)|2dx +

d∑

j=1

∫ t

0

∫

Rd

∫ uε(t′,x)

0

v ∂vDxj fj(t′, x, v)dvdxdt′(7)

−
d∑

i=1

∫ t

0

∫

Rd

uεDxifi(t′, x, uε)dxdt′

=p.i. 1
2

∫

Rd

|uε
0(x)|2dx−

∫ t

0

∫

Rd

∫ uε(t′,x)

0

d∑

i=1

Dxifi(t′, x, v)dvdxdt′.

Now (H3) immediately implies (5). ¤

Lemma 3. Under the assumptions (H2) and (H3), for |D2u|2 =
d∑

i,k=1

|∂xixk
u|2,

the family of solutions (uε)ε to (2)-(3), for every t ∈ [0, T ], satisfies the following
inequality

(8) ε
r+3
r+1

∫

Rd

|∇uε(t, x)|2dx + ε
2(r+2)

r+1

∫ t

0

∫

Rd

|D2uε(t′, x)|2dxdt′ ≤ c,

for some c > 0 that does not depend on ε.

Proof: We differentiate (2) in xk and multiply obtained expression by ∂xk
uε. Inte-

grating over Rd, using partial integration and assumption (H2), and then summing
in k = 1, ..., d those expressions we obtain

1
2

∫

Rd

∂t|∇uε|2dx−
d∑

k=1

∫

Rd

∇∂xk
uε · (Dxk

f(t, x, uε) + ∂uf · ∂xk
uε) dx

= −ε

d∑

k=1

∫

Rd

(∇∂xk
uε)T Db(∇uε)∇∂xk

uεdx ≤(H2) −εC3

d∑

k=1

∫

Rd

|∇∂xk
uε|2dx.
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Integrating this over [0, t] and using Cauchy-Schwartz inequality we obtain

1
2

∫

Rd

|∇uε( · , t)|2dx + εC3

d∑

k=1

∫ t

0

∫

Rd

|∇∂xk
uε|2dxdt′

≤ 1
2

∫

Rd

|∇uε
0|2dx

+
d∑

k=1

||∇∂xk
uε||L2(R+×Rd)||Dxk

f( · , · , uε) + ∂uf · ∂xk
uε||L2(R+×Rd).

Then, using the Young inequality (C3 below is the same as above),

ab ≤ C3ε

2
a2 +

C4

ε
b2, a, b ∈ R,

for constants C3, C4 independent on ε, it follows

1
2

∫

Rd

|∇uε( · , t)|2dx + εC3

d∑

k=1

∫ t

0

∫

Rd

|∇∂xk
uε|2dxdt′

≤ 1
2

∫

Rd

|∇uε
0|2dx + C3

ε

2

d∑

k=1

∫ t

0

∫

Rd

|∇∂xk
uε|2dxdt′(9)

+
C4

ε

∫ t

0

∫

Rd

d∑

k=1

∣∣∣Dxk
f(t′, x, uε(t′, x)) + ∂uf · ∂xk

uε
∣∣∣
2

dxdt′.

Now, we separate proof for r > 1 and r = 1. Using inequality (a + b)2 ≤ 2a2 + 2b2,
Hölder inequality and (H3), for r > 1 we obtain

1
2

∫

Rd

|∇uε( · , t)|2dx +
ε

2
C3

d∑

k=1

∫ t

0

∫

Rd

|∇∂xk
uε|2dxdt′

≤ 1
2

∫

Rd

|∇uε
0|2dx +

2C4

ε

d∑

i,j=1

||ζi,j ||2L∞(Π)

∫ t

0

∫

Rd

|uε(t′, x)|2dxdt′

+
2C4

ε
r+3
r+1

d∑

k=1

‖(∂uf)2(t, x, uε(x, t))‖
L

r+1
r−1 (R+×Rd)

·
(

ε

∫ t

0

∫

Rd

|∂xk
uε|r+1(x, t′)dxdt′

) 2
r+1

.

By (5), it follows that
∫ t

0

∫
Rd |uε(t′, x)|2dxdt′, ε

∫ t

0

∫
Rd |∇u(s, x)|r+1dxds ≤ C, t ∈

[0, T ]. Thus, after multiplying the former expression with ε
r+3
r+1 , we obtain (8).

By the same arguments, in case when r = 1, we multiply (9) by ε2 and obtain

ε2

2

∫

Rd

|∇uε(t, x)|2dx + C3
ε3

2

∫

Rd

∫ t

0

|D2uε|2dxdt

≤ ε2C5

∫

Rd

|∇uε
0|2dxdt′ + C7||∂uf ||2L∞(R+×Rd×R)

+ εC6

∫ t

0

∫

Rd

d∑

k=1

|Dxk
f(t′, x, uε(t′, x))|2dxdt′

≤ ε2C5||∇uε
0||2L2(Rd) + C7||∂uf ||2L∞ + εC6

d∑

i,j=1

||ζi,j ||2L∞
∫ t

0

∫

Rd

|uε(t′, x)|2dxdt′,
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with appropriate constants. From (5) and the last inequality we obtain (8). ¤

4. Convergence results

To prove strong precompactness of the family (uε)ε of solutions to (2)-(3) we
shall use the theory of H-measures [5, 26]. The following theorem is the corner
stone of H-measures.

Theorem 4 ([26]). If (un)n∈N is a sequence in L2
loc(Ω;Rr), Ω ⊂ Rd+1, such

that un ⇀ 0 in L2
loc(Ω), then there exists subsequence (un′)n′ ⊂ (un)n and positive

complex bounded measure µ = {µjk}j,k=1,...,r on Rd+1×Sd such that for all ϕ1, ϕ2 ∈
C0(Ω) and ψ ∈ C(Sd),

lim
n′→∞

∫

Rd+1
F(ϕ1u

j
n′)(ξ)F(ϕ2uk

n′)(ξ)ψ(
ξ

|ξ| )dξ = 〈µjk, ϕ1ϕ̄2ψ〉

=
∫

Rd+1×Sd

ϕ1(x)ϕ2(x)ψ(ξ)dµjk(x, ξ).

As we can see, the H-measure µ = {µkj}k,j∈E , where E is a finite set, is defined
for sequences (un)n = (un(x, k))n, x ∈ Ω, k ∈ E, weakly converging to zero in
L2(Ω), for every λ ∈ E. The essential fact here is that E is a finite set. Using
diagonal argument, an H-measure can be defined for a sequence (un)n = (un(·, k))n

where k ∈ E and E is a countable set.
On the other hand, if one assumes that the sequence (un)n = (un(·, k))n is

defined e.g. for k ∈ R, in general it is not possible to find family of measures
{µkj}k,j∈E so that the statement of the Theorem 4 holds, since R is an uncountable
set. But, if we additionally assume that (un)n is uniformly continuous in λ ∈ E ⊂
R, and that E is a subset of the full measure (meas(R\E) = 0), then one can
define an H measure µ = {µkj}k,j∈E so that Theorem 4 still holds. Indeed, one can
choose a countable dense subset of E and define an H measure on that countable
subset. Then, using the continuity argument, one extends this H measure for every
k, j ∈ E. This fact was noticed and formalized in [18] and we will use it here.

To proceed, recall from the previous section that (uε)ε is uniformly bounded
in L2(Π), Π = [0, T ) × Rd, for every fixed T ∈ R+ (Lemma 2). Then there
exists a subsequence (uk)k and a Young measure ν = {νt,x}, νt,x ∈ Prob(R), such
that limk→∞ f(uk) =

∫
R

f(λ) dνt,x(λ) holds in the sense of distributions for all
continuous functions f(λ) = o(|λ|2), when |λ| → ∞, (cf. [23]). In this section we
shall prove that the sequence (hk)k∈N of the form

(10) hk(t, x, λ) =





1, for 0 < λ ≤ uk(t, x)
−1, for 0 > λ ≥ uk(t, x)
0, otherwise

,

satisfying the transport equation

∂thk(t, x, λ) +
d∑

i=1

∂xi(∂λfi(t, x, λ)hk(t, x, λ))

= ∂λmk(t, x, λ) + m̄k(t, x, λ) +
d∑

i=1

∂λ∂xigk(t, x, λ) +
d∑

i=1

∂xi ḡk(t, x, λ),

(11)
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is precompact in Lp
loc(Π), p ∈ [1, +∞). Here (gk(t, x, λ))k and (ḡk(t, x, λ))k are

precompact in L1+ 1
r (Π), uniformly in λ ∈ R, i.e. there exist functions ḡ( · , · , λ)

and g( · , · , λ) in L1+ 1
r (Π) such that, along a subsequence,

sup
λ∈R

‖gk( · , · , λ)− g( · , · , λ)‖
L1+ 1

r (Π)
→ 0, as k →∞,

sup
λ∈R

‖ḡk( · , · , λ)− ḡ( · , · , λ)‖
L1+ 1

r (Π)
→ 0, as k →∞.

(12)

Furthermore, we assume that (mk)k∈N, (m̄k)k∈N are sequences of locally bounded
measures on Π×Rλ. We use notation mk, m̄k ∈Mloc(Π×Rλ), k ∈ N. From the
assumption on local boundedness of (mk)k∈N, (m̄k)k∈N we conclude that there
exist measures m, m̄ ∈Mloc(Π×Rλ) such that (up to a subsequence)

(13) mk ⇀ m and m̄k ⇀ m̄, weakly− ? in Mloc(Π×Rλ), as k →∞,

see [4]. Due to the uniform boundedness of the sequence (hk)k, there exists h ∈
L∞(Π×Rλ), such that (along a subsequence)

(14) hk ⇀ h, weakly− ? in L∞(Π×Rλ), as k →∞.

On the other hand, if φ2 ∈ C∞(Rλ), then

(15)
∫

Rλ

φ′2hk dλ = φ2(uk(t, x)) ⇀

∫

Rλ

φ2 dνt,x(λ), in D′(Π), as k →∞.

Using the notion of the Stieltjes parameterized measure, we can write νt,x(λ) =
∂λg(t, x, λ), where g(t, x, λ) =

∫
Rλ

χ{s:s≤λ}dνt,x(s), (t, x) ∈ Π, is the distribution
function of the Young measure ν. Then, we can rewrite the limit in (15) as∫

Rλ

φ′2hk dλ ⇀ −
∫

Rλ

φ′2(λ)g(t, x, λ) dλ, k →∞,

and conclude that h(t, x, λ) = −g(t, x, λ), (t, x) ∈ Π, λ ∈ R. The limiting function
h in (14) is a monotone function in λ, for every (t, x) ∈ Π. Therefore, the set of
discontinuity points λ of the function h, i.e. the complement of the set

E := {λo ∈ R |h(·, ·, λ) → h(·, ·, λ0), strongly in L1
loc(Π), as λ → λ0},

is countable, at most. So, for any fixed λ ∈ E ,

hk(·, ·, λ) ⇀ h(·, ·, λ), weakly− ? in L∞(Π).

Moreover, the sequence
(
Uλ

k (·, ·) ≡ hk(·, ·, λ)− h(·, ·, λ)
)
λ∈E , k ∈ N, defines an H-

measure µ (cf. [18, Lemma 4]), i.e. there exists an H-measure {µpq}p,q∈E on Π×Sd

such that for arbitrary φ1, φ2 ∈ C0(Π) and ψ ∈ C(Sd)∫

Π×Sd

φ1(t, x)φ̄2(t, x)ψ(y) dµpq(t, x, y) =

= lim
k→∞

∫

Rd+1
F [φ1U

p
k ](ξ)F [φ2U

q
k ](ξ)ψ(

ξ

|ξ| ) dξ

holds for every p, q ∈ E , where F is the Fourier transform with respect to (t, x)
variable.

To employ techniques of H-measures, we shall also need some facts concerning
multipliers, and the special ones - the Riesz potentials, [24]. The Riesz potential
Jα, 0 < α < d, is defined by the formula

F [Jα[ϕ]](ξ) = (2π|ξ|)−αF [ϕ](ξ), ϕ ∈ C∞0 (Rd+1).
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The Riesz potential J1 is characterized by the following lemma.

Lemma 5. If p > d the Riesz potential J1 is a compact operator from Lp(Rd) to
C(Rd). If 1 < p ≤ d the Riesz potential J1 is a compact operator from Lp(Rd) to
Lp(Rd) for an arbitrary q ∈ [1, pd(d− p)−1].

A multiplier A with a symbol ψ ∈ C(Sd) is defined by the formula

F [A[ϕ]](ξ) = ψ(ξ/|ξ|)F [ϕ](ξ).

The multiplier Rj , j = 0, ..., d, with symbol iξj/|ξ| is called the Riesz transform.
Recall [24],

(Jα ◦ Jβ)[ϕ] = Jα+β [ϕ]

J1[∂xj
ϕ] = Rj [ϕ], j = 0, ..., d, x0 := t.

We provide basic properties of multipliers, [24]. As a consequence of the Hörmander-
Mikhlin theorem, [17], the following proposition, given in [24, Sect. 3.2, Example
2], is important.

Proposition 6. For every p ∈ (1,∞),

(16) ‖A[ϕ]‖Lp(Rd) ≤ cp‖ϕ‖Lp(Rd) ∀ϕ ∈ Lp(Rd),

where A is a multiplier with a symbol ψ ∈ Cκ(Sd−1) and N 3 κ > d
2 .

Now we give the main property of the H-measure µ.

Theorem 7. The H-measure µ satisfies the following integral identity:

(17)
∫

Rλ

( ∫

Π×Sd

(
y0 +

d∑

i=1

∂λfi(t, x, λ)yi

)
β(t, x, λ, y)dµλλ(t, x, y)

)
dλ = 0,

for every β ∈ C0(Π×Rλ;C(Sd
y )).

Proof: We consider equation (11) in D′(Π×Rλ). So for every θ ∈ C2
0 (Π×Rλ),

∫

Π×Rλ

(
θt +

d∑

i=1

(
θxi∂λfi(t, x, λ)

))
hk(t, x, λ) dxdtdλ

−
∫

Π×Rλ

θλdmk(t, x, λ) +
∫

Π×Rλ

θ dm̄k(t, x, λ)+

+
∫

Π×Rλ

gk(t, x, λ)
d∑

i=1

θλxi dxdtdλ−
∫

Π×Rλ

ḡk(t, x, λ)
d∑

i=1

θxi dxdtdλ = 0,

(18)

Using (12), (13) and (14), from (18) it follows
∫

Π×Rλ

Uλ
k (t, x)

(
θt +

d∑

i=1

θxi∂λfi(t, x, λ)
)

dxdtdλ

−
∫

Π×Rλ

θλdMk(t, x, λ) +
∫

Π×Rλ

Gk(t, x, λ)
d∑

i=1

θλ xi dxdtdλ

+
∫

Π×Rλ

θ dM̄k(t, x, λ)−
∫

Π×Rλ

Ḡk(t, x, λ)
d∑

i=1

θxi dxdtdλ = 0,

(19)
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where

Uλ
k (t, x) := hk(t, x, λ)− h(t, x, λ),

Mk(t, x, λ) := mk(t, x, λ)−m(t, x, λ), M̄k(t, x, λ) := m̄k(t, x, λ)− m̄(t, x, λ),

Gk(t, x, λ) = gk(t, x, λ)− g(t, x, λ), Ḡk(t, x, λ) = ḡk(t, x, λ)− ḡ(t, x, λ).

Now multiplying (19) with
∫
Rp

φ0(p) dp, where φ0 ∈ C2
0 (R), and knowing that the

set {θ(t, x, λ) ·φ0(p) : θ ∈ C2
0 (Π×Rλ), φ0 ∈ C2

0 (Rp)} is dense in C2
0 (Π×Rλ×Rp),

we obtain that
∫

Π×R2
λ,p

Uλ
k (t, x)

(
φt +

d∑

i=1

φxi∂λfi(t, x, λ)
)

dxdtdλdp−

−
∫

Rp

∫

Π×Rλ

φλ dMk(t, x, λ) dp +
∫

Π×R2
λ,p

Gk(t, x, λ)
d∑

i=1

φλ xi dxdtdλdp+

+
∫

Rp

∫

Π×Rλ

φ dM̄k(t, x, λ)dp−
∫

Π×R2
λ,p

Ḡk(t, x, λ)
d∑

i=1

φxi
dxdtdλdp = 0,

(20)

holds for every φ ∈ C2
0 (Π×R2

λ,p).
Following [22], in the rest of the proof we will substitute φ in (20) by suitable

test functions. So let φ ∈ C1
0 (Π×R2

λ,p) be of the form

(21) φ(t, x, λ, p) := φ1(t, x, λ, p) · (J1 ◦ A)[φ2 · Up
k ](t, x),

where φ1 ∈ C2
0 (Π×R2

λ,p), φ2 ∈ C2
0 (Π), J1 is the Riesz’s potential and A is a

multiplier on Rd+1 with a symbol ψ ∈ Cκ(Sd), N 3 κ > d/2.
So, replace φ in (20) with the one from (21). Since the multipliers on Cκ(Sd)

commute mutually and with partial derivatives, and J1[∂xj φ] = Rj [φ] holds for
j = 0, ..., d, x0 ≡ t, from (20) we obtain,

0 =
∫

Π×R2

(
φ1t(J1 ◦ A)[φ2U

p
k ] + φ1(A ◦R0)[φ2U

p
k ]

)
Uλ

k dxdtdλdp

+
∫

Π×R2

d∑

i=1

(
φ1xi

(J1 ◦ A) + φ1(A ◦Ri)
)

[φ2U
p
k ]Uλ

k fiλ
dxdtdλdp

−
∫

Rp

∫

Π×Rλ

φ1λ
(J1 ◦ A)[φ2U

p
k ] dMk(t, x, λ) dp

+
∫

Rp

∫

Π×Rλ

φ1(J1 ◦ A)[φ2U
p
k ] dM̄k(t, x, λ) dp

−
∫

Π×R2
Ḡk(t, x, λ)

d∑

i=1

(
φ1xi

(J1 ◦ A) + φ1(A ◦Ri)
)

[φ2U
p
k ] dxdtdλdp

+
∫

Π×R2
Gk

d∑

i=1

(
φ1λ xi

(J1 ◦ A)[φ2U
p
k ] + φ1λ

(A ◦Ri)[φ2U
p
k ]

)
dxdtdλdp.

(22)

We are ready now to pass to the limit as k → ∞. Using the compactness of the
Riesz potential as a mapping from Lp(Rd+1) to C(Rd+1) for p > d+1 (cf. Lemma
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5) we obtain that

lim
k→∞

[ ∫

Π×R2
(φ1U

λ
k (A ◦R0)[φ2U

p
k ]) dxdtdλdp

+
∫

Π×R2

d∑

i=1

(φ1U
λ
k fiλ

(A ◦Ri)[φ2U
p
k ]) dxdtdλdp

]
= 0.

(23)

Indeed, every term from (22) containing J1 converges to zero, while for the last
two terms from (22) we have

|
∫

Π×R2
Gk

d∑

i=1

φ1λ
(A ◦Ri)[φ2U

p
k ] dxdtdλdp|

≤
d∑

i=1

‖Gk‖
L1+ 1

r (Rd+1)
‖φ1λ

(A ◦Ri)[φ2U
p
k ]‖Lβ(Rd+1)

≤(16) C‖φ1λ
‖L∞(Π×R2)‖Gk‖

L1+ 1
r (Π)

meas(suppφ1)‖φ2U
p
k‖Lβ(Π) →(12) 0,

where 1
1+ 1

r

+ 1
β = 1. Similar estimate holds for the term

∫

Π×R2
Ḡk

d∑

i=1

φ1(A ◦Ri)[φ2U
p
k ] dxdtdλdp.

We use now the following representation of H-measures via multipliers

(24)
∫

Π×Sd

φ1φ2ψ dµpq(t, x, y) = lim
k→∞

∫

Π

(φ1U
p
k )A[φ2U

q
k ] dxdt,

where A is the multiplier with the symbol ψ ∈ Cκ(Sd), N 3 κ > d/2, (cf. [5, 22]).
Applying (24) in (23) we obtain that

∫

R2

∫

Π×Sd

φ1φ2ψ
(
y0 +

d∑

i=1

fiλ
yi

)
dµλp(t, x, y)dλdp = 0,

where y = ξ/|ξ| ∈ Sd. We replace φ1(t, x, λ, p)φ2(t, x)ψ(y) ∈ C2
0 (Π × R2; C(Sd

y ))
by a test function

1
ε
φ5(t, x, y)φ6

(λ− p

ε

)
φ7

(λ + p

2

)
,

(see also [13]) where φ6 is even with the unit mean value, φ6, φ7 ∈ C2
0 (R) and

φ5 ∈ C2
0 (Π; C(Sd

y )). Then, changing variable p = εκ + λ, and passing to limit
ε → 0, we obtain that

∫

Rλ

∫

Π×Sd

φ5(t, x, y)φ7(λ)
(
y0 +

d∑

i=1

fiλ
yi

)
dµλλ(t, x, y)dλ = 0,

provided that the mapping (p, q) 7→ µpq is continuous from E × E → M(Π × Sd),
[18, Theorem3, 2)] . The proof is finished by the fact that test functions of the
form φ5(t, x, y)φ7(λ) are dense in C2

0 (Π×Rλ;C(Sd
y )). ¤

Corollary 8 (the localization principle). The support of the H-measure µλλ belongs
to the set {

(t, x, y) ∈ Π× Sd : y0 +
d∑

i=1

∂λfi(t, x, λ)yi = 0
}

,
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for almost every λ ∈ R.

Proof: We will use an idea from [22] to provide the integrand in (17) to be
nonnegative. Therefor we put

β(t, x, λ, y) =
(

y0 +
d∑

i,j=1

∂λfi(t, x, λ)yi

)
β2

1(t, x, λ),

where β1 ∈ C0(Π×Rλ) is arbitrary chosen. Inserting that test function into (17)
and using arbitrariness of β1 we complete the proof. ¤

Corollary 9. Assume that the flux vector is genuinely nonlinear (see (4)). Then,
the sequence (hk(t, x, λ))k is strongly precompact in Lp

loc(Π×R), p ∈ [1, +∞).

Proof: From Corollary 8 and the genuine nonlinearity condition (4), we have
that meas(suppµλλ) = 0, i.e. µλλ = 0 for a.e. λ ∈ R. According to the theory
of the H-measures, [5, 26], we have that µλλ = 0 for a.e. λ ∈ R if and only if
hk(·, ·, λ) → h(·, ·, λ), k →∞, strongly in L2

loc(Π), for λ ∈ E . Then, using Lebegue
dominated convergence theorem we conclude that hk(·, ·, λ) → h(·, ·, λ), k → ∞,
strongly in Lp

loc(Π) for every p ∈ [1, +∞), too, due to boundedness of the sequence
(hk)k. ¤

5. Main theorem

In this section we shall prove Theorem 1. We will follow the procedure from [10].
At the crucial point in the proof (the Step 3 below), we will apply Corollary 9 that
we have proved in the previous section using techniques developed in [22].

Proof of the Theorem 1: We divide the proof into three steps.
Step 1: Let η ∈ C∞0 (R). For the functions

hε(t, x, λ) =





1, for 0 < λ ≤ uε(t, x),
−1, for 0 > λ ≥ uε(t, x),
0, otherwise,

we can rewrite (6) as

∂t

∫

Rλ

hε(t, x, λ)η′(λ)dλ +
d∑

i=1

∂xi

∫

Rλ

hε(t, x, λ)∂λfi(t, x, λ)η′(λ)dλ

+
d∑

i=1

∫

Rλ

hε(t, x, λ)Dxiλfi(t, x, λ)η′′(λ)dλ

= ε

d∑

i=1

∂xi(η
′(uε)bi(∇uε))− εη′′(uε)

d∑

i=1

bi(∇uε)uε
xi

+ δ

d∑

i=1

∂xi(η
′(uε)∂xixiu

ε)− δη′′(uε)
d∑

i=1

∂xi∂xixiu
εuε

xi
.
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Testing the last relation on an arbitrary ϕ ∈ C∞0 (Π) we obtain

−
∫

Π×R

hε(t, x, λ)η′(λ)ϕt(t, x) dλdxdt

−
d∑

i=1

∫

Π×R

hε(t, x, λ)∂λfi(t, x, λ)η′(λ)ϕxi(t, x) dλdxdt

+
d∑

i=1

∫

Π×R

hε(t, x, λ)Dxiλfi(t, x, λ)η′′(λ)ϕ(t, x)dλdxdt

= −
∫

Π

d∑

i=1

(εbi(∇uε) + δ∂xixi
uε) η′(uε)ϕxi

(t, x)dxdt

−
d∑

i=1

∫

Π

(
εbi(∇uε)uε

xi
+ δuε

xi
∂xixi

uε
)
η′′(uε)ϕ(t, x)dxdt,

(25)

where
∫
Π×R

and
∫
Π

denote integrals over R+×Rd×R and R+×Rd, respectively.
As in [10], we represent equation (25) as an equation in the sense of distributions

D′(Π×R). Put

Hε
i (t, x) = εbi(∇uε), H̄ε

i (t, x) = δ∂xixiu
ε,

Gε
i (t, x) = εbi(∇uε)uε

xi
, Ḡε

i (t, x) = δuε
xi

∂xixiu
ε,

and note that nets (Hε
i )ε, (H̄ε

i )ε, (Gε
i )ε, (Ḡε

i )ε are uniformly bounded in L1
loc(Π×R)

(cf. (H1)-(H3) and Lemmas 2-3).
Let δ(λ− u) be a Dirac delta function defined by 〈δ(λ− u), η(λ)〉 = η(u). Then,

the functionals

mε
i = δ(λ− uε)Gε

i , kε
i = δ(λ− uε)Ḡε

i ,

πε
i = δ(λ− uε)Hε

i , π̄ε
i = δ(λ− uε)H̄ε

i , i = 1, ..., d,

are defined as distributions in D′(Π×R) via the following tensor products:

〈mε
i , ϕ⊗ η′〉 =

∫

Π

Gε
i (t, x)ϕ(t, x)η′(uε(t, x))dxdt,

〈kε
i , ϕ⊗ η′〉 =

∫

Π

Ḡε
i (t, x)ϕ(t, x)η′(uε(t, x))dxdt,

〈πε
i , ϕ⊗ η′〉 =

∫

Π

Hε
i (t, x)ϕ(t, x)η′(uε(t, x))dxdt,

〈π̄ε
i , ϕ⊗ η′〉 =

∫

Π

H̄ε
i (t, x)ϕ(t, x)η′(uε(t, x))dxdt.

Indeed, since the mapping η(λ) 7→ Gε
i (t, x)η′(uε(t, x)) is continuous, this presen-

tation follows from the Schwartz kernel theorem. Thus, (25) can be rewritten as
equation in D′(Π×R) as follows

∂thε(t, x, λ) +
d∑

i=1

∂xi(hε(t, x, λ)∂λfi(t, x, λ)) =

d∑

i=1

∂λ(hε(t, x, λ)Dxifi(t, x, λ)) +
d∑

i=1

(∂xi(π
ε
i + π̄ε

i ) + ∂λ(mε
i + kε

i )) .

(26)
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Step 2 In this step we estimate terms on the right-hand side of (26). Relying
upon Lemmas 2-3 (as in [10]), we obtain the following results:

πε
i = ḡε

i + ∂λgε
i , π̄ε

i = p̄ε
i + ∂λpε

i , i = 1, ..., d,(27)

with
ḡε

i , g
ε
i → 0 as ε → 0 in L

r+1
r (Π×R),

and
p̄ε

i , p
ε
i → 0 in L2(Π×R).

Indeed, for arbitrary θ(t, x, λ) ∈ C∞0 (Π × R), using (H1), Lemma 2 and Hölder
inequality, we estimate

|〈πε
i , θ〉| ≤ C3ε

∫

Π

|∇uε|r|θ| dxdt

≤ C3ε
1− r

r+1

(
ε

∫

Π

|∇uε|r+1dxdt

) r
r+1

||θ(t, x, uε(t, x))||Lr+1(Π)

≤ cε1− r
r+1 ||θ||Lr+1(Π;W 1,r+1(R)).

From here we conclude that πε
i → 0 in L

r+1
r (Π; W−1,r+1(R)), so πε

i can be repre-
sented via (27). Now, using Schwartz inequality and Lemma 3, we estimate π̄ε

i ,

|〈π̄ε
i , θ〉| ≤ C

δ

ε
r+2
r+1

||θ||L2(Π;H1(R)).

From here we conclude that if δ = O(ε
r+3
r+1 ), then π̄ε

i → 0 in L2(Π; H−1(R)), so
that it can be represented via (27).

Also (as in [10]) we obtain that for every i = 1, ..., d, the nets

(mε
i )ε, (kε

i )ε lie in a bounded set of M(Π×R),(28)

where M(Π × R) stands for the space of bounded measures. Indeed, from (H1)
and Lemma 2 we estimate

|〈mε
i , θ〉| ≤ ε

∫

Π

|∇uε||bi(uε)||θ(t, x, uε)|dxdt ≤ C sup
Π×R

|θ(t, x, λ)|.

Finally, from Lemmas 2-3 and the inequality abθ ≤ εa2θ + ε−1b2θ, we use the
estimate

|〈kε
i , θ〉| ≤ C

δ

ε
r+3
r+1

sup
Π×R

|θ(t, x, λ)|

and conclude (28).
Then consider the remaining term on the right hand side of (26). Denote by

Πε
i = ∂λ(hε(t, x, λ)Dxifi(t, x, λ)), i = 1, ..., d.

Let θ(t, x, λ) ∈ C∞0 (R+ ×Rd ×R) and i = 1, ..., d. Then,

〈Πε
i , θ〉 =|

∫

Π×R

hε(t, x, λ)Dxifi(t, x, λ)θλ(t, x, λ)dtdxdλ|

≤ ‖θλ‖C0(Π×R)

∫

suppθ

|Dλfi(t, x, λ)|dtdxdλ ≤ C‖θλ‖C0(Π×R),

where C is a constant depending only on the support of a test function θ. Thus,
for every i = 1, ..., d the family (Πε

i )ε lies in a locally bounded subset of the space
of bounded measures M(Π×R).
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Step 3 From Step 2 we conclude that (26) can be rewritten as

∂thε(t, x, λ) +
d∑

i=1

∂xi(hε(t, x, λ)∂λfi(t, x, λ))

=
d∑

i=1

∂xi

(
∂λQε

i (t, x, λ) + Q̄ε
i (t, x, λ)

)
+

d∑

i=1

(
∂λP ε

i + P̄ ε
i

)
.

Since 2 ≥ r+1
r , we have that (Qε

i )ε and (Q̄ε
i )ε, i = 1, ..., d, are precompact in

L
r+1

r

loc (Π×R), while (P ε
i )ε and (P̄ ε

i )ε, i = 1, ..., d, are locally bounded in the space
of bounded measures M(Π×R).

Therefore, we can apply Corollary 9 for the net (hε)ε and conclude that a sub-
sequence (hk)k ⊂ (hε)ε satisfies

(29)

(∫ R

−R

hk(t, x, λ)dλ

)

k∈N

is convergent in L1
loc(R

+ ×Rd),

for every R ∈ N. Furthermore,
∣∣∣uε −

∫ R

−R

hε(t, x, λ)dλ
∣∣∣ =

∣∣∣
∫

λ

hε(t, x, λ)dλ−
∫ R

−R

hε(t, x, λ)dλ
∣∣∣(30)

=
∣∣∣
∫ ∞

R

hε(t, x, λ)dλ +
∫ −R

−∞
hε(t, x, λ)dλ

∣∣∣
= H(uε −R)(uε −R) + H(−uε −R)(−uε −R).

Furthermore, from Lemma 2, we have that there exists K1 > 0 that does not
depend on ε, so that

∫ t

0

∫

R

[
H(uε −R)(uε −R) + H(−uε −R)(−uε −R)

]
dxdt

≤
∫

|uε|>R

|uε|dxdt ≤ 1
R

∫ t

0

∫

x

|uε|2dxdt ≤ K1

R
,

(31)

since
∫
|uε|>R

R|uε|dxdt ≤ ∫
|uε|>R

|uε|2dxdt < K̃1. Therefore, from (30) and (31) it
follows

(32)
∫ t

0

∫

R

∣∣∣∣∣u
ε −

∫ R

−R

hε(t, x, λ)dλ

∣∣∣∣∣ dtdx ≤ K1

R
.

From here, it is easy to prove that (uk)k, where the indexing is taken from (29),
is Cauchy sequence in L1

loc(Π). Indeed, for every compact set K ⊂⊂ Π, we have
∫

K

|uk1 − uk2 |dxdt

≤
∫

K

|uk1 −
∫ R

−R

hk1(t, x, λ)dλ|dxdt +
∫

K

|uk2 −
∫ R

−R

hk2(t, x, λ)dλ|dxdt

+
∫

K

|
∫ R

−R

hk1(t, x, λ)dλ−
∫ R

−R

hk2(t, x, λ)dλ|dxdt ≤ 2K1

R
+ γ(k1, k2),

where 2K1
R appears due to (32), and γ is a function tending to zero as ki → ∞,

i = 1, 2 and it is here since (hk)k is convergent in L1
loc(Π×R).
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Thus, we see that the subsequence (uk)k ⊂ (uε)ε is the Cauchy sequence in
L1

loc(Π) implying L1
loc(Π)-precompactness of the family (uε)ε. ¤

Remark 3. Notice that if δ = o(ε
r+3
r+1 ), ε → 0, then (uk)k tends to a unique entropy

solution to (1). The proof is analogous to the one from [1].
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