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Abstract. We prove that a family of solutions to two dimensional scalar con-
servation law with discontinuous flux function regularized with the vanishing
viscosity and smoothen flux augmented with BV initial data is strongly pre-
compact in L1

loc under a weaker nonlinearity condition then in previous works.

1. Introduction

In the paper we consider the following Cauchy problem for two dimensional
scalar conservation law

ut + div f(x, y, u) = 0, (1)

u(x, y, 0) = u0(x, y),

where u = u(x, y, t), x, y ∈ R, t ∈ R+ and f = (f1, f2) : R3 → R2 (divergence is
taken with respect to x and y). For the initial data u0 we assume that

u0 ∈ (BV ∩ L∞)(R2), a ≤ u0(x, y) ≤ b, x, y ∈ R. (2)

The flux function f = (f1, f2) that we consider here has the following properties:

fi(·, ·, λ) ∈ (BV ∩ L∞)(R2), for all λ ∈ R, (3)

fi(x, y, ·) ∈ C(R), for all (x, y) ∈ R2 (4)

0 = fi(·, ·, b) = fi(·, ·, a), i = 1, 2, for all (x, y) ∈ R2. (5)

In recent years problems of this kind received lots of attention since they model
many physical phenomena. As examples of special importance we emphasize appli-
cations in flow in porous media, sedimentation processes, traffic flow, radar shape-
from-shading problems, blood flow, and gas flow in a variable duct.

If f1 and f2 are smooth functions then existence and uniqueness of an entropy
solution is provided by well known method of doubling of variables due to Kružkov
[8], or using the measure valued concept by DiPerna [2]. It is well known, cf.
[1, 8], that for Lipshitz-continuous flux, the family of solutions to vanishing viscosity
regularization of (1) converges to the solution of (1) in the strong topology of
L1(R2 ×R+). But, if the flux is discontinuous in x, y, we can not apply classical
results.
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Existence of solution for the problem of type (1) was settled only recently in
[6]. The proof is based on two dimensional variant [5] of celebrated method of
compensated compactness [11]. The case when the space is of an arbitrary dimen-
sion was completed by Panov [9], using another method of Tartar – H-measures
[12] (introduced independently by Gerard [3] who named them microlocal defect
measures).

In both papers [6, 9] the following regularization of problem (1) was considered
(here and in the sequel ∆ stands for the Laplacian, ∆u = uxx + uyy):

∂tu
ε,δ + div fδ(x, y, uε,δ) = ε∆uε,δ, (6)

uε,δ|t=0 = uδ
0, (7)

where the approximations fδ
i and uδ

0 are constructed in the following manner. Let
ω : R → R be arbitrary smooth function such that ω(ξ) = 0 for |ξ| ≥ 1, and∫
R

ω(ξ) dξ = 1. We define

fδ
i (x, y, λ) =

1
δ3

∫∫∫

R3
fi(ξ, η, ζ)ω

(
x− ξ

δ

)
ω

(
y − η

δ

)
ω

(
λ− ζ

δ

)
dξdηdζ

and

uδ
0(x, y) =

1
δ2

∫∫

R2
u0(ξ, η)ω

(
x− ξ

δ

)
ω

(
y − η

δ

)
dξdη.

Notice that from (3), for all λ ∈ R,

fδ
i (·, ·, λ) ∈ (L∞ ∩BV ) (R2) (8)

and fδ
i (·, ·, λ) → fi(·, ·, λ), as δ → 0, in L1

loc(R
2).

In [6, 9], the existence of the solution was obtained by proving that a family of
solutions to equation (6) (i.e. to (1) regularized with the vanishing viscosity and
smoothen flux) is strongly precompact in L1

loc(R
2 × R+). In order to prove the

latter, the following nonlinearity condition was necessary (this is a (weaker) variant
used in [9]; for other variants see [6, 7, 10]): Let S2 ⊂ R3 denotes the unit sphere.
We say that the flux (f1, f2) satisfy a nonlinearity condition if

for almost every (x, y) ∈ R2 and every ξ ∈ S2 the mapping

λ 7→ ξ0λ + f1(x, y, λ)ξ1 + f2(x, y, λ)ξ2 (9)
is not constant in λ on any nontrivial interval.

We stress that in one dimensional case one does not need any nonlinearity con-
dition in order to prove existence of a weak solution to a scalar conservation law
with a flux discontinuous in space variable. More precisely, if we consider a family
of solutions to one dimensional variant of (6), using the compensated compact-
ness argument [4, 7], it is not difficult to prove that a family of entropy admis-
sible solutions [6, 9] to (6) weakly converges along a subsequence to a solution
of one dimensional variant of (1). But, we can not state anything about strong
L1

loc-precompactness. In this paper we shall prove that under relaxed nonlinearity
condition (see (10) below), a family of solution to (6) is strongly precompact in
L1

loc(R
2 × R+). As a consequence, in one dimensional situation we are able to

prove strong L1
loc-precompactness of the family (uε,δ) practically merely assuming

that the initial data belong to the BV-class.
In order to get the result, we shall use variants of estimates derived in [6], and

the following theorem (used also in [4]).
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Theorem 1 ([9], Corollary 2). Assume that the vector φ(x, u) ∈ (C(Ru; BV (Ω)))n,
Ω ⊂ Rn is an open set, is genuinely nonlinear, i.e. for a.e. x ∈ Ω and for all ξ ∈ Rn,
ξ 6= 0, the map (a, b) 3 u 7→ (ξ, φ(x, u)) 6= constant on any nontrivial interval.

Then, each bounded sequence (uk(x))k ∈ L∞(Ω), a ≤ uk(x) ≤ b, satisfying for
the Heaviside function H,

divx

[
H(uk(x)− p)(φ(x, uk(x))− φ(x, p))

]
is precompact in W−1,2

loc (Ω),

contains a subsequence convergent in L1
loc(Ω).

Roughly speaking, the key point of our procedure is the fact that we have
‖ut(·, ·, t)‖L1(R2) bound, for all t > 0. Therefore, we can replace ut by a function
(h(x, y, u))t (ut will end up on the right hand side) without affecting the precom-
pactness framework. This means that we can replace ξ0λ from (9) by ξ0h(x, y, λ)
where h is chosen so that (10) is satisfied (this is actually (9) with ξ0λ replaced by
ξ0h(x, y, λ)). Then, we can apply Theorem 1 to obtain strong L1

loc precompactness
of the family (uε,δ)ε,δ.

The paper is organized as follows. In Section 2 we give a priori estimates. In
Section 3, using results from Section 2, we prove the main theorem - Theorem 5.
We pay special attention on the one dimensional case. In Section 4 we give an
example of scalar conservation law where we apply the new genuine nonlinearity
condition, because the usual one, (9), is not fulfilled.

2. A priori lemmas

In order to use Theorem 1, we will need the following a priory estimates (Lemmas
2-4), cf. [5].

Lemma 2. [L∞-bound] There exists constant c > 0 such that for all t ∈ (0, T ),

‖uε,δ(·, ·, t)‖L∞(R2) ≤ c.

Proof: The proof is standard [5, 9] and follows from the assumptions (2) and (5).
Actually, uε,δ stays between the same constants a and b from (2). 2

Lemma 3. [Lipshitz regularity in time] If δ = cε for a constant c > 0, then there
exists constant c0, independent of ε, δ such that for all t > 0,

∫∫

R2
|∂tu

ε,δ(·, ·, t)| dxdy ≤ c0.

Proof: Denote wε,δ = ∂tu
ε,δ. Then, by differentiating (6) in t we see that wε,δ

satisfies

wε,δ
t +

(
∂ufδ

1 (x, y, uε,δ) · wε,δ
)
x

+
(
∂ufδ

2 (x, y, uε,δ) · wε,δ
)
y

= ε∆wε,δ.

Multiplying this by sign wε,δ we obtain

|wε,δ|t +
(
∂ufδ

1 (x, y, uε,δ) · |wε,δ|)
x

+
(
∂ufδ

2 (x, y, uε,δ) · |wε,δ|)
y

= ε
(
∆|wε,δ| − sign′wε,δ

(
(wε,δ

x )2 + (wε,δ
y )2

))
,
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in the sense of distributions. Now we integrate over R2 and use (8) to obtain

d

dt

∫∫

R2
|wε,δ|(x, y, ·)dxdy =

−
∫∫

R2
∂x

(
∂ufδ

1 (x, y, uε,δ) · |wε,δ|) + ∂y

(
∂ufδ

2 (x, y, uε,δ) · |wε,δ|) dxdy

+ ε

∫∫

R2
|wε,δ|xx + |wε,δ|yy dxdy − ε

∫∫

R2

(
(wε,δ

x )2 + (wε,δ
y )2

)
sign′(wε,δ)dxdy

= −ε

∫∫

R2

(
(wε,δ

x )2 + (wε,δ
y )2

)
sign′(wε,δ)dxdy ≤ 0

and conclude that
∫∫

R2 |wε,δ|(x, y, ·)dxdy is not increasing in time, i.e. for all t > 0,

∫∫

R2
|wε,δ|(x, y, t)dxdy ≤

∫∫

R2
|wε,δ|(x, y, 0)dxdy

=
∫∫

R2

∣∣−∂xfδ
1 (x, y, uδ

0)− ∂yfδ
2 (x, y, uδ

0) + ε
(
(uδ

0)xx + (uδ
0)yy

)∣∣ dxdy

≤ C + ε‖(uδ
0)xx + (uδ

0)yy‖L1(R2) ≤ C +
ε

δ

∫∫

R2
|(uδ

0)x|+ |(uδ
0)y| dxdy

≤ C +
ε

δ
‖u0‖BV (R2),

where the constant C appears due to (8) and (2). Taking into account the assump-
tion that δ = cε and (2) again, we conclude the proof. 2

Lemma 4. [Entropy dissipation bound] There exists a constant c independent from
ε and δ such that

ε

∫∫

R2

(
uε,δ

x (·, ·, t))2
+

(
uε,δ

y (·, ·, t))2
dxdy ≤ c,

for all t > 0.

Proof: We multiply (6) by uε,δ and integrate over R2. This implies

ε

∫∫

R2

(
uε,δ

x (·, ·, t))2
+

(
uε,δ

y (·, ·, t))2
dxdy

= −
∫∫

R2

[
uε,δuε,δ

t +

(∫ uε,δ

0

fδ
1 (x, y, v)dv

)

x

−
∫ uε,δ

0

(
fδ
1 (x, y, v)

)
x

dv

+

(∫ uε,δ

0

fδ
2 (x, y, v)dv

)

y

−
∫ uε,δ

0

(
fδ
2 (x, y, v)

)
y
dv

]
dxdy

≤ c

(
‖uε,δ

t ‖L∞(R+;L1(R2)) +
∫∫

R2
|
∫ uε,δ

0

∂x(fδ
1 (x, y, v))dv|+ |

∫ uε,δ

0

∂y(fδ
2 (x, y, v))dv|

)

≤ c

(
‖uε,δ

t ‖L∞(R+;L1(R2)) + max
a≤v≤b

‖fδ
1 (x, y, v)‖BV (R2) + max

a≤v≤b
‖fδ

2 (x, y, v)‖BV (R2)

)
.

Applying Lemma 3 and (8), we conclude the proof. 2
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3. New genuine nonlinearity condition and the main result

On the beginning of the section we introduce a generalization of nonlinearity
condition (9) that will be used in the proof of Theorem 5. We assume that

exists h(x, y, λ) ∈ C1(Rλ;L∞(Rx ×Ry)) such that for all ξ ∈ S2 the mapping

λ 7→ ξ0 · h(x, y, λ) + ξ1 · f1(x, y, λ) + ξ2 · f2(x, y, λ) (10)
is not constant in λ on any nontrivial interval.

In order to use (10), we rewrite (6) as

h(x, y, uε,δ)t + fδ
1 (x, y, uε,δ)x + fδ

2 (x, y, uε,δ)y

= h(x, y, uε,δ)t − uε,δ
t + ε(uε,δ

xx + uε,δ
yy ).

(11)

Denote η′(λ) = H(λ − k), for some constant k (here H stands for the Heaviside
step function) and define corresponding entropy fluxes:

q0(x, y, λ) = H(λ− k)(h(x, y, λ)− h(x, y, k)),

qi(x, u, λ) = H(λ− k)(fi(x, y, λ)− fi(x, y, k)), i = 1, 2,

qδ
i (x, y, λ) = H(λ− k)(fδ

i (x, y, λ)− fδ
i (x, y, k)), i = 1, 2.

We multiply (11) by η′(uε,δ) and add ∂xq1(x, y, uε,δ) and ∂yq2(x, y, uε,δ) on both
sides of equality (11) to obtain

∂tq0(x, y, uε,δ) + ∂xq1(x, y, uε,δ) + ∂yq2(x, y, uε,δ)

= H(uε,δ − k)
(
∂th(x, y, uε,δ)−Dxfδ

1 (x, y, k)−Dyfδ
2 (x, y, k)− uε,δ

t

)

+ ε(∂x(uε,δ
x η′(uε,δ))− (uε,δ

x )2η′′(uε,δ) + ∂y(uε,δ
y η′(uε,δ))− (uε,δ

y )2η′′(uε,δ))

+ ∂x(q1 − qδ
1)(x, y, uε,δ) + ∂y(q2 − qδ

2)(x, y, uε,δ)

≤ H(uε,δ − k)
(
∂th(x, y, uε,δ)−Dxfδ

1 (x, y, k)−Dyfδ
2 (x, y, k)− uε,δ

t

)

+ ε(∂x(uε,δ
x η′(uε,δ)) + ∂y(uε,δ

y η′(uε,δ)))

+ ∂x(q1 − qδ
1)(x, y, uε,δ) + ∂y(q2 − qδ

2)(x, y, uε,δ)

(12)

in D′((0, T )×R2).

Theorem 5. Assume that the functions f1, f2 from (1) satisfy (3)-(5) and (10). If
ε = cδ, then the family of solutions (uε)ε ≡ (uε,δ)ε,δ to (6) is strongly precompact
in L1((0, T )×R2).

Proof: In the sequel, for Ω = (0, T )×R2, W−1,2
c,loc (Ω) stands for families of func-

tions that are precompact in W−1,2
loc (Ω), while Mb,loc(Ω) stands for families of

functions which are locally bounded in the space of Radon measures M(Ω).
In order to use Theorem 1 we have to show that

div(t,x,y)

[(
q0, q1, q2

)
(x, y, uε)

] ∈ W−1,2
c,loc (Ω). (13)
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From (12) and the Schwartz lemma on nonnegative distributions it follows that
there exists bounded measure µk ∈M(Ω) such that

∂tq0(x, y, uε) + ∂xq1(x, y, uε) + ∂yq2(x, y, uε)

= H(uε − k)
(
∂th(x, y, uε,δ)−Dxfδ

1 (x, y, k)−Dyfδ
2 (x, y, k)− uε

t

)

+ ∂x(q1 − qδ
1)(x, y, uε) + ∂y(q2 − qδ

2)(x, y, uε)

+ ε(∂x(uε
xη′(uε)) + ∂y(uε

yη′(uε))) + µk(t, x, y),

i.e,

∂tH(uε − k)(h(x, y, uε)− h(x, y, k)) + ∂xH(uε − k)(f1(x, y, uε)− f1(x, y, k))

+ ∂yH(uε − k)(f2(x, y, uε)− f2(x, y, k))

= ∂x(q1(x, y, uε)− qδ
1(x, y, uε)) + ∂y(q2(x, y, uε)− qδ

2(x, y, uε))

+ H(uε − k)
(
∂uh(x, y, uε)∂tu

ε −Dxfδ
1 (x, y, k)−Dyfδ

2 (x, y, k)
)

+ ε(∂x(uε
xη′(uε)) + ∂y(uε

yη′(uε))) + µk(t, x, y).

In order to prove (13) we shall need Murat’s lemma stating that

(div Qε)ε ∈ W−1,2
c,loc if div Qε = pε + qε,

with (qε)ε ∈ W−1,2
c,loc (Ω) and (pε)ε ∈Mb,loc(Ω). Indeed, from Lemma 3

H(uε − k) (∂λh(x, y, uε)∂tu
ε − ∂tu

ε) ∈Mb,loc(Ω). (14)

Lemma 4 implies

∂x(ε∂xuεH(uε − k)) + ∂y(ε∂yuεH(uε − k)) ∈ W−1,2
c,loc (Ω), (15)

provided that
ε∂xuεH(uε − k) → 0 in L2

loc(Ω)
and ∫

Ω

|ε∂xuεH(uε − k)|2 dxdydt ≤ ε2

∫

Ω

|∂xuε|2dxdydt ≤ Tcε → 0, ε → 0.

Furthermore,
(
Dxfδ

1 (x, y, k) + Dyfδ
2 (x, y, k)

)
H(uε − k)) ∈Mb,loc(Ω), (16)

since fδ
i ∈ BV (Ω). Finally,

∂x(q1 − qδ
1), ∂y(q2 − qδ

2) ∈ W−1
c,loc(Ω), (17)

since
|qi − qδ

i | ≤ |fδ
i (x, y, uε)− fi(x, y, uε)|+ |fδ

i (x, y, k)− fi(x, y, k)|
≤ 2 max

a≤p≤b
|fδ

i (x, y, p)− fi(x, y, p)| → 0 in L2
loc(R

2).

Collecting (14-17), from Murat’s lemma we obtain (13). Applying Theorem 1 we
conclude the proof. 2

Now, we shall apply the previous theorem on one dimensional case of the con-
sidered problem

ut + (f(x, u))x =0,

u|t=0 = u0(x) ∈(BV ∩ L∞)(R) a ≤ u0 ≤ b,
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where (3)-(5) (with R2 replaced by R) are satisfied. We need to assume that for
almost every x ∈ R the mapping

[a, b] 3 λ 7→ f(x, λ), (18)

is different from a constant on any nontrivial interval.

Corollary 6. A sequence of solutions (uε)ε of the problem

uε
t + (fε(x, uε))x =εuε

xx,

uε|t=0 =uε
0(x, y),

where the notation is taken from (6)-(7), is strongly precompact in L1
loc(R

+ ×R).

Proof: According to the previous theorem, it is enough to find a function h(x, λ)
such that the mapping

λ 7→ h(x, λ)ξ0 + f(x, λ)ξ1 (19)

is different from a constant on any nontrivial interval. Taking

h(x, λ) = f2(x, λ)

we conclude that (19) will not be satisfied only if there exists a nonzero set Ω ⊂ R
such that for x ∈ Ω there exists (ξ0, ξ1) ∈ R2\{0} satisfying

f(x, λ) =
−ξ1 ±

√
ξ2
1 + 4ξ0c

2ξ0
,

for a constant c, contradicting (18). 2

4. Example

Consider the following Cauchy problem

ut + (k(x)g(u))x + (l(y)f(u))y = 0

u|t=0 = u0(x, y) ∈ BV (R2)

with
− 1 ≤ u0(x, y) ≤ 1

g(u) =





0, for |u| ≥ 1
u + 1, for − 1 < u < 0
1− u2, for 0 < u < 1

k(x) =

{
3, for x ≥ 0
1, for x < 0,

and

f(u) =





0, for |u| ≥ 1
1− u2, for − 1 < u < 0
1− u, for 0 < u < 1

l(y) =

{
4, for y ≥ 0
2, for y < 0,
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Clearly, the flux vector (k(x)g(u), l(x)f(u)) does not satisfy classical genuine
nonlinearity condition (9). Therefore, hitherto it has not been possible to state
that the family (uε)ε of solutions to the equation

uε
t + (kε(x)g(uε))x + (l(y)f(uε))y = ε(uε

xx + uε
yy)

where

kε(x) =





3, for x ≥ ε
x
ε + 2, for − ε < x < ε

1, for x ≤ −ε,

and

lε(y) =





4, for x ≥ ε
x
ε + 3, for − ε < x < ε

2, for x ≤ −ε,

is strongly precompact in L1
loc(R

+ × R2). Still, it is true according to Theorem
5. Indeed, take h from (10) to be h(x, u) = u3. In that case, the vector field
(h(x, u), k(x)g(u), l(y)f(u)) satisfies the conditions from Theorem 5, since k ∈ BV.
Therefore, Theorem 5 provides strong L1

loc-precompactness of the family (uε)ε.
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