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Abstract. Gauss kernel method and Duhamel’s integral principle are used
to obtain solutions in the sense of Colombeau generalized functions to scalar

conservation laws with flux explicitly dependent on space variable, and to the

corresponding parabolic approximation. In homogeneous case, the existence
and uniqueness of generalized solution are obtained in [15]. This paper presents

generalization of results from [15] for wider class of problems.
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1. Introduction

Colombeau generalized functions naturally extend distributions through the con-
volution transform given by the mollifiers φ, f 7→ f ∗ φ. This fact and the integral
transform method are the basic tool in considering the Cauchy problem for a scalar
conservation law with a flux-function explicitly dependent on the space variable,

∂tu(t, x) + ∂xf(x, u(t, x)) = 0, x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R.
(1)

The ideas of integral transform methods are essential ones in our approach to this
problem.

The same problem, but in the homogeneous case, i.e. with a flux-function f =
f(u) dependent only on the state variable u, is completely solved in [15]. This
paper presents generalization of the results from [15] for wider class of problems,
i.e. for a more general flux-function f .

In the classical theory, the idea of solving problems as (1) is to consider an appro-
ximation of (1) involving small terms added on the right hand side of (1), such as
”vanishing viscosity” µuxx, where µ is a small positive parameter tending to zero.
In order to obtain a solution to problem (1), one needs to study a limit of a family
of solutions (uµ)µ, µ→ 0+, to the following family of problems

∂tu(t, x) + ∂xf(x, u(t, x)) = µ∂2
xxu(t, x), x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R.
(2)

In the theory of Colombeau generalized functions such procedure can be obtained
by viewing µ as a strictly positive generalized constant associated to zero.
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If we consider problem (2) with a smooth initial data u0 ∈ C∞b (R), whose all
derivatives are bounded, then (2) can be reformulated as an integral equation

u(t, x) =
1√
π

∫ +∞

−∞
e−y

2

u0(x− 2
√
µty)dy+ (3)

+

∫ t

0

1
√
πµs

∫ +∞

−∞
ye−y

2

f(x− 2
√
µsy, u(t− s, x− 2

√
µsy))dyds,

by the use of Duhamel’s principle and the heat-kernel E(t, x) = 1
2
√
πµt

e−
x2

4µt , where

µ > 0. The same formulation, (3), is valid for a representative of a generalized
solution, and it is used to prove the existence and uniqueness of a approximated
generalized solution to conservation law (1).

1.1. Algebra Gg(R2
+). Let us firstly recall the basic definitions and properties we

need here. We refer to [4, 9, 12, 14, 15, 16] for more details about generalized
functions.

Let R2
+ = (0,∞)×R and

C∞b̄ (R2
+) := {u ∈ C∞(R2

+) : ∀α, β ∈ N, ∀T > 0,

‖u‖α,β;T := sup
(t,x)∈(0,T )×R

|∂αt ∂βxu(t, x)| <∞}.

If one put T =∞, then the corresponding space is denoted by C∞b (R2
+). Excluding

R+ and taking supremum over x ∈ R, one obtains C∞b (R).

A net of functions {uε}ε∈(0,1) ∈ (C∞
b̄

(R2
+))(0,1) is called moderate if for all

(α, β) ∈ N2 and all T > 0 there exists N ∈ N such that ‖u‖α,β;T = O(ε−N ),

as ε → 0+. Denote by EM,g(R
2
+) the set of all moderate nets. A moderate net

{uε}ε∈(0,1) is called negligible (an element of Ng(R2
+)) if for all (α, β) ∈ N2, q ∈ N

and all T > 0, ‖u‖α,β;T = O(εq), as ε → 0+. EM,g(R
2
+) and Ng(R2

+) are algebras

under pointwise multiplication and Ng(R2
+) is an ideal in EM,g(R

2
+), so we can

define Colombeau algebra Gg(R2
+) = EM,g(R

2
+)/Ng(R2

+). In the same way, one can
define the algebra Gg(R).

The equality C∞
b̄

(R2
+) = C∞

b̄
(R2

+), R2
+ = [0,∞) ×R, enables us to define the

restriction of the generalized function u ∈ Gg(R2
+) to {t = 0}, u|t=0 ∈ Gg(R),

as a class of the family {uε(0, x)}ε, where {uε(t, x)}ε is a representative of the
generalized function u (cf. [15] and the references therein).

The composition of a nonlinear function f : R2 → R and a generalized function
u ∈ Gg(R2

+), f(x, u), such that f(x, u) ∈ Gg(R2
+), is defined as follows. A smooth

function f : R2 → R is called slowly increasing if

∀α = (α1, α2) ∈ N2, ∃Nα ∈ N, ∃cα > 0 : |∂α1

ξ ∂α2

λ f(ξ, λ)| ≤ cα(1 + |λ|)Nα ,

for all ξ, λ ∈ R. The number N(0,0) is called the order of f . If f is slowly increasing

and u ∈ Gg(R2
+), then it is easy to prove that f(x, u(t, x)) := [{f(x, uε(t, x))}ε] ∈

Gg(R2
+).

Now we describe the embedding of the space of bounded distributions D′L∞(R)
into Gg(R). Let ρ ∈ S(R) be a rapidly decreasing function such that

∫
R
ρ(x)dx = 1,∫

R
xnρ(x)dx = 0, n = 1, 2, ... and let ρε(x) = 1

ερ
(
x
ε

)
, x ∈ R, ε > 0. Let w ∈

D′L∞(R). Then, the mapping ιρ : w 7→ [{w ∗ ρε}ε]Ng is aforementioned embedding
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that commutes with differentiation. Moreover, if w ∈ C∞b (R), then {wε}ε = {w}ε
is a representative of the generalized function ιρ(w).

Recall, generalized function u = [{uε}ε] ∈ Gg(R2
+), is associated to a distribution

w ∈ D′(R2
+), u ≈ w, if uε → w in D′(R2

+), when ε→ 0+.
A generalized function µ ∈ Gg(R), is called generalized constant, if it has repre-

sentative {µε}ε such that µε(t, x) = µε ∈ R, ε ∈ (0, 1). It is said that a generalized
constant [{µε}ε] is strictly positive if

∃N ∈ N : εN ≤ µε ≤ ε−N , ε→ 0+.

If µ is a strictly positive generalized constant, then 1/µ is also a strictly positive
generalized constant. Strictly positive generalized constant µ is associated to zero,
µ ≈ 0, if and only if µε → 0+, when ε→ 0+.

A generalized function u ∈ Gg(R2
+), is called of r

√
log-type if it has a represen-

tative {uε}ε, such that ∀T > 0,

sup
(t,x)∈(0,T )×R

|uε(t, x)| = O( r
√
| log ε|), ε→ 0+,

and it is called of bounded type if

sup
(t,x)∈(0,T )×R

|uε(t, x)| = O(1), ε→ 0+.

2. Generalized solutions

A generalized function u ∈ Gg(R2
+) that solves problem (1) in Gg(R2

+) is called
generalized solution to (1). It means that for given u0 = [{uε0}] ∈ Gg(R), {uεt + (f(x, uε))x}ε ∈
Ng(R2

+) and {uε(0, ·)− uε0}ε ∈ Ng(R). A generalized function u ∈ Gg(R2
+) that

solves problem (1) in Gg(R2
+) with equality replaced by the association, ≈, is called

approximated (generalized) solution to (1). This concept is widely investigated; we
refer to some papers concerning generalized solutions [1, 13, 15, 16, 17, 19]. Re-
lations between Colombeau type solutions to (1) and measure valued solutions to
(1), in the case when f(x, u) = f(u), are discussed in [1]. We refer to [5, 6, 7, 18]
for the measure valued solutions.

Generalized solutions of bounded type to (2) are of special importance because
they present approximate generalized solution to conservation law (1). If u ∈
Gg(R2

+) is of bounded type and µ is generalized constant associated to zero, µ ≈ 0,
then µuxx ≈ 0, too. That means that u solves conservation law (1) with equality
replaced by association, i.e. ut + f(x, u)x ≈ 0.

Another important fact is that if we consider the initial data u0 ∈ L∞(R), the
embedding of u0, ι(u0) ∈ Gg(R) is of bounded type. Then, generalized solution
to (2) with initial data ι(u0) is of bounded type, too, and additionally solves the
following problem,

ut + f(x, u)x ≈ 0, u|t=0 ≈ u0.

The idea to work with generalized functions of bounded type comes from the
classical theory of conservation laws with the flux-function f explicitly dependent
on space variable x. If the initial data u0 ∈ L∞(R) is bounded with some constants
a < b, a ≤ u0(x) ≤ b, then the classical solution to (2) stays between the same
constants a < b, provided that flux-function f(x, λ) vanish at λ = a and λ = b, i.e.

f(x, a) = f(x, b) = 0, x ∈ R, (4)

cf. [2, 10, 11].
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The basic theorem on the existence and uniqueness of the generalized solutions
to (2), Theorem 4, is formulated for the initial data of bounded type and real
constant µ. The proof of the Theorem 4 follows the procedure given in the proof
of the Theorem 3.3 from [15]. Comparing this work with the work done in [15],
there are some modifications of the properties of the function f . Also, we use more
general Gronwall-type inequality (Lemma 3) and involve some additional estimates
on the spatial derivative of the function f , denoted by Dxf . The spatial derivative
Dx is connected with the full derivative ∂x in the following sense ∂xf(x, u) =
Dxf(x, u) + ∂uf(x, u)∂xu.

We use the following uniform boundedness property for the generalized functions
of bounded type.

Lemma 1. If v ∈ Gg(R) is of bounded type, then there are constants a < b, such
that for every representative {vε}ε, there exists ε0 ∈ (0, 1]

a ≤ vε(x) ≤ b, x ∈ R, ε ∈ (0, ε0). (5)

Proof. Let v = [{vε}ε] ∈ Gg(R) be of bounded type, i.e. sup
x∈R
|vε(x)| = O(1), ε→ 0.

Thus, for a representative {vε}ε, there exist constants ã < b̃, and ε̃ ∈ (0, 1], such

that ã ≤ vε(x) ≤ b̃, x ∈ R, ε ∈ (0, ε̃).
Let {wε}ε be (another) arbitrary representative of v, i.e. {vε − wε}ε ∈ Ng(R).

Since vε − wε → 0, as ε → 0, there are constants ˜̃a ∈ (ã − 1, ã),
˜̃
b ∈ (b̃, b̃ + 1) and

˜̃ε > 0, such that ˜̃a ≤ wε(x) ≤ ˜̃
b, x ∈ R, ε ∈ (0, ˜̃ε). Since all representatives of v have

bounds in intervals (ã− 1, ã) and (b̃, b̃+ 1), we take a := inf ˜̃a and b = sup
˜̃
b. �

To specify bounds a < b we refer to ”a, b-bounded type”.

Definition 2. If v ∈ Gg(R) is of bounded type, and constants a < b are obtained
in the proof of the Lemma 1, then we say that v is of a, b-bounded type.

We also use the following Gronwall-type inequality, proved in [3], to (11).

Lemma 3. Let w = w(t) be nonnegative, continuous function that satisfies

w(t) ≤ a(t) +

∫ t

0

b(s)w(s)ds, t ∈ I,

where a, b ≥ 0, are nonnegative functions. Then

w(t) ≤ a(t) +

∫ t

0

a(s)b(s)e
∫ t
s
b(r)drds, t ∈ I.

Theorem 4. If the initial data u0 ∈ Gg(R) is of a, b-bounded type, and the flux-
function f is slowly increasing and fulfills (4), then there exists a unique generalized
solution u ∈ Gg(R2

+) to (2), and u is of bounded type.

Proof. Let {uε0}ε be a representative of the initial data u0. For a fixed ε, consider
the following problem

∂tu
ε(t, x) + ∂xf(x, uε(t, x)) = µ∂2

xxu
ε, (6)

uε|t=0 = uε0.

Integral equation (3) enables us to prove that for every fixed ε there exists a unique
solution uε ∈ C∞

b̄
(R2

+) to problem (6), cf. [15, 13].
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From a ≤ uε0(x) ≤ b, x ∈ R and (4) we have that

a ≤ uε(t, x) ≤ b, (t, x) ∈ (0, T )×R. (7)

The proof of this assertion is standard, cf. [10, 11]. Let us give the sketch of the
proof. Let ε be fixed and vεδ , δ > 0, be the solution to the following problem

∂tv
ε
δ + (f(x, vεδ))x = µ∂2

xxv
ε
δ − δ, (8)

vεδ |t=0 = uε0.

Then, vεδ → uε, strongly in L∞((0, T ) × R), as δ → 0. Suppose that the set
K = {(t, x) ∈ (0, T ) × R : vεδ(t, x) > b} is not empty. Let K1 = {t : (t, x) ∈
K, for some x} and t0 = inf K1. Then, vεδ(t0, x) ≤ b, because it is continuous.
Also by continuity, there must exists an x0 such that vεδ(t0, x0) = b and vεδ(t0, ·) has
a local maximum at x0. So,

vεδ(t0, x0) = b, ∂xv
ε
δ(t0, x0) = 0, ∂2

xxv
ε
δ(t0, x0) ≤ 0.

On the other hand vεδ(·, x0) is non-decreasing in some neighborhood of t0, which
means that ∂tv

ε
δ(t0, x0) ≥ 0. Now, consider (8) in (t0, x0). We obtain

0 ≤ ∂tvεδ(t0, x0) +Dxf(x, vεδ)(t0, x0) + ∂uf(x, vεδ)(t0, x0) ∂xv
ε
δ(t0, x0) = (9)

= µ∂2
xxv

ε
δ(t0, x0)− δ ≤ −δ < 0.

Since fb(x) ≡ f(x, b) = 0, x ∈ R, it follows that f ′b(x) = Dxf(x, b) = 0, x ∈ R.
The contradiction in (9) implies that the set K is empty, i.e. vεδ(t, x) ≤ b, (t, x) ∈
(0, T )×R, hence also uε(t, x) ≤ b, (t, x) ∈ (0, T )×R. Similarly we can prove that
uε(t, x) ≥ a, (t, x) ∈ (0, T )×R.

Now, we prove that {uε}ε is moderate. Since u0 ∈ Gg(R) is of a, b-bounded type,
from (5) and (7) we have that a ≤ uε(t, x) ≤ b, (t, x) ∈ (0, T )×R, ε ∈ (0, ε0). Thus
for all T > 0,

sup
(t,x)∈(0,T )×R

|uε(t, x)| ≤ max{|a|, |b|} · ε−1, ε→ 0+.

To estimate the derivative uεx, replace u by uε and u0 by uε0 in (3). The differenti-
ation with respect to x implies

uεx(t, x) =
1√
π

∫
R

e−y
2

(uε0)′(x− 2
√
µty)dy+

+

∫ t

0

1
√
πµs

∫
R

ye−y
2
[
Dxf(x− 2

√
µsy, uε(t− s, x− 2

√
µsy))+ (10)

+ ∂uf (x− 2
√
µsy, uε(t− s, x− 2

√
µsy))uεx(t− s, x− 2

√
µsy)

]
dyds,

i.e.,

|uεx(t, x)| ≤ 1√
π

∫
R

e−y
2

|(uε0)′(x− 2
√
µty)|dy+

+

∫ t

0

1
√
πµs

∫
R

|y|e−y
2
[
c1,0(1 + |uε(t− s, x− 2

√
µsy)|)N1,0+

+ |∂uf(x− 2
√
µsy, uε(t− s, x− 2

√
µsy))| |uεx(t− s, x− 2

√
µsy)|

]
dyds.
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Taking supremum with respect to x ∈ R, for w(t) = sup
x∈R
|uεx(t, x)| = ‖uεx(t, ·)‖L∞(R),

we obtain

w(t) ≤‖(uε0)′‖L∞(R) + c1(1 + ‖uε‖L∞(R2
+))

N1,0

√
t

µ
+

c
√
µ
‖fu‖L∞

∫ t

0

1√
t− s

w(s)ds. (11)

Notice that, since f is slowly increasing, from (7) we have that fu is bounded.

Now, we apply Lemma 3. Taking for a(t) = ‖(uε0)′‖L∞+c1(1+‖uε‖L∞(R2
+))

N1,0

√
t

µ
,

and b(s) =
c‖fu‖L∞
√
µ

1√
t− s

, from (11) and previous lemma, we obtain

w(t) ≤ a(t) +

∫ t

0

a(s)b(s)e
c‖fu‖√

µ

√
t−s

.

Taking supremum with respect to t ∈ (0, T ), we obtain

sup
t∈(0,T )

w(t) ≤ ‖(uε0)′‖L∞+ (12)

+ c1(1 + ‖uε‖L∞(R2
+))

N1,0

√
T

µ
+ c2‖(uε0)′‖L∞e

c‖fu‖√
µ

√
T
.

Thus, for all T > 0, there exists N1 ∈ N such that

sup
(t,x)∈(0,T )×R

|uεx(t, x)| = O(ε−N1), ε→ 0+.

In a similar way we can estimate other derivatives of uε to conclude that {uε}ε ∈
EM,g(R

2
+). Derivative with respect to t can be estimated in much easier way because

the absence od Dx-term. It is important to stress that the derivative we want to
estimate in equality like (10) are always multiplied by fu on the right hand side of
(10).

Finally, we conclude that {uε}ε is a representative of u ∈ Gg(R2
+) that defines a

generalized solution to (2).
To prove the uniqueness, assume that u1 and u2 are two generalized solutions to

(2). Then there exist N = {Nε}ε ∈ Ng(R2
+) and n = {nε}ε ∈ Ng(R), such that

(uε1 − uε2)t + f(x, uε1)x − f(x, uε2)x = µ (uε1 − uε2)xx +Nε

(uε1 − uε2)t=0 = nε.

Using again (3), we obtain

(uε1 − uε2) (t, x) =
1√
π

∫
R

e−y
2

nε(x− 2
√
µty)dy+

+
1√
π

∫ t

0

∫
R

e−y
2

Nε(t− s, x− 2
√
µty)dyds

+

∫ t

0

1
√
πµs

∫
R

ye−y
2
[
f(x− 2

√
µsy, uε1(t− s, x− 2

√
µsy))−

− f(x− 2
√
µsy, uε2(t− s, x− 2

√
µsy))

]
dyds.
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This implies

‖ (uε1 − uε2) (t, ·)‖L∞ ≤ ‖nε‖L∞ + t‖Nε‖L∞((0,T )×R)+

+
c
√
µ
‖fu‖L∞

∫ t

0

1√
t− s

‖(uε1 − uε2)(s, ·)‖L∞ds.

Applying Lemma 3, we obtain

‖ (uε1 − uε2) (t, ·)‖L∞ ≤

≤
(
‖nε‖L∞ + t‖Nε‖L∞((0,T )×R)

)(
1 +

2c
√
µ
‖fu‖L∞

√
t
)
e
πc2

µ ‖fu‖
2t.

From here we conclude that

sup
(t,x)∈(0,T )×R

| (uε1 − uε2) (t, x)| = O(εM ), ε→ 0+,

for all T > 0 and M ∈ N, provided that N ∈ Ng(R2
+) and n ∈ Ng(R). Derivatives

of uε1 − uε2 can be estimated in the same way as in the proof of the existence to
conclude that u1 − u2 ∈ Ng(R2

+). �

Considering µ as a generalized constant we can obtain similar results.

Theorem 5. Let µ be a strictly positive generalized constant such that 1/µ is of
log-type, i.e. 1/µε = O(| log ε|), ε → 0+. Let u0 be of a, b-bounded type, and let
f be slowly increasing and satisfies (4). Than there exists unique u ∈ Gg(R2

+), of
bounded type, that solves problem (2).

Proof. The proof follows in the same manner as in the proof of Theorem 4, using
that 1/µε = O(log(1/ε)), ε→ 0+, in inequalities like (12). �

Remark 6. Notice that if µ ≈ 0, then the solution obtained in Theorem 5 is ap-
proximated (generalized) solution to (1).

Remark 7. Our assumption on 1
µ in Theorem 5 means that 1

µ is a slow-scale gen-

eralized constant. We refer to [8] for this notation which is useful but not used in
this paper.
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